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Abstract: Count data are used in many fields of practice, especially Poisson distribution as a popular 

choice for the marginal process distribution. If these counts exhibit serial dependence, a popular 

approach is to use a Poisson INAR(1) model to describe the autocorrelation structure of process. In 

this paper, the explicit formulas are proposed to evaluate performance characteristics of Double 

Moving Average control chart (DMA) for Integer valued autoregressive of serial dependence 

Poisson process. The characteristics of the control chart are frequently measured as Average Run 

Length (ARL) which means that the average of observations are taken before a system is signaled 

to be out-of-control. These proposed explicit formulas of ARL are simple and easy to implement for 

practitioner. The numerical results show that the DMA chart performs better than others when the 

magnitudes of shift are moderate and large.  
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1. Introduction  

Statistical quality control (SQC) is often implemented with processes of counts. Count data 

occurs in various fields of practice due to the ease of data collection. Among others, application for 

statistical quality control (counts of nonconformities), to epidemiology (count of cases of a certain 

disease), or to economy (counts of price change). The marginal distribution of count processes can 

often be modeled by Poisson distribution, where   denotes the average of the Poisson distribution 

(Harris [1]). One particular area where these counts can be useful is in process monitoring to detect 

shifts of a process from an in-control state to various out-of-control states. Hence, quality loss can be 

reduced or prevented through corrective actions to put the process back into a normal state. Let 
t

N  

be a process of count data, which is assumed to be stationary with Poisson distributed marginals in 

the state of statistical control (Weiβ [2]). Most prominent are two charts of Shewhart type, namely c 

chart and u chart, which both monitor the marginal distribution of the process  
t

N .  For a detailed 

description, consult Montgomery [3]. Often, the c chart has been used to monitor count data. 

Although originally developed for independent count data which has also been discussed in previous 

literature. The Shewhart control chart uses only the information in the last sample and ignores 

information given by the entire data sequence. Thus, the c chart is known to have poor performance 

when detecting small shift in process mean. In the past few decades, Exponentially Weighted Moving 

Average control chart (EWMA) was introduced by Robert [4]. It is an effective chart to detect small 

and moderate shifts. Cumulative Sum control chart (CUSUM) was introduced by Page [5]. It is 

sensitive to small shifts for process mean. Recently, Moving Average control chart (MA) was 

proposed (see [3]). Khoo [6] studied MA charts to monitor the fraction of non-conforming 

observations and showed that the MA chart was more efficient than the p chart. Later, Michael et.al. 

[7] proposed the Double Moving Average Control Chart (DMA) when observation are of normal 

distribution. The numerical results showed that the DMA chart improved average run length of MA 

chart by using a Monte Carlo (MC) simulation. Mostly, the count process assumes that the count data 
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are independent and identically distributed (i.i.d.). However, observations could be serially 

autocorrelated which may adversely affect the performance of the control charts under this 

assumption of independence (Brockwell and Davis [8]). A popular class of models for stationary real 

valued processes are the autoregressive moving average (ARMA) models. These models have a 

simple autocorrelation structure and other attractive properties. Because the typical mathematical 

operations are well defined for count, the recursion ARMA model cannot be applied to the integer 

valued case, since the multiplication of an integer by a real number usually results in a non-integer 

valued. This motivates us to replace the scalar multiplication in the recursion ARMA model by 

binomial thinning (McKenzie [9]). Al.Osh and Alzaid [10] introduced the first order integer-valued 

autoregressive (INAR(1)) model. It is well suited to model the autocorrelation structure of process 

with Poisson distribution. The statistical properties of INAR(1) are discussed in McKenzie [11].    

The performance of a control chart when the process is in-control can usually be characterized 

by the in-control Average Run Length (ARL0). It is the average of observation before the control chart 

gives a false alarm as the in-control process has gone to the out-of-control process. The performance 

of a control chart when the process is out-of-control is Average of Delay Time (ADT). It is the average 

of observation between process goes out-of-control and control chart giving an alarm that the process 

has gone out-of-control. Ideally, the value of ARL0 of an acceptable chart should be sufficiently large 

and the value of ADT should be minimal. Most work focuses on evaluating the ARL0 and ADT for 

control charts have been studied in previous literature. A basic approach that is often used to test 

other methods is Monte Carlo (MC) simulation. Roberts [4] studied the ARL for EWMA charts by 

using simulations for processes following a normal distribution which could be used to find the ARL 

for a variety of parameter values. Crowder [12] studied numerical quadrature methods to solve the 

exact Integral Equations (IE) for the ARL for normal distribution. Brook and Evans [13] used an 

approximate formula for the ARL of EWMA chart by using a finite-state Markov Chain Approach 

(MCA). Areepong and Novikov [14] derived explicit formulas for ARL of Exponentially Weighted 

Moving Average control charts. Areepong and Sukparungsee [15] studied an analytical ARL of 

Binomial double moving average chart. Areepong [16] studied explicit formulas of average run 

length for a moving average control chart for monitoring the number of defective products. Areepong 

and Sukparungsee studied [17] studied closed form formulas of average run length of moving 

average control chart for nonconforming for zero-inflated process. Sukparungsee [18] studied run 

length of double moving average control chart for zero-inflated count processes. Sukparungsee and 

Areepong [19] studied explicit expression for the average run length of double moving average 

scheme for zero-inflated binomial process. Recently, Phantu et.al. [20] studied Explicit expressions of 

average run length of moving average control chart for Poisson integer valued autoregressive model. 

In the literature one can find at least four numerical procedures to evaluate average run length. Monte 

Carlo (MC) is simple to program and based on a large number of sample trajectories, so it is time 

consuming to run. Moreover, it is difficult to use for optimization, though it is convenient to control 

accuracy of analytically approximations. Integral Equation (IE) is the most advanced method 

currently available but it requires intensive programming to implement, even for the case of Gaussian 

distribution and also for the continuous observations. The Markov Chain Approach (MCA) is 

considered a popular technique. It is based on the approximation of matrix inversions. In addition, 

there are no theoretical results on accuracy for this procedure in terms of rate of convergence. The 

Martingale approach is simple and convenient for approximation but it could also be implemented 

for the case of light-tailed distributions or the moment generating function of exits. However, the 

results for average run length and average delay time usually cannot be obtained analytically and 

intensive programming or specialized software is required to obtain analytical results even for the 

case of the normal distribution. 

In this paper we propose an explicit formula to evaluate ARL and ADT of double moving 

average control chart (DMA) when observations are Poisson count process. The results show that the 

performance of a DMA chart is good when the magnitudes of shift are moderate and large. 

2. Methodology  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2016            doi:10.20944/preprints201608.0169.v1 

 

  

http://dx.doi.org/10.20944/preprints201608.0169.v1


 3 of 11 

2.1. Binomial Thinning 

The binomial thinning operator introduced by Steutel and Harn [21] preserves the status of an 

integer random variable when N  operates on by a parameter 0 1( , )  , which is proven to be an 

adequate alternative to scalar multiplication. If N  is a discrete random variable with range 0{ , ..., n}.

The thinning operation defined as 

1





N

i

i

N X   

where
i

X are i.i.d. Bernoulli counting sequence random variables P( 1)
i

X   and 

P( 0) 1 .
i

X     The operator is a random operator and the random variable  N  has a binomial 

distribution with parameters N  and   and counts the number of survivors from the count N  

remaining after thinning. Notice that the thinning operator confers greater dispersion on the number 

of survivors than the ordinary multiplication operator. For instance in integer time series models, N  

may often be an equi-dispersed Poisson random variable with equal mean and variance .  

Suppose 
1t

N


 is an integer random variable arising at time 1t  and subjected to binomial 

thinning to produce the number of survivors in the next period. Then, conditional on 
1t

N


 for  N  

is an integer random variable with variance 
1

1( )N
t

 


 , whereas 
1

N
t




 has zero conditional 

variance (the unconditional counterparts are   and 2
 ). Expectation and variance of  N  can 

be easily obtained by applying well-known rules for conditional moment as follows 

[ ] [ ] E N E N
2

[ ] [ ] (1 ) [ ].     V N V N E N   

It is the first result which justifies to replace the scalar multiplication in usual ARMA models by 

the probabilistic operation of binomial thinning. 

2.2. Integer Autoregressive Model 

The first integer-valued ARMA model, the INAR(1) model was introduced by McKenzie [9]. It 

is based on a probabilistic operation of binomial thinning. Alzaid and Al-Osh [10] derived a number 

of important statistical properties of these models, which are the discrete analogue of the usual AR(1) 

model. The INAR(1) process is defined by the recursion 

1
. 


 

t t t
N N  (1) 

where ( )  is the thinning operations at time t  are performed independently of each other and 
t
 

and where 
t

N  is the observable count at time t  and the innovations  t  are i.i.d. count data. The 

INAR(1) model is the best fitting model for Poisson marginal. If  t  follows the Poisson distribution 

with mean (1 )   then 
t
 was ( (1 )) Poi  distribution if the initial count 

0
N  is distributed 

as ( ).Poi  Then 
t

N  is stationary and distributed as ( ).Poi  According to the above situation, it 

can be modeled as a Poisson INAR(1) model. The expectation and variance of INAR(1) model are 

    .
1




 


t t

E N V N   

2.3. The Double Moving Average Control Chart 

A double moving average control chart (DMA) was proposed by Michael and Khoo [7] and the 

explicit formula binomial DMA chart of ARL was presented by Areepong and Sukparungsee [19]. 

The DMA statistic is defined by 
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 (2) 

where 
i

MA  is statistic of moving average control chart. Suppose individual observations,
1 2
, ,...,N N  

are collected moving average of width w  at time i  is defined as (Montgomery [3]) 

1 1
...

  
  


i i i w

i

N N N
MA

w
  

for period .i w  For period ,i w  we do not have w  observations to calculate a moving average 

of width .w  For these periods the average of all observations up to period i  defines the moving 

average. The mean and variance of double moving average control chart,  

 
1







iE DMA   

and 

 

2

2

2

;
(1 )

; 2 1
(1 )

; 2 1.
(1 )

i

i w
i

V DMA w i w
w

i w
w




   

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
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i
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i
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
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 

 

 

 
(3) 

where H  is a constant to be chosen. 

2.4. Explicit Formula for Evaluate Average Run Length of Double MovingAverage Control Chart 

Proposition I. Explicit formulas of 
0

ARL  for double moving average control chart. 
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Proposition II. Explicit formulas of ADT for double moving average control chart. 
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Proof. The proposition I and II can be analytically derived by central limit theorem as follows. 

The average run length values can be derived. Let ,ARL n then 
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3. Results 

The numerical results for ARL0 and ADT of DMA chart are calculated from Equation (4) and 

Equation (5). The parameter values for DMA chart following moving average considering w = 2, 3, 

4, 5, 10 and 15. The in-control parameter are given 
0

 = 1, 3 and 
0

 = 0.2. Out-of-control parameter 

values are 
1

  and shift parameters ( 1 ) = 0.1, 0.2, 0.3,…, 2.0. Out-of-control parameter values are 
1

  

and shift parameters ( 2 ) = 0.1, 0.2, 0.3,…, 2.0. Out-of-control parameter values are 
1 1

/1   and 

shift parameters ( ) = 0.1, 0.2, 0.3,…, 2.0. The results show that the proposed DMA chart are sensitive 

to only a few of the out-of-control situations.  

Table I shows ARL for 
0

 = 1 of DMA chart considering a change in  , when small shifts (δ ≤ 

0.5), the DMA chart has the best performance with w  = 15. For moderate shifts (0.6 ≤ δ ≤ 0.8) the 

performance of DMA chart with w = 10 is superior to others. For the shift sizes (0.9 ≤ δ ≤ 1.0) the 

performance of DMA chart with w = 5 is the best control chart. For large shifts (δ > 1.5), the DMA 

chart has the best performance with w = 4. Table II shows the ARL for 
0

 = 3 of DMA chart 

considering a change in  , when small shifts (δ ≤ 0.3) the DMA chart has the best performance with 

w  = 15. For moderate shifts (0.4 ≤ δ ≤ 0.5), the DMA chart has good performance with w = 10. For 

magnitude of shifts (0.6 ≤ δ ≤ 0.7), the DMA chart has good performance with w = 5. For parameter 

shift (0.8 ≤ δ ≤ 0.9), the DMA chart has the performance with w = 4. For parameter shifts (δ ≤ 1.0), the 

DMA chart has good performance with w = 3. For large shifts (δ > 1.5), the DMA chart has good 

performance with w = 2.  
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Table 1. ARL of DMA chart for given 
0 = 1, 

0 = 0.2 and considering a change in .  

1
  w  = 2 w  = 3 w  = 4 w  = 5 w  = 10 w  = 15 

0.0 370.398 370.398 370.398 370.398 370.398 370.398 

0.1 201.525 173.237 144.981 119.819 52.267 37.871* 

0.2 101.168 70.595 49.631 36.400 20.347* 25.745 

0.3 53.518 32.788 21.917 16.632 16.182* 22.985 

0.4 30.909 17.946 12.51 10.627* 14.537 19.277 

0.5 19.475 11.361 8.696 8.296* 12.952 15.033 

0.6 13.253 8.086 6.879* 7.160 11.161 11.468 

0.7 9.629 6.290 5.883* 6.468 9.375 8.942 

0.8 7.389 5.219* 5.261 5.956 7.824 7.273 

0.9 5.933 4.530* 4.824 5.519 6.593 6.163 

1.0 4.943 4.057* 4.482 5.116 5.655 5.382 

1.5 2.816* 2.894 3.272 3.443 3.355 3.347 

2.0 2.126* 2.307 2.450 2.461 2.434 2.434 

* is minimum ADT. 

Table 2. ARL of DMA chart for given 
0 = 3, 

0 = 0.2 and considering a change in .  

1
  w  = 2 w  = 3 w  = 4 w  = 5 w  = 10 w  = 15 

0.0 370.398 370.398 370.398 370.398 370.398 370.398 

0.1 154.065 109.625 77.476 56.092 24.402* 27.203 

0.2 54.704 30.006 18.952 14.307* 15.693 21.742 

0.3 23.298 12.253 8.912 8.391* 12.850 14.187 

0.4 12.087 7.014 6.229* 6.745 9.475 8.874 

0.5 7.399 5.020* 5.146 5.837 6.828 6.369 

0.6 5.153 4.075* 4.502 5.064 5.217 5.066 

0.7 3.949 3.529* 3.996 4.347 4.250 4.217 

0.8 3.239 3.154* 3.548 3.721 4.250 3.602 

0.9 2.785* 2.861 3.148 3.213 3.138 3.137 

1.0 2.472* 2.615 2.801 2.816 2.776 2.776 

1.5 1.702* 1.772 1.778 1.778 1.777 1.777 

2.0 1.356* 1.366 1.366 1.366 1.366 1.366 

* is minimum ADT. 

Table III shows the ARL for 
0

 = 1 of DMA chart considering a change in  . For small shifts, (δ 

≤ 0.4) the DMA chart has the best performance with w = 15. For moderate shifts (0.5 ≤ δ ≤ 0.8), the 

DMA chart has good performance with w = 10. For magnitude of shifts (0.9 ≤ δ ≤ 1.0), the DMA chart 

has good performance with w = 5. For parameter shift (δ ≤ 1.5), the DMA chart has the performance 

with w = 4. For parameter shifts (δ ≤ 2.0), the DMA chart has good performance with w = 3. Table IV 

shows the ARL for 
0

 = 3 of DMA chart considering a change in  , when small shifts, (δ ≤ 0.3), the 

DMA chart has the best performance with w = 15. For moderate shifts (0.4 ≤ δ ≤ 0.5), the DMA chart 

has good performance with w = 10. For magnitude of shifts (0.6 ≤ δ ≤ 0.9), the DMA chart has good 

performance with w = 5. For parameter shift (δ ≤ 1.0), the DMA chart has the performance with w = 
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4. For parameter shifts (δ ≤ 1.5), the DMA chart has good performance with w = 3. For parameter 

shifts (δ ≤ 2.0), the DMA chart has good performance with w = 2. 

Table 3. ARL of DMA chart for given 
0 = 1, 

0 = 0.2 and considering a change in .  

2
  w  = 2 w  = 3 w  = 4 w  = 5 w  = 10 w  = 15 

0.0 370.398 370.398 370.398 370.398 370.398 370.398 

0.1 298.968 284.152 273.606 264.593 221.813 180.796* 

0.2 237.34 210.69 190.885 173.909 109.624 75.241* 

0.3 185.959 152.819 129.232 110.495 57.390 42.074* 

0.4 144.351 109.707 86.925 70.495 34.932 31.206* 

0.5 111.428 78.711 59.079 46.243 24.896* 27.102 

0.6 85.822 56.855 41.020 31.608 20.087* 25.202 

0.7 66.141 41.565 29.296 22.663 17.577* 24.022 

0.8 51.125 30.867 21.607 17.080 16.119* 23.006 

0.9 39.711 23.344 16.488 13.506* 15.151 21.917 

1.0 31.043 18.010 13.02 11.155* 14.401 20.649 

1.5 10.335 6.733 6.141* 6.547 10.763 12.284 

2.0 4.494 3.863* 4.264 4.893 6.494 6.268 

* is minimum ADT. 

Table 4. ARL of DMA chart for given 
0 3, 0 0.2  and considering a change in .  

2
  w  = 2 w  = 3 w  = 4 w  = 5 w  = 10 w  = 15 

0.0 370.398 370.398 370.398 370.398 370.398 370.398 

0.1 291.784 270.623 252.542 235.367 158.437 108.104* 

0.2 217.048 178.177 147.713 122.847 56.437 40.275* 

0.3 155.32 111.86 83.083 63.430 28.700 28.590* 

0.4 108.909 69.874 48.025 35.266 20.289* 25.573 

0.5 75.922 44.520 29.402 21.751 17.190* 24.007 

0.6 53.155 29.316 19.305 14.952* 15.698 22.378 

0.7 37.625 20.09 13.635 11.330* 14.673 20.276 

0.8 27.043 14.375 10.322 9.276* 13.707 17.730 

0.9 19.794 10.748 8.300 8.028* 12.644 15.033 

1.0 14.783 9.385 7.010* 7.207 11.447 12.510 

1.5 4.772 3.944* 4.362 4.963 5.729 5.438 

2.0 2.479* 2.638 2.935 3.071 3.032 3.018 

* is minimum ADT. 

Table V shows the ARL for 
0

 = 1 and 
0

 = 0.2 of DMA chart considering a change in /1  . 

For small shifts (δ ≤ 0.5), the DMA chart has the best performance with w = 15. For moderate shifts 

(0.6 ≤ δ ≤ 0.8), the DMA chart has good performance with w = 10. For magnitude of shifts (δ ≤ 0.9), 

the DMA chart has good performance with w = 5. For parameter shift (1.0 ≤ δ ≤ 1.5), the DMA chart 

has the performance with w = 4. For parameter shifts (δ ≤ 2.0), the DMA chart has good performance 

with w = 3. Table VI shows the ARL for 
0

 = 3 and 
0

 = 0.2 of DMA chart considering a change in 
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/1  , when small shifts (δ ≤ 0.3), the DMA chart has the best performance with w = 15. For 

moderate shifts (0.4 ≤ δ ≤ 0.5), the DMA chart has good performance with w = 10. For magnitude of 

shifts (0.6 ≤ δ ≤ 0.7), the DMA chart has good performance with w = 5. For parameter shift (0.8 ≤ δ ≤ 

0.9), the DMA chart has the performance with w = 4. For parameter shifts (δ ≤ 1.0), the DMA chart 

has good performance with w = 3. For parameter shifts (1.5 ≤ δ ≤ 2.0), the DMA chart has good 

performance with w = 2.  

The average run length for DMA chart shows that when the shift increases, the DMA performs 

better when the value of ( w ) decreases. Therefore, one can see that the proposed formulas for ARL0 

and ADT for DMA chart can correctly calculate efficiently. Moreover, this is easy to implement which 

should also greatly reduce computation times. 

Table 5. ARL of DMA chart for given 
0 = 1, 

0 = 0.2 and considering a change in  / 1 .   

  w  = 2 w  = 3 w  = 4 w  = 5 w  = 10 w  = 15 

0.0 370.398 370.398 370.398 370.398 370.398 370.398 

0.1 329.399 311.906 296.057 281.64 225.731 187.864* 

0.2 244.313 206.88 178.542 156.438 94.298 67.119* 

0.3 166.124 126.463 100.728 82.916 42.669 30.139* 

0.4 110.348 77.170 58.018 45.897 22.805 17.995* 

0.5 73.723 48.334 34.988 27.154 14.518 13.397* 

0.6 50.111 31.352 22.263 17.293 10.722* 11.312 

0.7 34.805 21.130 14.989 11.872 8.7909* 10.111 

0.8 24.743 14.816 10.682 8.756 7.677* 9.206 

0.9 18.017 10.811 8.041 6.883* 6.931 8.372 

1.0 13.441 8.204 6.363 5.704* 6.349 7.538 

1.5 4.424 3.389 3.282* 3.407 3.986 4.057 

2.0 2.377 2.263* 2.359 2.439 2.506 2.506 

* is minimum ADT. 

Table 6. ARL of DMA chart for given 
0 = 3, 

0 = 0.2 and considering a change in  / 1 .   

  w  = 2 w  = 3 w  = 4 w  = 5 w  = 10 w  = 15 

0.0 370.398 370.398 370.398 370.398 370.398 370.398 

0.1 267.918 234.024 207.107 185.277 119.142 87.114* 

0.2 137.471 100.337 77.601 62.546 31.204 22.948* 

0.3 68.24 44.271 31.88 24.707 13.538 12.866* 

0.4 35.700 21.709 15.392 12.167 8.894* 10.183 

0.5 20.013 11.979 8.8039 7.421 7.159* 8.654 

0.6 12.061 7.439 5.877 5.362* 6.1427 7.208 

0.7 7.814 5.151 4.432 4.326* 5.284 5.813 

0.8 5.428 3.909 3.633* 3.708 4.476 4.655 

0.9 4.023 3.181 3.133* 3.270 3.754 3.795 

1.0 3.157 2.719* 2.778 2.912 3.165 3.171 

1.5 1.621* 1.664 1.689 1.694 1.695 1.695 

2.0 1.192* 1.197 1.198 1.198 1.198 1.198 

* is minimum ADT. 
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4. Discussion 

The best properties of a DMA chart are memory control charts because of their ability to detect 

small shifts. Without loss of generality, this chart can be relaxed due to its feasibility with the width 

of control limit ( w ). The DMA chart performs better as the values of w increases for small shifts, 

however, the number of observations must be sufficiently large. 

5. Conclusions  

The explicit formulas for ARL of DMA for Poisson counting process was derived. The INAR(1) 

model is a simple but well interpretable model for correlated process of Poisson counts data. The 

result shows that when a process increases, the performance of DMA will perform better as the value 

of w  decreases for all case studies. Furthermore, these explicit formulas are simple and easy to 

implement which reduces computation time to less than 1 second. 
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