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Abstract: The Microwave Humidity and Temperature sounder (MWHTS) on board the Fengyun 
(FY)-3C satellite measure the outgoing radiance form the Earth surface and atmospheric 
constituents. MWHTS makes measurements in the isolated oxygen absorption line near 118 GHz 
and the vicinity of strong water vapor line around 183 GHz, can provide fine vertical distribution 
structure of both atmospheric humidity and temperature. However, in order to obtain the accurate 
soundings of humidity and temperature by the physical retrieval method, bias between the 
observed radiance and those simulated by radiative transfer model from the background or first 
guess profiles must be correct. In this study, two bias correction methods are developed through 
the correlation analysis between MWHTS measurements and air mass identified by the first guess 
profiles of the physical inversion, one is the linear regression correction (LRC) and the other is 
neural networks correction (NNC), representing the linear and nonlinear nature between MWHTS 
measurements and air mass, respectively. Both correction methods have been applied to MWHTS 
observed brightness temperatures over the geographic area (180° W-180° E, 60° S-60° N). The 
corrected results are evaluated by the probability density function of the difference between 
corrected observations and simulated values and the root mean square error (RMSE) with respect 
to simulated observations. The numerical results show that the NNC method perform better, 
especially in MWHTS channels 1 and 7-9 whose peak weight function heights are close to the 
surface. In order to assess the effects of bias correction methods proposed in this study on the 
retrieval accuracy, a one-dimensional variational system was built and applied to the MWHTS 
uncorrected and corrected brightness temperatures to estimated atmospheric temperature and 
humidity profiles, The retrieval results show that the NNC has better performance which is to be 
expected. An indication of the stability and robustness of NNC method is given which suggests 
that the NNC method has promising application perspectives in the physical retrieval. 

Keywords: FY-3C/MWHTS; linear regression correction; neural networks correction; 
one-dimensional variational algorithm; atmospheric temperature and humidity profiles 

 

1. Introduction 

Atmospheric temperature and humidity profiles play important roles in wide range of 
atmospheric applications, such as climate monitoring, weather forecasting, initialization and 
evaluation of numerical weather prediction (NWP) models, assessing the atmospheric stability and 
nowcasting the intense convective weather to name a few [1,2]. Such profiles can be retrieved from 
observations taken by satellite-borne sounders. Microwave measurements are advantageous over 
visible or infrared because clouds do not absorb and scatter microwave radiation to the same degree 
[3]. This allows for microwave measurements of atmospheric parameters in most weather 
conditions, and provide a substantial data set [4]. FY-3C, launched in September 2013, is the 
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second-generation polar-orbiting meteorological satellite. The MWHTS on board FY-3C has 15 
channels at frequency ranging from 89 to 191 GHz which allows for simultaneously retrieving the 
atmospheric temperature and humidity profiles with good temporal and spatial sampling under 
clear and cloudy conditions [5]. MWHTS inherited most of the channels from its predecessors: 
microwave humidity sounder onboard FY-3A and FY-3B satellites. However, MWHTS includes 
eight new temperature sounding channels centered at 118.75 GHz oxygen absorption line which are 
used in operation for the first time internationally, and two new water vapor sounding channels, 
provides more details of vertical distribution structure of atmospheric temperature and humidity. 

Although the development of atmospheric temperature and humidity profiles measured by 
satellite-borne sounders has a history of over 50 years and improvement of this important inversion 
approach is actively continuing [6], the retrieval strategies can be put into two categories which term 
statistical methods and physical methods. Statistical approaches essentially use a statistical 
relationship between the actual observations and the atmospheric state variables which do not take 
into account any physical models [7,8,9,10]. However, in essence, physical methods propagate a first 
guess of the atmospheric parameters through a radiative transfer model and an iterative scheme, 
numerical procedures to fit the simulated measurements to the satellite observations by updating 
the first guess at each iteration [11,12,13,14]. Physical methods are the basic way to improve the 
retrieval accuracy, and have been widely adopted, since they have clear physical meanings. All of 
the physical methods employ either a minimum variance estimate or maximum likelihood estimate 
under the assumption that observations are unbiased and have Gaussian errors [15]. Any bias 
related to the instrument and the radiative transfer model should be taken into account when 
determining the appropriate weight to give to the radiance data in the physical retrieval process, 
therefore it must be quantified and removed. The term bias in our study refers to error that is 
systematic rather than random. In statistics, bias is a nature of an estimator which, on average, over- 
or underestimates the true value. For instance, a radiative transfer model which is always cold under 
certain circumstances is biased [16]. Biases in the observations and the radiative transfer model arise 
duo to systematic errors in any one (but generally a combination) of the following sources: the 
satellite sounder itself (e.g. poor calibration, or adverse environmental effects); the radiative transfer 
model linking the atmospheric parameters to the radiation measured by the satellite (e.g. errors in 
the physics or spectroscopy, or from non-modeled atmospheric process); and errors in the 
background atmospheric parameters from some data sources (e.g. radiosonde observations, 
Numerical Weather Prediction (NWP) analyses, climate re-analyses, etc) [17]. Since the causes of bias 
are complicated and manifold, it is very hard to remove bias in purely physical term. Many efforts 
based on statistical methods have been made to develop bias correction scheme for the NWP 
radiances assimilation system and the physical retrieval system based on the variational approach. 
This two systems sharing the same basis which is the minimization of a similar cost function to find 
the optimal solution can share the same radiometric bias removal. Many previous studies have 
developed empirical correction methods which remove the systemic biases by an empirical 
corrected varying with instrument itself, radiative transfer model, observation conditions, etc 
[18-20]. Li et al. adjust the observations or forward model calculations by statistical relationships 
between the radiances of corresponding channels irrespective of atmosphere state [21]. However, 
Kelly and Flobert, McMillin et al. and Uddstrom demonstrated that a successful bias correction 
scheme must taken into amount the spatially varying and air mass dependent nature of the radiance 
biases, and proposed the scan correction which make a correction for the relative mean bias between 
measurements at different scan angles, and air-mass correction taking into account the air-mass 
dependent nature of the radiance biases [22-25]. Based on air-mass correction, in satellite radiances 
assimilation system, adaptive bias correction scheme has been proposed which can distinguish the 
observation biases from the biases in the background in order to prevent the analysis from drifting 
towards its own climate [26-29]. However, all these air mass correction schemes belong to the linear 
regression approach assuming that the relationship between the atmospheric state and radiance bias 
is linear which may not represents the intrinsic features between them very well. 
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To correct the biases between observations and those simulated by radiative transfer model in 
physical retrieval procedure, for air-mass correction, the linear regression correction (LRC) and 
neural networks correction (NNC), representing the linear and nonlinear relationships between the 
biases in MWHTS measurements and air mass respectively, were proposed. In order to evaluate the 
performances of this two bias correction methods, a one-dimensional variational retrieval system 
was built to retrieve atmospheric temperature and humidity profiles using MWHTS brightness 
temperatures to investigate the effect of this two different correction approaches on retrieval 
accuracy. In addition, the tests of the stability and robustness of correction method proposed in this 
study were carried out by comparing to different atmospheric conditions and over different 
algorithm initialization conditions. This paper is organized as follows: Section 2 will present the 
major instrument characteristics of FY-3C/MWHTS. Radiative transfer model simulations of 
brightness temperatures are describe and LRC and NNC approaches for the air mass correction and 
scan correction are proposed in Section 3. The retrieval system for MWHTS data is built and its 
implementation in Section 4. The proposed bias correction approaches are evaluated in Section 5. 
Finally, conclusions are summarized in Section 6. 

2. Description of MWHTS instruments characteristics  

On 23 September 2013, the FY-3C satellite was successfully launched into a circular, near-polar, 
morning-configured (1005 LT) orbit with an altitude of 836 km above the earth and an inclination 
angle of 98.75° to the equator. MWHTS on board FY-3C is a total power radiometer, has a cross-track 
scanning geometry within ±53.35° with respect to the nadir direction. MWHTS completes one scan 
every 2.66 s and its swath is 2645 km, giving a nominal field of view (FOV) of 16 km at nadir. Each 
scan line has 98 FOVs together with a view of cold space and the onboard warm calibration target, 
used to perform a two-point radiometric calibration [30]. MWHTS has 15 channels with 8 
temperature sounding channels for measuring temperature from surface to the upper atmosphere, 5 
humidity sounding channels for measuring water vapor and liquid precipitation in the troposphere 
from surface to about 300 hPa, two window channels for providing information on the surface 
characteristics. Table 1 lists some of the channel characteristics of the FY-3C/MWHTS, including 
channel frequency, polarization, bandwidth, sensitivity of channel as measured in flight, peak 
weighting function (WF) height. 

Figure 1 displays the WF distributions for 15 channels of MWHTS calculated from a standard 
U.S. atmospheric profile at nadir by Millimeter-wave Propagation Model (MPM)-93 [31]. The WFs 
indicate the relative contribution of each atmospheric layer to the observations. For a given 
instrument channel and atmosphere state, the peak WF height increases with increasing zenith 
angle, since the optical path length sounded by the satellite increased with the instrument scan 
angles [32]. It is seen that MWHTS channels 1-9 measure the atmospheric temperature form the 
surface to 30 hPa, mainly in the stratosphere. MWHTS channels 10-15 measure the humidity in the 
troposphere. The WFs for MWHTS channels 7-9 in the far wing region of 118.75 GHz oxygen 
absorption line and MWHTS channels 1, 10 near the atmospheric absorption window have their 
maximum closer to the surface, these channels are affected by the radiation from both the surface 
and the boundary layer and can be used to obtain Earth's surface information. 

In our study, level 1b MWHTS brightness temperatures are used have been obtain from 
National Satellite Meteorological Center (http://www.nsmc.cma.gov.cn/NSMC/HOME/Index.html). 
The MWHTS brightness temperatures converted from calibration data using non-linear correction 
and correction of antenna spill-over effects have been validated by Guo [5]. 
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Table 1. MWHTS channel characteristics 

Channel Frequency 
(GHz) 

Polarization Bandwidth
(MHz) 

Peak WF
(hPa) 

Sensitivity of MWHTS
as measured in flight (K) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

89.0 
118.75±0.08 
118.75±0.2 
118.75±0.3 
118.75±0.8 
118.75±1.1 
118.75±2.5 
118.75±3.0 
118.75±5.0 

150.0 
183.31±1 

183.31±1.8 
183.31±3 

183.31±4.5 
183.31±7 

V 
H 
H 
H 
H 
H 
H 
H 
H 
V 
H 
H 
H 
H 
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1500 
20 

100 
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200 
200 
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1500 
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Window
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Figure 1. Weight functions for the 15 channels of FY-3C/MWHTS calculated from the U.S. standard atmospheric 

profile at nadir, assuming a surface emissivity of 0.6. 

3. Forward model and bias correction 

3.1. Forward model simulations 

Emission, absorption and scattering of radiation at microwave frequencies by the atmospheric 
constituents are the physical basis for measuring the atmospheric parameters, such as temperature 
or humidity. The radiation at the top of the atmosphere measured by a radiometer on board satellite 
can be simulated by a radiative transfer model [33]. In the process of physical retrieval, it is 
necessary to compare observed and simulated measurements, and the radiative transfer model is an 
essential part of the physical retrieval algorithm. In this study, The fast radiative transfer model 
RTTOV ( Radiative Transfer for Television and Infrared Observation Satellite Operational Vertical 
Sounder), version 11.2 developed by the European Center for Medium-Range Weather Forecast 
(ECMWF) is used to simulate MWHTS brightness temperatures. Because the surface emissivity has a 
serious impact on the microwave upwelling radiation, it must be taken into account in radiative 
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transfer simulations [34]. For MWHTS, the surface emissivity affects the measurements of the two 
window channels 1,10 ,temperature sounding channels 7-9 and water vapor sounding channel 15 
whose peak WF heights are closer to the surface. In RTTOV v11.2 [35], over ocean, the surface 
emissivities are computed by the FASTEM-5 model [36], over land, A Tool to Estimate Land-Surface 
Emissivities at Microwave frequencies (TELSEM) emissivity atlas is used [37]. 

ERA-Interim produced by a data assimilation system including a 4-dimensional variational 
analysis with a 12-hour analysis window, which assimilate many sounding measurements including 
radiosondes and in situ sounders, is a reanalysis of the global atmosphere at ECMWF, will be used 
as inputs to RTTOV to simulate MWHTS observations in our study. For a detailed documentation of 
the ERA-Interim Archive see Berrisford et al. [38]. This data set with horizontal resolution of 1°×1° 
and temporal resolution of 6 h (i.e., with data available at 0000 UTC, 0600 UTC, 1200 UTC and 1800 
UTC) is selected in this work, the profile parameters of which has a total of 37 pressure levels 
unevenly spaced from 1000 hPa to 1 hPa. The profiles of temperature, humidity and cloud liquid 
water and the surface parameters including surface pressure, 10 m wind speed, 2 m dewpoint 
temperature, 2 m temperature and skin temperature are used as inputs to RTTOV. Due to lack of 
accurate information about cloud ice and rain parameters from the ERA-Interim, simulations are 
carried out by the emission-based model neglecting scattering from clouds and precipitation in 
RTTOV. Since ice and snow emissivity is not well characterized in the RTTOV [33], which can 
strongly contribute to the uncertainty in the simulations, only ERA-Interim data covering 
geographic area (180° W-180° E, 60° S-60° N), where is ice-free surface, were utilized. 

In order to remove the systematic biases in MWHTS observations, it must be construct a 
matchup file, which contains the time and space collocated MWHTS observations, simulations from 
RTTOV and ERA-Interim reanalysis data set, to compare simulated and observed measurements. 
The criteria for collocating MWHTS observations with ERA-Interim data are that the time difference 
between ERA-Interim reanalysis data and MWHTS observations is less than 0.5 h, and the absolute 
distance between the position (latitude and longitude) of ERA-Interim reanalysis data and MWHTS 
observations is less the 0.5°. It is worth noting that simulations from RTTOV does not taken into 
account scattering from clouds and precipitation, thus it is necessary to filter out the cloudy MWHTS 
observations which are affected by a cloud with a high ice content, precipitating cloud and 
precipitation. In our study, we use the cloud filtering method developed by Buehler [39], which 
using measurements at 183.31±1.00 GHz and the difference of measurements at 183.31±1.00 GHz and 
183.31±3.00 GHz to create a threshold to filter out the cloudy  observations. For a detailed 
description of the cloud filtering methodology see Buehler et al. and Burns et al. [39-42]. For 
MWHTS, the criteria of filtering out cloudy observations are that the brightness temperature 
difference between channels 11 and channel 13 is greater than zero and the brightness temperature 
of channel 11 is greater than 240.6 K. Based on the collected criteria and the cloudy observations 
filtering criteria, two collocated datasets have been generated, one is the statistical analysis dataset 
with 254612 collocated samples over land and 1393744 collocated samples over ocean from 1 
February to 31 May 2014, is used to analyze the bias characterization of MWHTS and train the 
statistical algorithms. The other is the testing dataset with 67652 collocated samples over land and 
345039 collocated samples over ocean from 1 to 30 June 2014, is used to evaluate the algorithm 
performance. 

3.2. Bias correction 

For FY-3C/MWHTS measurements, the bias can be put into two categories, scan bias which 
changes with scan angle of instruments, and air-mass bias which tends to vary with the air mass and 
surface characteristics of the earth. In our study, the bias correction scheme is a two-step process, 
scan correction and air-mass correction. The bias correction can be carried out by either adjusting the 
satellite measurements or the simulated calculation [21]. In general, the satellite measurements are 
adjusted for use to avoid bias correction at each iteration in the physical retrieval procedure. 
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3.2.1. Scan correction 

Though the simulated calculations from RTTOV have been take into account the scan angle of 
instrument, which scans in a cross-track manner, residual biases vary with scan positions obviously 
in the MWHTS measurements, and the biases display noticeable variations in space. Dividing 
statistical analysis dataset according to latitude band, in this case every 10°, to calculate the mean 
bias between the observed and simulated values: 

 ( , ) ( , ) ( , )j j jd O Sφ θ φ θ φ θ= − ,  (1) 

where d  is the mean bias, O is the averaged observed brightness temperatures, S  is the 
simulated brightness temperatures, θ  is the scan angle, φ  is the latitude band and j  is the 
channel. Taking MWHTS channel 4 for example, Figure 2 shows the distribution of the mean bias by 
latitude band at 98 scan positions. It can be seen that the biases varies significantly with scan 
positions, particularly at the first 10 scan angles. In addition, the biases at different latitude band are 
more or less different, the maximum and minimum of which differ by about 2 K. 
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Figure 2. Scan bias by latitude band, FY-3C/MWHTS channel 4. 

On the basis of these studies, the scan correction can be divided into 12 latitude bands of 10° of 
longitude. However, correction coefficients across latitude bands may be not continuous, thus some 
smoothing is required. In our study, a simple smoothing approach is carried out to generate a 
smooth transition between latitude bands as described by Harris et al. [25]. The smoothing is given 
by 

 
1 1 1( , ) ( 1, ) ( , ) ( 1, )
4 2 4j j j jd d d dφ θ φ θ φ θ φ θ′ = − + + + ,  (2) 

( , )jd φ θ  are averaged by the sampling method. 

3.2.2. Air-mass correction 

Bias in the radiative transfer model, because of errors in the physics or spectroscopy, or from 
imprecise modeling of the atmospheric process, is relate to the atmospheric state sounding by the 
satellite. Removing this bias in physical terms is difficult, in generally, predicting it using statistic 
method with bias predictors is preferred. In order to identify the air mass which can provided a 
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good representation of the atmospheric state, MWHTS observation bias/temperature and 
bias/humidity correlations which can be used to study which combinations of atmospheric variables 
could be taken as bias predictors are calculated at each pressure level using the statistical analysis 
dataset complied in section 3.1. These correlations show in Figure 3. For temperature, it can be seen 
that there is a correlation between MWHTS brightness temperature bias and the layer 1000-200 hPa, 
200-50 hPa and 20-1 hPa for channels 2-5 and channels 11-14, but the correlation is very weak for 
channels 6-10. The humidity correlations are displayed for most of channels in the layers 1000-100 
hPa as shown in Figure 3(b). In addition, there is a high correlation between the surface temperature 
and channels 4. However, it is surprising that the temperature sounding channel 6-9 show little 
correlation for brightness temperature bias/temperature correlations, the humidity sounding 
channels show weaker correlation than most of temperature sounding channels for brightness 
temperature bias/humidity correlations, and window channels 1 and 10 which sense the surface do 
not shows high correlation at surface. It is important to realize that we are talking about the bias, not 
the brightness temperature themselves. It does not necessarily follow weight functions as Figure 2 
shows that if a channel senses a given atmosphere layer, that the bias will depend on this layer, the 
bias may be caused by another layer, because of correlations present in different layers of the 
atmospheric temperature and humidity [25]. 
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(a)                                      (b) 

Figure 3. Atmospheric parameters-bias correlations, MWHTS channels 1-15: (a) temperature-bias, (b) 
humidity-bias. 

As a result of this correlation analysis, we can find that a certain correlation is exist between the 
bias and air mass, but is not significant, especially for channels 6-9 for temperature. In our study, we 
proposed two correction methods, air-mass LRC and NNC, representing the linear and nonlinear 
relationship between MWHTS observation bias and air mass, respectively. 

1. LRC method 
The air-mass regression correction assuming a linear relationship between the brightness 
temperature bias and the air mass uses a set of bias predictors to predict the bias through the 
following equation [25]: 

 
1

n

j ji i j
i

Z A X C
=

= + ,  (3) 
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where j  is the channel, ( 1,..., )iX i n=  is the bias predictors, jiA  and jC  are the coefficients 

which are computed by carrying out a least-squares fit on data samples containing the brightness 
temperature bias and its corresponding air mass representing the atmospheric state. The coefficients 

jiA  are given by 

 
1

1
, ,

n

ji j k ki
k

A D X
−

=

=     X X ,  (4) 

where the< > denote covariances, X  is the vector iX , jD  is the same as ( , )jd φ θ′  in formula (2). 

The coefficients jC  are given by 

 T
j j jiC d A′= − − X .  (5) 

where T represents matrix transpose, the over bar represents the mean. 
For the bias predictors iX , after some testing, the best combination of predictors would 
：be 1000-200 hPa thickness, 200-50 hPa thickness, 20-1 hPa thickness, surface skin temperature and 

column water vapor. In our study, iX  is construct using the atmospheric temperature and 
humidity profiles and surface skin temperature in the statistical analysis dataset complied in section 
3.1, along with the corresponding differences of observations and simulations to calculate the 
coefficients in this linear regression algorithm. 

2. NNC method 
neural networks (NNs) are massively parallel and distributed structures inspired by biological 

networks of densely connected neurons, each of which can do computations. Just as biological NNs 
can learn from their environment, NNs have the ability to learn from the presentation of training 
data, as weights and biases of which can be tuned to fit the training data adaptively. In recent years, 
NNs are widely used in the retrieval of atmospheric geophysical parameters using remote sensing 
data, as NNs can be used to learn and compute function for which the analytical relationships 
between inputs and outputs are complex, especially highly nonlinear [11]. In our study, we focus on 
BP NNs based on error back propagation learning algorithm proposed by Rumelhart et. al. in 1986, 
due to their strongly nonlinear mapping ability [43]. In general, BP NNs consist of an input layer, 
one or more hidden layers, and a output layer. The schematic diagram of the three-layers BP NNs 
containing one hidden layer is shows in Figure 4. The input layer in which no computation is carried 
out, has L nodes representing the length L of the input vector X , is only used to input the input 
vector, then each node is connected to all M nodes of the hidden layer, each node in the hidden layer 
performs a nonlinear computation and is connected to each node of the output layer, the output 
vector Z   containing N values is generated by a weighted sum over all of the output vector Y  of 
the hidden layer [44]. 

 
Figure 4. Diagram of BP Neural Networks. 
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The input vector X  is carried out by a linear combine computation, followed by a nonlinear 
computation achieved through a nonlinear function (the so-called activation function), which can 
obtain an output of the hidden layer, given by 

 
1

,
L

j ij i j
i

Y S X bω
=

 = + 
 
  (6) 

where ijω  is the connection weights between the ith input node and the jth hidden node, and jb  

is the bias in the jth node of the hidden layer; S() is the activation function, sigmoidal function is 
selected, given by 

 
1( )

1 a
S a

e−=
+

.  (7) 

The output vector Y  of the hidden layer input to a linear combiner to obtain the out vector Z  of 
the output layer. At the training phase, The connection weights and bias in the BP NNs are adjusted 
iteratively to reduce the difference between the output vector of the pairs input/output vector and 
the calculated output vector estimated by the BP NNs using the input vector of the pairs 
input/output vector through the error back propagation algorithm which is described by Rumelhart 
et al. [43]. 

In our study, the differences of observations and simulations in the statistical analysis dataset in 
section 3.1 are taken as the output vector of the pairs input/output vector, and the corresponding 
atmospheric temperature and humidity profiles and skin temperatures are taken as the input vector 
of the pairs input/output vector (i. e. bias predictors), thus the length L of the input vector X  is 74, 
and the length N of the output vector Z  is 15 in the BP NNs. Based on many tests, the hidden layer 
with 30 hidden nodes was found to be best in our study. The connection weights and bias are 
determined through the training using 90% of the pairs input/output vector, the other 10% of pairs 
are used for validation to determine when to stop training. 

Finally, based on the above analysis, we can get the correct brightness temperatures 

 * ( , ) ( , ) ( , ) ( , )j j j jO O d Zφ θ φ θ φ θ φ θ′= − − .  (8) 

where *
jO  are the correct brightness temperatures in channel j, O  are the brightness 

temperatures without bias correction. In order to evaluate the effects of corrected brightness 
temperatures on the retrieval accuracy of atmospheric temperature and humidity profiles, we will 
build a physical retrieval system based on one-dimensional variational algorithm for MWHTS 
measurements. 

4. Retrieval system for MWHTS 

The retrieval system for MWHTS is based on the one-dimension variational algorithm, which is 
generally labeled under the general term of physical retrieval. one-dimension variational algorithm 
mainly includes two parts, one is the radiative transfer model for brightness temperature 
simulations, the other is the minimization of the following cost function: 

 T 1 T 11 1( ) ( ) [ ( ) ] [ ( ) ]
2 2

b bJ x x x x H x H x− −= − − + − −B I R I ,  (9) 

which is the basics for the one-dimension variational algorithm, its purpose is weighting the relative 
contribution of background information and satellite observations. In equation (9), bx  is the 
background state variable and B  is the background covariance matrix. R  is the sum of the 
covariance error in the brightness temperature simulations and the sensor noise. T  represents 
matrix transpose. H  is the forward operator simulates the satellite observations at the atmospheric 
state variable x . I  is the observations. Assuming the errors in the observations and the 
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background information are neither biased nor correlated, have Gaussian distributions, and 
assuming that there is a local linearity around x , the minimization of the cost function can be 
solved by: 

 0J

x

∂ =
∂

.  (10) 

This results in the solution x  [45]: 

 T T 1
1 ( )[ ( ) ( ) ] [ ( ) ( )]b b

n n n n nx x x x x H X x x−
+ = + + − − −BH H BH R I .  (11) 

where H  is the tangent linear function of H  at point x . n  is the iteration index. As we can see 
from equation (11), the final solution 1nx +  is affected by the priori information including the 

background covariance matrix B , the background state variable bx  and the first guess, the bias 
( )H X−I  between observation and simulation, and the covariance matrix R . 

Duo to determine atmospheric state variable x  from satellite observations is a underdetermined 
and ill-conditioned problem, it is important to use a source of a priori information to constrain the 
retrievals in iterative in equation (11) to within physically realistic solutions. In our study, we use the 
atmospheric temperature and humidity profiles from ERA-Interim reanalysis as described in section 
3.1, but the time range is form 1 January to 30 December 2013, to generate background covariance 
matrix B , The formula is given by [46]: 

 2

1 1

1 ( ) ( )
N N

ij i i j j
i j

x x x x
N

σ
= =

= − × − ,  (12) 

where 2σ  is a element in the covariance matrix B, i  and j  represent the row and column, 
respectively. N  is the number of the atmospheric temperature and humidity profiles used. We 
take the mean of the atmospheric temperature and humidity profiles for the calculations of 
background covariance matrix B  in equation (12) as the background state variable bx  in our 
retrieval system. 1x  in equation (12) obtained from NWP model outputs is the first guess, the 
National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) 6 h forecasts 
are used. The details of CFS are available in Saha et al. [47]. The same horizontal and temporal 
resolution of this data set as that of ERA Interim reanalysis and the collocated criteria with MWHTS 
measurements described in section 3.1 are selected. 

For the bias ( )H X−I , The LRC and NNC methods proposed in section 3.2 are used to adjust 
the observed brightness temperatures. After removing biases in the observations, the standard 
deviation of observations to simulations and the sensitivities of MWHTS as measured in flight in 
Table 1 which is often considered as the instrument channel noise are used to compute the error 
covariance matrix R  [48]. It is worth noting that different correction methods often correspond to 
different error covariance matrixes. 

The convergence criterion adopted in our retrieval system is when 

 1 0.01n n

n

J J

J
+ −

< .  (13) 

This mathematically means that the iteration is stopped if the relative difference of the cost 
function within two iterations is less than 0.01, and the maximum of 10 iterations is set, if the 
iterative times reach 10, the retrieval is set to the first guess. In addition, if the residuals between the 
measurements and those simulated by RTTOV from the first guess are greater than 20 K, then the 
measurements are abandoned. This is carried out for retrieval quality control. 
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5. Results 

5.1. Bias correction results 

LRC and NNC methods are applied to MWHTS observations coming from the testing dataset in 
section 3.1, with the bias predictors generated by the corresponding first guess used in the retrieval 
system built in section 4. Figure 5 shows the probability density distribution of brightness 
temperature biases for MWHTS channels 1-15 against the simulated brightness temperatures. For 
the MWHTS observations over ocean, the mean biases in channels 1-4, 6-8, 10 and 13-15 before bias 
correction are large, but have been significantly reduced and approaches zeros after both LRC and 
NNC methods. In addition, the probability density distribution of brightness temperature biases are 
more similar to a Gaussian distribution than that of before bias correction. This two bias correction 
both can get desired correction results. For the MWHTS observations over land, the biases of 
between brightness temperatures and simulated brightness temperatures in channels 2-7 and 11-15 
can be effectively corrected by this two correction methods, and the effect of correction is about the 
same as that of over ocean. However, the biases correction in the other channels shows different 
behaviors using different correction methods. LRC cannot correct the biases and improve the 
probability density distribution of biases to make it obey a Gaussian distribution, thus it will be fail 
in the physical retrieval system. But the correction results by NNC are satisfied. The two correction 
methods shows different behaviors over ocean and land, this is may be mainly caused by the surface 
emissivity. The sea surface emissivity can be calculated accurately by the FASTEM-5 model, but due 
to greater variations in surface characteristics, the calculation of the land surface emissivity is 
complicated and the accuracy is always lower than that of sea surface emissivity, although the land 
surface emissivity atlas is used in our simulated calculations. In addition, the land surface has higher 
emissivity which cause the radiation from the surface and the atmosphere being close to the surface 
mixed, the channels 1 and 8-10 which are sensitive to the surface are difficult to distinguish whether 
the contribution is from land or atmosphere. This lead the relations of atmospheric parameters and 
the biases between observations and simulations much more complicated. Duo to the strong 
nonlinearity mapping ability of neural networks, NNC can represents this relations well, and get the 
better correction results than LRC.  
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Figure 5. Probability density distribution of brightness temperature biases for MWHTS channels 1-15 against 
the simulated brightness temperatures. (a) ocean, (b) land. 
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In order to quantitatively evaluate the performance of this two bias correction methods further, 
the RMSE is used as given below 

 2

1

1 ( )
N

i i
i

RMSE x y
N =

= − .  (14) 

where ix  and iy  are the corrected and simulated brightness temperatures respectively, and N  
is the total number of comparisons. The RMSE of the biased before and after bias correction show in 
Figure 6. It can be seen that the RMSE of bias without bias correction is large over both ocean and 
land, especially in the channels 1 and 8-10 which are sensitive to the surface and the atmosphere 
closed to the surface. Over ocean, the RMSE of bias in all of channels corrected by the two correction 
approaches decrease obviously, the correction effect of NNC is better than that of LRC. but, over 
land, as expected, the correction effect of bias in channels 1 and 8-10 corrected by LRC is very poor, 
the RMSE of bias even larger than that of without bias correction. The RMSE of bias in temperature 
sounding channels 3-7 and water vapor sounding channels 11-15 are less than that of in channels 1 
and 8-10, are within 1.5 K over both ocean and land, and NNC can get better correction effect. 
However, the RMSE of bias in channel 2 is still high, though it has reduced significantly using the 
correction methods. This may be related to the accuracy of atmospheric temperature profiles in the 
upper atmosphere. 
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Figure 6. The RMSE of the biases before and after bias correction for MWHTS channels 1-15. (a) ocean, (b) land. 

5.2. Results for MWHTS retrievals 

An inversion of MWHTS measurements including the brightness temperatures with and without 
bias correction from the testing dataset in section 3.1, and the corresponding simulated brightness 
temperatures into atmospheric temperature and relative humidity profiles experiment was carried 
out to investigate the influences of LRC and NNC methods on the inversion accuracy. In our 
retrieval system, the iterative times are less than 5 in general. Duo to the retrieval quality control, 
more than 95% and 84% of solutions obtain convergence over ocean and land, respectively. In our 
study, RMSE is considered as the standard quantification to validate the retrievals with ECMWF 
ERA Interim reanalysis which is used as the truth. The RMSE is defined as equation (13), but the ix  

and iy  are replaced by ECMWF reanalysis and MWHTS retrieved parameters respectively. Based 
on the MWHTS channels WFs analysis, we validate the retrievals at levels from 1000 to 20 hPa and 
1000 to 250 hPa for temperature and relative humidity respectively. Figure 7 shows the RMSE of 
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inversion for ocean and land cases respectively. For the retrievals over ocean, the retrieved 
temperature RMSE using corrected measurements shows the substantial improvement over that of 
using measurements without bias correction from 200 to 20 hPa and 750 to 450 hPa in which the 
channels 2-4 and channels 6 are sensitivity to, the retrieval accuracy can be increased by 0.9 K. as can 
be seen from Figure 6(a), the correction results of this channels are good. However, the retrieved 
temperature accuracy using measurements corrected by NNC is better than that of using 
measurements by LRC at levels from 1000 to 800 hPa in which the correction results obtained by 
NNC outperformed that of the LRC, whose accuracy is similar to that of measurements without bias 
correction. Duo to the better performance of NNC method, the retrieved temperature accuracy is 
closer to the retrieved results using the simulated brightness temperatures. The retrieved humidity 
RMSE using measurements corrected by the two correction methods is significantly smaller than 
that of using measurements without bias correction, the retrieval accuracy can be increased by 6.8%. 
NNC method works better than LRC method, too. Compared with the retrieved results over ocean, 
we come to the same conclusion that the retrievals using corrected measurements has higher 
accuracy than that of the measurements without bias correction over land, the retrieval accuracy for 
temperature and humidity can increased by 0.8 K and 11% respectively, However, except for the 
temperature RMSE at levels from 1000 to 900 hPa where the channels 7-10 are sensitivity to, the 
retrieval accuracy of LRC is even lower than that of the measurements without bias correction, duo 
to the biases in channels 7-10 are still high as can be seen from Figure 6(b). It can be found from the 
retrieved RMSE both over ocean and land that the better bias correction results corresponds to the 
higher retrieval accuracy, the retrieval accuracy using measurements corrected by NNC is nearest to 
that of using simulated brightness temperatures, which is means that NNC method has better 
performance. One important thing to note about this retrieval results is that the temperature and 
humidity RMSE using simulated measurements is still large, this is caused by some other factors 
such as background covariance matrix, background state variable and first guess, investigating the 
effect of these factors on the retrieval accuracy and how to improve the retrievals are beyond of 
scope of our study in this paper, and will be study in a future publication. 
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Figure 7. Temperature and relative humidity RMSE of retrieval over (a) ocean, (b) land. 

5.3. Evaluation of algorithm robustness 

From the analyses above, NNC method can provide excellent performance in the physical process. 
However, it's necessary to examine the algorithm performance when the atmospheric parameters 
used to generated the bias predictors fall outside the training dataset of NNs. we should note that 
the atmospheric parameters used to generated the bias predictors in the training phase of NNC come 
from ECMWF reanalysis dataset, but in the retrieval system built in our study, the first guess come 
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from the NCEP CFS forecast dataset as the bias predictors have achieved the desired correction 
results. There is reason to believe that better correction results can be obtain when the bias predictors 
generated by the atmospheric parameters come from the testing dataset in section 3.1. However, this 
cannot be realize in the retrieval system. Figure 8 shows the difference of RMSE of bias correction 
using the first guess as the bias predictors and that of using atmospheric parameters in the testing 
dataset in section 3.1. It can be seen that the differences of between the corrected results using 
atmospheric parameters come from different data sources are almost equal to zeros, except for the 
channels 1 and 7-10, in which of the observations are affected by the surface emissivity, however, the 
atmospheric parameters is used to calculated the surface emissivity may have a large amount of 
forecast error in the NCEP CFS 6 h forecasts, such as 10 m wind speed. Figure 9 shows the effects of 
the corrected results on the retrieval accuracy, the differences are too small to be statistically 
significant, thus the correction results biases caused by bias predictors using the different data 
sources in our retrieval system have little effect on the retrieval accuracy. This suggests that the 
performance of NNC method proposed in our study is fairly robust in the retrieval system. 
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Figure 8. RMSE of bias correction using the first guess as the bias predictors minus RMSE of bias correction 

using the ECMWF reanalysis as the bias predictors. 
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Figure 9. As Figure 8 but for retrieval accuracy. 
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5.4. Evaluation of algorithm stability 

A well-constructed NNs can obtain the same solution which is not affected by the NNs initialization 
represented by the weights and biases used at the start of training. we can assess the stability of the 
algorithm through examining the solutions returned by NNC with different initialization states. we 
retrained the NNs of NNC with randomly initialized weights and biased four separate times, then 
applied this NNC method to the same MWHTS observations as that of section 5.1. Figure 10 shows 
the differences of RMSE of bias correction between four bias corrections and the NNC bias correction 
in section 5.1. It can be seen that the corrected results obtained by the four cases are similar to that of 
in section 5.1 both over ocean and land. The differences of RMSE of bias correction over land are 
greater than that of over ocean obviously because of affecting by surface emissivity accuracy, but the 
differences are too small to affect the retrieval accuracy in our inversion system which is the same as 
that of shown in Figure 9. This suggests that NNC method proposed in our study is insensitive to 
the initialization state. 
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Figure 10. The differences of RMSE of bias correction between four bias corrections and the NNC bias 
correction in section 5.1. 

6. Conclusions  

In this works, two air mass correction methods have been proposed, LRC and NNC representing the linear 
and nonlinear nature between MWHTS measurements and air mass respectively, to correct the systemic biases 
between the MWHTS observations and simulations coming from radiative transfer model in the physical 
retrieval process. It has been shown that NNC method obtained the desired correction results outperformed 
LRC method, and incorporating such correction brightness temperatures in the one-dimensional variational 
system built in this study could obtain higher retrieval accuracies of atmospheric temperature and humidity 
profiles than that of LRC and without bias correction. This is also suggests that the better correction results can 
obtain the higher retrieval accuracy in the physical process. To fully assess the performances of NNC method, 
NNC is carried out with bias predictors from NCEP CFS forecasts which is used in the retrieval system and bias 
predictors from ECMWF reanalysis which is used in the training phase of NNs, respectively. the results of 
comparison suggests that NNC is fairly robust. The sensitivity of NNC to the initialization of the NNs at the 
start of training shows that NNC has high stability. 

In conclusion, NNC method proposed in this paper is promising for the reason of representing the 
relationships of systemic bias and atmosphere state in the physical retrieval system or the statistical retrieval in 
which using simulations rather than the actual measurements irrespective of the collocated error between the 
satellite observations and atmospheric variables in time and space. Nevertheless, NNC is not suitable in NWP 
radiance assimilation system in which an adaptive bias correction scheme is preferred to distinguish satellite 
observation bias from NWP model bias and prevent the contamination of the observation bias estimates by 
systemic NWP model errors. In addition, one important thing to note about the retrieval system built in our 
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study is that the retrieved atmospheric temperature profile accuracy needs to be increased. How to improve the 
accuracy of the retrieval system will be studied in the future work. 
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