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Abstract: 1) Landsat operational land imager (OLI) data and consequent laboratory measurements 

were used to predict Chlorophyll-a (Chl-a) concentration and the trophic states for an inland lake 

within the East Kolkata Wetland, India; 2) The most suitable band ratio was identified by 

performing Pearson correlation analysis between Chl-a concentrations and possible OLI band and 

band ratios from the study points; 3) The results showed highest correlation coefficient from the 

band ratio OLI5/OLI4 with an R value of 0.85. The prediction model was then developed by 

applying regression analysis between the band ratio OLI5/OLI4 and Chl-a concentration of the 

study points. The reflectance ratios of the validation points were given as input on the prediction 

model and the model output was considered as predicted Chl-a values of the validation points to 

check the efficiency of the prediction model. The regression model between laboratory-derived 

Chl-a value and model-fitted Chl-a value of the validation points revealed a high correlation with 

an R2 value of 0.78. Trophic State Index (TSI) of the lake was also calculated from 

laboratory-derived Chl-a value and model-fitted Chl-a value of the validation points. The study 

presented a high correlation of TSI determined from predicted data with TSI from laboratory 

reference data (R = 0.88). The TSI values of the lake ranged from 65 to 75 which indicate that the 

lake is appeared to be eutrophic to hypereutrophic conditions. 4) This empirical study showed that 

Landsat 8 OLI imagery can be effectively applied to estimate Chl-a levels and trophic states for 

inland lakes.  

Keywords: landsat 8 OLI; Nalban Lake; East Kolkata Wetland; chlorophyll-a prediction; study 
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1. Introduction 

Chlorophyll-a (chl-a) is a photosynthetic pigment that is found in all green floral components 

including algae [1]. An optimum concentration of phytoplankton and algae is crucial for a 

biologically productive and healthy lake as it is considered as the primary producer of aquatic 

ecosystem. Fish yield can be worth interpreted by primary production in lakes compared to any 

other preferred relationship between yield and environmental variables [2-3]. However, excessive 

concentration of Chlorophyll is undesirable as it inculcates eutrophic condition of the lake [4] and 

results in increment of phytoplankton standing crop [5]. The eutrophic condition also deteriorates 

water quality by external and internal nutrient loading which leads to disappearance of benthic 

fauna and adversely affects inhabitant fishes of aquatic body [6]. Potable water qualities, lives of 
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human and animal and recreational use of the lakes are adversely affected by excessive algal bloom 

posing a serious threat to society and environment [4, 7-12]. So, Chlorophyll estimation is regarded 

as an indicator of nutrient status of aquatic body and helpful for monitoring and managing the 

eutrophic lakes [13]. Throughout the world, incremental tendency of algal bloom in inland and 

coastal water body is a familiar phenomenon [4, 9, 12]. Therefore, in near future, implementation of 

monitoring plan for aquatic body (lake) may become a compulsion. 

The Trophic State Index (TSI) is an important parameter to monitor the status of water quality 

as well as assessment of eutrophication [14]. Carlson [13] had developed the most suitable and 

acceptable methods for evaluating eutrophication in inland lakes. The index can be calculated from 

one of the several parameters such as Chl-a, Secchi disk depth, and total phosphorus. However, 

assessment methods of the eutrophic status of water bodies may be different as it largely depends on 

geographic locations, environmental issues, anthropogenic activities and the types of eutrophication 

[14]. For example, Shu [15] had developed a modified method of eutrophication assessment for the 

Chinese lake. In this method, chlorophyll-a was employed to calculate the trophic state index for 

lakes. 

The traditional method of monitoring water quality is the manual collection of samples and 

laboratory analysis using in situ measurements. This process is not suitable to represent a synoptic 

spatio-temporal view of the large water bodies within a short time span and also not effective in 

terms of operational cost, manpower etc [16-17]. The remote sensing technique is capable to handle 

these problems and is useful in studying and monitoring the water quality parameters both at 

temporal and spatial scales without any field measurements [18]. The gradual development of 

optical and thermal sensors had made the remote sensing process an effective tool for extracting 

spatio-temporal information on water quality with high spectral and spatial resolution [19-20]. 

Satellite remote sensing is fast and relatively low operational cost process and can be used as a tool 

to derive spatio-temporal variability in lake water quality [21]. 

The 15 m and 30 m resolution of the Landsat 8 Operational Land Imager (OLI) combined with 

high global data availability, present a unique platform to provide the first and most up-to-date 

global inventory of the world's lakes and water quality information retrieval at high spatial 

resolution and positional accuracy using recent Landsat algorithms [22-24]. Miller et al. [25] had 

opined that the Landsat series provided approximately $2.19 billion economic advantage per year 

that had been expensed over several fields of research. Brivio et al. [26] studied the relationship 

between Chl-a and remote sensing image data using Landsat TM images in Lake Garda (Italy). Duan 

et al. [14] studied estimation of Chl-a and TSI for inland lakes in northeast China from Landsat TM 

data. Giardino et al. [27] and Kim et al. [28] estimated Chl-a using Landsat 8 Operational Land 

Imager (OLI) in Lake Garda (Italy) and Fjord of Svalbard (Arctic sea) respectively. Lim and Choi [17] 

evaluated potential applications of the Landsat 8 OLI for estimating Chl-a in the Nakdong River 

(Korea). Theoretically, it is nearly impossible to detect and pin-point water quality data from 

remotely sensed images because of the water-atmosphere interface and unknown atmospheric 

aerosol [29]. So, empirical or semi-empirical approach should be introduced to quantify the water 

quality. Several researchers have successfully estimated different water quality parameters from the 

satellite band reflectance and developed empirical based predictive models for lake water quality 

[21, 30-33].  

The objective of the present study is to determine the effectiveness of spectral reflectance values 

from the Landsat-8 OLI in respect to measurement of chl-a and Trophic State Index (TSI) in the 

Nalban Lake, East Kolkata Wetland (EKW), West Bengal, India. The study also optimizes the 

suitable OLI band or band combination for forecasting chl-a concentration and develops optimized 

regression models regionally.  

2. Materials and Methods  

2.1 Study Area 
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The Nalban Lake is situated inside the East Kolkata Wetland (EKW) (latitude 22°25' – 22°40' N, 

longitude 88°20' – 88°35' E), a complex of natural and man-made wetlands located at the eastern part 

of Kolkata, West Bengal, India (Figure 1). The EKW is one of the largest assemblages of sewage fed 

fish farms spread over an area of 12,500 ha. Because of its’ immense ecological and socio-cultural 

importance, the EKW was designated as “Wetland of International Importance” under the Ramsar 

Convention on August 19, 2002. The water spread area of the Nalban Lake is about 126 ha. The detail 

physical characteristics of the lake were presented in Table 1. The lake sustains a diverse number of 

aquatic flora and fauna and also used for aquaculture purpose. Besides these, the lake is also used 

for tourism, recreation and sewage stabilization pond. This lake is now under the administrative 

control of State Fisheries Development Corporation Ltd, Government of West Bengal. 

2.2 Water sampling procedure and measurements 

The in-situ sampling was performed on the prefixed date when Landsat satellite overpasses the 

Kolkata region. The water sampling procedure was done in two phases and was restricted to surface 

water. In the first phase, eight sampling sites (S1-S8) were selected encompassing the entire lake 

surface area. These eight points were considered as ‘study points’ (Figure 1).  
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Figure 1. Map of the study area; A) India, B) East Kolkata Wetland, and C) Nalban Lake 

Table 1. Physical characteristics of Nalban Lake, India 

Parameter : Values 

Elevation : 1 m 

Lake Surface Area : 126 ha 

Mean Depth : 1.6 m 

Maximum Depth : 2.5 m 

Maximum Width : 0.87 km 

Maximum Length : 1.47 km 

Residence Time : Perennial 
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Water samples were collected in amber bottles and were brought immediately to the laboratory 

for further analysis. The water sample was filtered using a glass micro-fibre filter (0.45 mm) followed 

by acetone extraction to estimate Chl-a which is a strong indicator for evaluating the biomass of 

algae. The concentration of Chl-a was determined by standard spectrophotometric method (HACH 

Spectrophotometer, DR 2800, Germany) after measuring the absorbance of the extracted dye at 663, 

645, 630, and 750 nm. The Optical Density (OD) reading at 750 nm was a correction for turbidity and 

the actual amount of Chl-a was measured by the subtraction of the absorbance values at 750 nm from 

the others absorbance values. Finally, Chl-a concentration was calculated as per APHA [34] using the 

formula 

Chl-a = 11.85(OD664) − 1.54(OD647) − 0.08(OD630) 

The Chl-a concentration for the each study points (S1-S8) was tabulated in Table 2. The data 

obtained from these study points were considered as primary data for establishment of the 

prediction model. In the next phase, five ‘validation points’ were randomly selected from the lake 

surface (Figure 1) (Table 3). The sampling procedures were repeated for these five specific points on 

each satellite passing day and followed by same Chl-a estimation method. The sampling procedures 

were carried on 24th March 2015 to 27th May 2015. The further data sets were used for the validation 

of the prediction models. The co-ordinates of the both the study points and validation points were 

geo-located with the help of a hand held GPS recorder (Garmin eTrex 10). 

Table 2. Laboratory-measured Chlorophyll-a (Chl-a) concentration of the study points in Nalban 

Lake 

Study points Sampling date Latitude Longitude Chl-a (µg/L) 

S1 16th  Nov 2014 22°33'43.06"N 88°25'53.92"E 34.94 

S2 2nd Dec 2014 22°33'54.02"N 88°25'58.66"E 40.04 

S3 18th  Dec 2014 22°34'1.29"N 88°25'24.60"E 35.24 

S4* 3rd Jan 2015 22°33'54.25"N 88°25'40.50"E 24.30 

S5* 19th Jan 2015 22°33'55.52"N 88°25'25.01"E 22.24 

S6 4th Feb 2015 22°33'49.80"N 88°25'26.51"E 23.28 

S7 20th Feb 2015 22°33'43.34"N 88°25'33.42"E 17.96 

S8 8th Mar2015 22°33'43.82"N 88°25'41.56"E 22.84 

* These two study point data were excluded due to >50% cloud coverage in Landsat scenes  

Table 3. The co-ordinates of the validation points over the Nalban Lake 

Validation points Latitude Longitude 

A 22°33'51.50"N 88°25'53.38"E 

B 22°33'50.82"N 88°25'37.19"E 

C 22°33'57.89"N 88°25'28.64"E 

D 22°33'59.48"N 88°25'44.90"E 

E 22°33'41.07"N 88°25'49.17"E 

2.3 Satellite Data 

The cloud-free Landsat 8 OLI satellite images were used in the present study. It is an earth 

observation satellite that was developed by the National Aeronautics and Space Administration 

(NASA) and the Department of the Interior United States Geological Survey (USGS) in a partnership 

mode [35]. It consists of Operational Land Imager (OLI) sensor and Thermal Infrared Sensor (TRIS). 

Daily about 500 image scenes per day over the earth are captured and stored into the U.S. Landsat 

data archive at the USGS Earth Resource Observation and Science (EROS) Center, South Dakota [36]. 

The Landsat 8 OLI exhibits a higher resolution wavelength coverage than the Landsat 7 Enhanced 

Thematic Mapper plus (ETM+) bands due to the addition of a new coastal/aerosol band (430–450 

nm) for detecting Chlorophyll and a new cirrus band (1.36–1.39 μm) for detecting clouds [37]. 
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The satellite images used in this study were downloaded from the archive of USGS Landsat 

images (http://earthexplorer.usgs.gov/). This study utilized visible bands (blue, green, and red) and 

a near-infrared (NIR) band to determine correlations between Chl-a and spectral reflectance values. 

All image data from the Landsat 8 OLI were in GeoTIFF format provided by the US Geological 

Survey Earth Explorer. The details of Landsat bands used for model development were presented in 

Table 4. Scenes greater than 50% cloud coverage was excluded from model development. For the 

validation of the model, three Landsat scenes 24th March 2015, 27th April 2015 and 27th May 2015 

were used. 

Table 4. Detail description of Landsat 8 OLI satellite bands used in this study 

Sensor Resolution Path/Row 

 

 

OLI 

Bands Wavelength 

(nm) 

Spatial 

(m) 

Temporal 

(days) 

Radiometric  

 

138/44 Band 2 (Blue) 450 –515 30 16  

12 bit Band 3 (Green) 525 – 600 30 16 

Band 4 (Red) 630 – 680 30 16 

Band 5 (NIR) 845 – 885 30 16 

2.4 Processing of satellite data 

2.4.1 DN value extraction and conversion to TOA reflectance data 

The digital number (DN) value was extracted from the satellite images for the co-ordinates of 

study points and validation points respectively with the help of TNT MIPS 2013 software (Version 

15.0.0.533). In order to obtain top of the atmosphere (TOA) reflectance (ρλ') recorded at the sensor, a 

conversion of the recorded signal is required. Therefore, the equation obtained from website 

(http://landsat.usgs.gov/Landsat8_Using_Product.php) was used to convert the DN value to TOA 

reflectance that is given below: 

ρλ'=Mρ*Qcal + Aρ                (1) 

Where, ρλ'= TOA planetary reflectance, without correction for solar angle; Mρ= Band specific 

multiplicative rescaling factor from metadata; Aρ= Band specific additive rescaling factor from 

metadata; Qcal = Quantized and calibrated standard product pixel value 

The TOA reflectance values were further rectified taking into account that water leaving 

radiance greatly varies depending on the solar angle. The value of local solar zenith angle and local 

sun elevation angle was taken from the metadata file provided with the Landsat data. The following 

equation obtained from the website (http://landsat.usgs.gov/Landsat8_Using_Product.php) was 

used for sun angle correction. 

ρλ= ρλ'/ cos( θsz * π/180) = ρλ'/sin( θse * π/180)         (2) 

Where, ρλ= TOA planetary reflectance; θse = Local sun elevation angle; θsz = Local solar zenith 

angle. 

2.4.2 Atmospheric Correction 

Atmospheric correction is one most important step in deriving the land/water surface property 

from satellite data. The objective of atmospheric correction is to retrieve the surface reflectance (that 

characterized surface properties) from remotely sensed imagery by removing the atmospheric 

effects.  The Darkest Pixel (DP) atmospheric correction method was applied to every satellite in the 

current study as it is very effective in the visible wavelength range [38]. This method assumes that 

any dark pixel on the scene that possesses the lowest DN value should have a zero reflectance [38]. 

Therefore its radiometric DN value represents the atmospheric additive effect [39-41]. So, the 

radiance value of that dark pixel needs to be subtracted from the radiance values of all pixels on that 
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band to remove the additive effect of atmospheric scattering. Here, the darkest point of an image 

was pointed out by analyzing the image histogram. 

2.5 Development of prediction model 

The statistical method is the most preferred approach to derive a correlation between spectral 

data and Chlorophyll concentration values [42-43]. Correlation between OLI brightness values and 

the water quality parameter by linear regression analysis was used in the present experiment [44]. 

Previous studies suggest that different band combinations (e.g. ratios, multiplication and average) 

which can be used to retrieve relationships with in-situ measurements [33, 45-46]. The Pearson 

correlation analysis was performed between possible bands/band combinations and the in situ Chl-a 

measurement of the study points to examine the relationship. Prediction models were then 

developed using the regression analysis.  

2.6 Validation and accuracy assessment of model 

To check the efficiency and prediction accuracy of the models, the validation process was also 

performed by field trial. The reflectance value of the validation points at the predictive band or band 

combination was given as input in the developed model and the model generated output values 

were considered as predictive water quality. Three statistical metrics was used to evaluate the 

efficiency of the predictive models: Bias, RMSE (Root Mean Square Error, in log space) and R2 

(regression, Type II) [47]. 

Bias is the measure of the difference between estimated value and the true value of the 

parameter being estimated. Its value ranges from 0 to ∞. If the difference is zero, then it is called 

unbiased. The value close to zero indicates the better the performance of the model. It is calculated 

by the following formula [47]: 

Bias=  
∑ ( 𝒙𝒊

𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 − 𝒙𝒊
𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅  )𝒏

𝒊=𝟏

𝒏
             (3) 

The RMSE is a measure of the average magnitude of the error.  Its value ranges from 0 to ∞. 

Lower values of RMSE indicate better fit. RMSE is a good measure of how accurately the model 

predicts the response and is the most important criterion for fit if the main purpose of the model is a 

prediction. It was calculated by the following formula [47]: 

RMSE= √∑ [𝐥𝐨𝐠(𝒙𝒊
𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 )–𝐥𝐨𝐠(𝒙𝒊

𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅  )]𝒏
𝒊=𝟏

𝟐

𝒏−𝟐
           (4) 

Where 𝒙𝒊
𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅   represents measured in situ water quality data at the validation sites and 

𝒙𝒊
𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 is the model estimated water quality and n is the number of validation points. 

R-squared value (R2) provides information about the goodness of fit of a model and helps to 

understand that the proximity of regression line to the real data points. It gives an idea how many 

data points lie within the results of the line formed by the regression equation [47]. Its value ranges 

from 0 to 1. Generally the higher the R2 value, the better the model fits the data.   

2.7 Estimation of Trophic State Index (TSI) 

Trophic State Index (TSI) is a term which describes how “green” the lake is in respect of algal 

biomass content in the lake water. Carlson [13] developed a continuous scale 0 to 100 to express the 

trophic state of the lake based on either Secchi disk transparency, chl-a concentration or total 

phosphorus content. A TSI ranged from 40 to 50 can be assigned to the mesotrophic state, whereas 

values of more than 70 termed as hypereutrophic conditions [14-15, 48]. The following equation 

calculated the TSI based on Chl-a concentration that are given below [13] 

TSI CHL=𝟏𝟎 [𝟔 −
𝟐.𝟎𝟒−𝟎.𝟔𝟖 𝐥𝐧 (𝑪𝒉𝒍−𝒂 )

𝐥𝐧 𝟐
]            (5) 

2.7 Data Analysis 
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The details process and working flow of the study is given in Chart 1. The entire satellite data 

processing was done using the TNT MIPS 2013 (Ver 15.0.0.533) software. In order to establish the 

model, the statistical analysis was performed using IBM SPSS 20.0 statistical software [49]. The study 

area boundary map and spatial maps were prepared through ArcGIS software (10.2.2). The graphs 

and plots were generated using statistical software Origin®  version 6.1 (OriginLab Corporation, 

Northampton, USA). 

Chart 1. The detailed process and work flow of the study 

Collection of water samples and Landsat 8 

satellite images from the eight study points  

 Collection of water samples and Landsat 8 

satellite images from the five validation 

points  

 
 

  

Pearson Correlation between measured Chl-a 

and OLI band/band ratios after radiometric 

and atmospheric correction to get the highest 

correlation for the particular band/band ratio 

  

Retrieval of selected band ratio reflectance of 

the validation points  

 
 

  

Regression analysis between OLI reflectance 

and  measured Chl-a of the study points to 

establish prediction model 

 Putting reflectance ratio of the validation 

points as input in prediction model to get the 

model-predicted Chl-a of the validation 

points 
 

  
 

Calculation of Trophic State Index from 

measured Chl-a and model-fitted Chl-a of 

validation points   

 Regression analysis between measured Chl-a 

and model-fitted Chl-a of validation points for 

accuracy assessment  

  
 

 

Comparison and interpretation 

3. Results and Discussion 

In situ Chl-a concentrations of Nalban Lake, West Bengal, India varied during the entire study 

length and ranged from 17.96 µg/L to 58.51 µg/L. The highest value of Chl-a was observed in May 

2015. Nalban Lake had Chl-a level of 33.58 - 35.94 µg/L in March 2015 and 39.11 – 54.34 µg/L in April 

2015. Chl-a values of 50-250 µg/L appear to be reasonable approximations of the range of 

phytoplankton biomass over which net primary production is maximized [5]. Boyd [50] found Chl-a 

values ranged 60-150 µg/L as typical from productive fertilized fish and shrimp ponds. The 

relationship between Chl-a concentration and the trophic status of lakes and reservoirs is provided 

in Table 5. 

Table 5. Relationship between Chlorophyll-a (µg/L) concentrations and trophic condition of lakes 

and reservoirs (Adopted from Boyd [51]) 

Chlorophyll-a (µg/L)  

Annual mean Annual maximum Conditions 

<2 <5 Oligotrophic, aesthetically pleasing, very low phytoplankton 

levels 

2–5 5–15 Mesotrophic, some algal turbidity, reduced aesthetic appeal, 

oxygen depletion not likely 

5–15 15–40 Mesotrophic, obvious algal turbidity, reduced aesthetic appeal, 

oxygen depletion likely 

>15 >40 Eutrophic, high levels of phytoplankton growth, significantly 

reduced aesthetic appeal, serious oxygen depletion in bottom 

waters, reduction in other uses 
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3.1 Development of the prediction model 

The Landsat visible bands ranging from blue (OLI 2) to green (OLI 4) and near-infrared band 

(NIR) (OLI 5) are commonly used for lake study and applied to obtain the relationship between the 

sub-surface reflectance and the bio-physical parameters (e.g. water transparency, Chl-a and total 

suspended solids etc.) of the water [52]. Pearson correlation analysis was performed to observe the 

relative strengths between Chl-a concentration and OLI bands (2-5) and their combinations of the 

study points. The Pearson correlation coefficients (R) between Chl-a concentration and various 

Landsat OLI bands and band ratios of the study points were depicted in Table 6. As shown in Table 

6 the correlation between Chl-a concentration and OLI band ranged from 0.85 (B5/B4) to 0.49 (B5). 

The ratio between NIR band and red band (B5/B4) showed the highest correlation with Chl-a (R= 

0.85; p <0.05). Lim et al. (2015) observed the correlation of OLI bands with Chl-a ranged from −0.64 

(band 4) to −0.71 (band 5) and Chl-a concentration displayed a significant relationship (R= −0.71) 

with the NIR band at a significance level of p <0.01 Therefore, this band ratio (B5/B4) was considered 

as the best predictor of Chl-a concentration and further used for developing the prediction model. 

Linear regression analysis was performed between the spectral reflectance values (B5/B4) and 

the in-situ measured Chl-a dataset of the study points to establish the predictive model. The analysis 

demonstrated a significant relationship (R2 = 0.72) with the standard error of estimate (SEE) of 5.14 

(µg/L) (Fig. 2). The regression equation is as follows 

Chl-aC = a + b (OLI5/OLI4) + c              (6) 

Where, Chl-aC is the concentration of Chl-a; (OLI5/OLI4) is the atmospherically corrected band ratio 

data; a and b are the regression coefficients and equals to -59.40 and 98.87 respectively. 

Table 6. Pearson correlation coefficients (R) between Chlorophyll-a (Chl-a) concentration and 

various Landsat OLI bands and band ratios of the study points 

Band Combinations R  Band Combinations R 

B2 0.41 (B3+B5)/2 0.32 

B3 0.16 (B2+B5)/2 0.45 

B4 0.30 (B4+B3)/2 0.23 

B5 0.49 (B4+B2)/2 0.37 

B5/B2 -0.54 (B3+B2)/2 0.30 

B5/B3 0.009 (B2+B3+B4)/3 0.30 

B5/B4 0.85 (B2+B3+B5)/3 0.36 

B4/B3 -0.26 (B3+B4+B5)/3 0.31 

B4/B2 -0.64 (B2+B4+B5)/3 0.31 

B3/B2 -0.71 (B2+B3+B4+B5)/4 0.35 

(B4+B5)/2 0.40 The bold indicates highest correlation 
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Figure 2. The regression line showing linear relationship between Chlorophyll-a (Chl-a) 

concentration and OLI5/OLI4 band ratio of the study points 

Wang et al. [53] demonstrated that this kind of statistical analysis has been widely used to 

understand the relationship between in situ data and spectral reflectance values. Song et al. [54] used 

a correlation analysis to understand the relationship between water quality parameters and spectral 

reflectance values from the Landsat imagery. Chlorophyll absorbs energy in the wavelengths band 

at about blue and red, but strongly reflects energy in the wavelengths band of NIR [55]. But due to 

high pigment concentration and turbid condition of the inland water body, the water leaving 

radiance of the blue band is significantly small. So, the red band reflectance values are used instead 

of a blue band. Spectral bands near 676 nm (red band) have been widely used for the retrieval of 

Chl-a in shallow turbid coastal waters where the Chlorophyll concentration is comparatively high 

than open ocean [56-57]. The reflectance is high at infrared (IR) and NIR due to the combination of 

decreasing absorption by the Chlorophyll pigments and the increasing of absorption by water 

[58-59]. Gitelson et al. [60] observed that reflectance increases in the NIR beyond 700 nm due to 

increased scattering from algal biomass. Tebbs et al. [61] found that Landsat ETM + band ratio of 

NIR/red produced the best correlation with the in situ Chl-a measurement. Gitelson et al. [62] also 

successfully used NIR/red band ratio in turbid lake and reservoirs for predicting a high level of Chl-a 

concentration. Shen et al. [63] and Ruddick et al. [64] also successfully applied the spectral 

reflectance at Red-NIR region to detect and monitor harmful algal bloom at inland and coastal 

waters. Theologou et al. [65] also found a high correlation of Chl-a with red and NIR regions of 

Landsat 7 and 8 satellite for predicting water quality in inland shallow lakes. 

3.2 Validation and accuracy assessment of prediction model 

To predict the Chl-a using the Landsat 8 OLI data, the atmospherically corrected (OLI5/OLI4) 

band ratio of the validation points co-ordinates obtained from the Landsat scenes of March 2015, 

April 2015 and May 2015 were used. The reflectance ratios of the validation points were given as 

input to the prediction model equation (6) and the model output was considered as predicted Chl-a 

values of the validation points (satellite-derived). The regression model statistics between 

laboratory-derived Chl-a value and model-fitted Chl-a value of the validation points revealed a 
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strong correlation (R = 0.88; P <0.0001) with a Bias of 10.04 µg/L; and an RMSE of 0.14 µg/L (Figure 3). 

The statistical interpretation showed that the scatter points were close to the 1:1 line without any 

outlier. Consistent with this study, Lim et al. (2015) estimated a stronger relationship between in situ 

Chl-a data and predicted values (R = 0.77). Giardino et al. [27] obtained 1.01 µg/L Chl-a through 

laboratory analysis and the average concentration through image data in Landsat 8 OLI showed 1.04 

µg/L. Likewise, Lim and Choi [17] measured 17.50 µg/L, 21.10 µg/L and 16.00 µg/L concentration of 

Chl-a from Dalsung, Youngsan and Namji sites of Nakdong River, Korea and Landsat 8 OLI showed 

17.55 µg/L, 15.95 µg/L, 20.98 µg/L concentration of Chl-a respectively. These are well consistent with 

the trend found in the present study emphasizing that the Landsat OLI is suitable to monitor the 

water quality in Nalban Lake. 

 

Figure 3.The regression between laboratory-derived Chlorophyll-a (Chl-a) concentration and 

model-fitted Chl-a value of the validation points 

Figure 4 showed the spatial pattern of Chl-a concentration estimated from Landsat 8 OLI data 

from March to May 2015 in Nalban Lake. Chl-a concentration ranged from 39.47 to 74.17 µg/L and 

the highest Chl-a concentration at the Nalban Lake was estimated on 27th May 2015. Based on the 

spatial distribution of Chl-a, the lake was likely in a state of eutrophic condition [51]. Although the 

values of Chl-a concentration were slightly overestimated using remote sensing techniques; this 

error may be attributed to a mismatch between the collection times of satellite based and 

ground-based measurements [17]. Therefore, the predicted value of Chl-a (satellite-derived) was 

further applied for the determination of TSI of the validation points. 

30 35 40 45 50 55 60 65 70

35

40

45

50

55

60

65

70

75

80

Y = 3.3153 + 1.1482x

R = 0.88

R
2
 = 0.78

P <0.0001 

C
h

lo
ro

p
h

y
ll

-a
 (

µ
g
/L

)(
M

o
d
el

-f
it

te
d
)

Chlorophyll-a (µg/L)

 Upper 95% Confidence Limit

 Lower 95% Confidence Limit

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2016            doi:10.20944/preprints201608.0149.v1 

 

  

http://dx.doi.org/10.20944/preprints201608.0149.v1


 12 of 18 

 

 

Figure 4. Spatial pattern of Chlorophyll-a (Chl-a) concentration estimated from Landsat 8 OLI data 

on A) March 2015, B) April 2015 and C) May 2015 in Nalban Lake 

3.3 Trophic State Index (TSI) from field measurement and satellite data 

Applying the equation (5), TSI of the water body was calculated from laboratory-derived Chl-a 

value and model-fitted Chl-a value of the validation points. Two methods give results of TSI for the 

consecutive three months at the close level and between 65 and 75. The comparison of these results 

(Figure 5) showed that the accuracy is satisfactory in this study which is very similar to the findings 

of other studies [14, 48]. In consistent with the present study, the TSI of the Lakes Bramin, Kagar and 

Schwarz from Germany was ranged from 50 to 70 [48]. Figure 6 gave a high correlation (R = 0.88; P 

<0.0001) of TSI determined from satellite-predicted data with TSI from laboratory reference data of 

the validation points with R2 of 0.76 and RMSE of 1.11 mg/L in Nalban Lake. The spatial pattern of 

TSI estimated from Landsat 8 OLI data from March to May 2015 in Nalban Lake was depicted in 

Figure 7. TSI value ranged from 66.63 to 72.8 µ g/L and the highest TSI at the Nalban Lake was 

estimated on 27th May 2015. The TSI values indicated that the Nalban Lake is appeared to be 

eutrophic to hypereutrophic conditions [14-15, 48]. The Chl-a content of 7.25 µg/L results in an 

intermediate TSI of 50 and the standard deviation for Chl-a determination from the field spectra is 

about 7 µg/L [48]. The TSI is very sensitive for low Chl-a content thus the determination of TSI based 

on Chl-a content gives more reliable results for eutrophic than for mesotrophic lakes [48]. Therefore, 

the variation of TSI is well expressed and estimated through remote sensing technique especially 

from Landsat 8 OLI and the analysis of Chl-a using satellite remote sensing technique seems to be an 

appropriate method for the determination of trophic states for the wetlands and lakes. 
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Figure 5. Comparisons of Trophic State Index (TSI) calculated from laboratory-derived Chlorophyll-a 

(Chl-a) and model-fitted Chl-a value of the validation points 

 

Figure 6 The regression between laboratory-derived Trohic State Index (TSI) values with 

model-fitted TSI values of the validation points 
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Figure 7. Spatial pattern of Trophic State Index (TSI) estimated from Landsat 8 OLI data on A) March 

2015, B) April 2015 and C) May 2015 in Nalban Lake 

5. Conclusions  

The objective of the present study was to examine the potential application of the Landsat 8 

satellite for estimating Chl-a concentration and evaluating the trophic states using remote sensing 

and statistical methods of the Nalban Lake situated within the Ramsar designated East Kolkata 

Wetland (EKW), India. As there was a small variation between satellite-estimated values and 

measured concentrations, this study demonstrates that Landsat 8 OLI data may provide a useful tool 

for investigating the spatio-temporal variability of Chl-a in surface waters. In the present study, NIR 

band and red band combinations (B5/B4) showed the strongest relationship with Chl-a and were 

also good predictors of the variance of Chl-a. As there was no significant difference in TSI measured 

from laboratory-derived Chl-a data and from the satellite-predicted Chl-a data, this research proves 

that Landsat data (especially red band and near-infrared band) is useful and reliable for 

investigating the trophic status of wetlands and lakes. The great advantage of using satellite imagery 

is the capability of their multi-temporal application covering a large area and low costs compared to 

laboratory analysis for the evaluation of the trophic states over several lakes. As the TSI value 

obtained from the present study depicted eutrophic to the hypereutrophic status of the Nalban Lake, 

this study suggests long-term monitoring of water quality conditions and recommends 

implementing suitable management plans to sustain the aquaculture and other activities over the 

lake. Further fine tuning of raw image data from the Landsat 8 OLI sensor through calibration and 

validation and further long-term research using remote sensing technologies will enable 

improvement of results in water quality of the Nalban Lake as well as East Kolkata Wetland, India. 
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