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Abstract: In this paper we propose the explicit formulas of Average Run Length (ARL) of 
Exponentially Weighted Moving Average (EWMA) control chart for Autoregressive Integrated 
Moving Average: ARIMA (p,d,q) (P, D, Q)L process with exponential white noise. To check the 
accuracy, the ARL results were compared with numerical integral equations based on the 
Gauss-Legendre rule. There was an excellent agreement between the explicit formulas and the 
numerical solutions. Additionally, we compared the computational time between our explicit 
formulas for the ARL with the one obtained via Gauss-Legendre numerical scheme. The 
computational time for the explicit formulas was approximately one second that is much less than 
the numerical approximations. The explicit analytical formulas for evaluating ARL0 and ARL1 can 
produce a set of optimal parameters which depend on the smoothing parameter (λ) and the width 
of control limit (H), for designing an EWMA chart with a minimum ARL1. 

Keywords: exponentially weighted moving average control chart (EWMA); autoregressive 
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1. Introduction 

A control chart is an effective tool in statistical process control for detecting changes in a mean 
or variance processes and can be used for measuring, controlling and improving quality in area such 
as industrial statistics and manufacturing, financial service, environmental statistics, healthcare, 
medical research and others; see Lucas and Saccucci [1] and Srivastava and Wu [2]. Many control 
charts have been developed including the Shewhart, Exponentially Weighted Moving Average 
(EWMA) and cumulative SUM (CUSUM). In this paper, we discuss the Exponentially Weighted 
Moving Average (EWMA) chart which is used for detecting small changes of parameters (Roberts 
[3]; Crowder [4]; Lucas and Saccucci [1]). EWMA control chart was proposed by Roberts [3] in 
quality control in order to detect a small shift in the mean of a production process as soon as it 
occurs. Various methods for evaluating the performance of the EWMA procedure have been studied 
in the literature (see Yashchin [5], Srivastava and Wu [2], Borror et al.[6]). A basic assumption in 
standard applications of control charts is that observations from the process at different times 
are independent and identically distributed (i.i.d) random variables. However, in many situations, a 
process does not yield sufficient observations for traditional SPC tools to be used effectively. 
However, production process observations often show some autocorrelation. For instance in 
chemical and continuous industries, wind speeds, the daily flow of a river and the amount of 
dissolved oxygen in the water are process data which are auto correlated. Several researchers in 
different fields of study have considered the problem of data correlation and how it relates to SPC. 
Positive autocorrelation in observations can appear in negative bias in traditional estimators of the 
standard deviation. This bias produces control limits for standard control charts that are much 
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tighter than desired. It has been observed that the main effect of autocorrelation in process data for a 
traditional chart is that the Average Run Length of the in-control processes may be shorter than 
intended. Processes with serially correlated data need to be monitored by appropriate control charts. 

Two measures that are commonly used to compare the performance of control charts are the 
Average Run Length for in control process (ARL0) and the Average Run Length for out of control 
process (ARL1). The ARL0 is the average number of observations that will occur before an in-control 
process falsely gives an out-of-control signal. To reduce the number of false out-of-control signals a 
sufficiently large ARL0 is required. The ARL1 is a measure of the average number of observations 
that will occur before an out-of-control process correctly gives an out-of-control signal. To reduce the 
time that the process is out-of-control, a small ARL1 is required. Therefore the ARL and ARL1 are two 
conflicting criteria that must be balanced to give an optimal control chart. 

Three standard methods that are often used to evaluate Average Run Length for in control 
process (ARL0) and the Average Run Length for out of control process (ARL1) are the Markov Chain 
Approach (MCA), the Integral Equation (IE) and the Monte Carlo simulation (MC) methods.  
Roberts [3] evaluated the ARL for EWMA control charts using the MC technique. Crowder [4] 
computed the ARL of an EWMA chart from numerical solutions to an integral for Gaussian 
observation. Lucas and Saccucci [1] employed a finite state Markov chain approximation to develop 
tables to assist users of EWMA control charts in these choices. 

The methods used for the evaluation of the characteristics of EWMA control charts for serial 
correlated data were studied. Mastrangelo and Montgomery [7] have been evaluated the 
performance of EWMA control charts for serially-correlated observation using Monte Carlo 
simulation technique. Vanbrackle and Reynold [8] studied EWMA and CUSUM control charts by 
using an Integral Equation and Markov Chain Approach to evaluate the ARL in case of AR(1) 
process with additional random error. Harris and Ross [9] discussed the effect of autocorrelation on 
the performance of EWMA and CUSUM charts. They found that the Average Run Lengths and 
Median Run Lengths of these charts were sensitive to autocorrelation. Later, Reynolds and Lu [10] 
studied the EWMA control charts using simulation based on the observations from the AR(1) 
process plus a random error of detecting change in the process mean or variance. Lu and Reynolds 
[11] presented the ARL of the EWMA control chart based on residual from the forecast value for 
monitoring the mean of the process for an AR(1) process plus a random error using an integral 
equation method. Apley and Lee [12] presented a technique for designing residual based EWMA 
charts under conditions of model uncertainty. Shiau and Chen [13] investigated the robustness of 
modified individual Shewhart and modified exponentially weighted moving average (EWMA) 
charts for normality assumption of the white noise term for AR(1) process with positive 
autocorrelation. Rosolowski and Schmid [14] measured ARL of EWMA charts by monitoring the 
mean of the stationary processes with heavy tailed distribution using simulation. Mititelu et al. [15] 
presented explicit formulas for the ARL of EWMA and CUSUM charts when the observations have a 
hyper exponential distribution, using the Fredholm integral equations approach. Recently, Suriyakat 
et al. [16] derived an exact solutions of ARL for EWMA control charts for AR(1) process observations 
with exponential white noise. Busaba et al. [17] have studied an explicit formula of ARL for 
cumulative sum charts using negative exponential data. Petcharat et al. [18] presented closed form 
expression of the ARL for CUSUM chart for MA(1) processes with exponential white noise using 
integral equations. Phanyaem et al. [19] presented Explicit formulas of average run length for 
ARMA(1,1) using the Fredholm integral equations approach. 

In this research the objective is to derive explicit formulas for detecting changes in the mean of 
the process of EWMA control charts for ARIMA (p,d,q) (P, D, Q)L Process with exponential white 
noise. Additionally, the explicit formulas of ARL0 and ARL1 can be able to generate a set of optimal 
parameters which depend on the smoothing parameter ( λ ) and the width of control limit control 
limit ( H ) for designing EWMA charts with a minimum of ARL1. 

2. EWMA Chart for ARIMA (p,d,q)(P, D, Q)L Process and Characteristic  
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Let 1 2, ,...,ξ ξ  be sequentially observed independent random variables with a distribution 

( ), βF x  where β  is a parameter. We study the change-point detection problem, i.e. of detecting 

if and when the value of the parameter β  changes. The change-point model for the exponential 
distribution may be stated as follows. We assume that: 

0

1

( ),     1, 2,..., 1
,

( ), , 1, 2,...t

Exp t

Exp t

β θ
ξ

β θ θ θ
= −

 = + +
  

where 0β and 1β are known parameters. Usually, the parameter value 0β is assumed to 

define the in-control state and the parameter value 1β  to denote an out-of-control state. We assume 

that the value 0β is maintained up to some unknown time 1θ −  and that at time θ  the parameter 

value changes to the new value 0β β> . The time θ  is called "the change-point time". 

The typical condition of choice of the stopping times τ  is as follows: 

,)( TE =∞ τ  

where T is given (usually large), and (.)E∞  denotes that the expectation under distribution 

0( , )βF x , ‘in-control’ is that the change-point occurs at point θ  (where θ ≤ ∞ ). In the literature 

on quality control, the quantity ( )E τ∞  is called the Average Run Length for ‘in-control’ processes 

(ARL0). Then, by definition, ( )0 τ∞=ARL E  and the typical practical constraint is:  

0 ( ) .τ∞= =ARL E T  (1)

Another common constraint consists of minimizing the quantity: 

( )1 1 ,ARL Eθ τ θ τ θ= − + ≥  (2)

where (.)Eθ  is the expectation under distribution, 1( , )βF x  ‘out-of-control’ and β  is the value 

of the parameter after the change-point. There is restriction on the special case, usually 1θ = . The 
quantity 1( )E τ  is called the Average Run Length for ‘out-of-control’ processes (ARL1) and it could 

be expected that a sequential chart would have a near optimal performance if ARL1 is close to 
minimal value. 

 The definition of EWMA statistics based on ARIMA (p,d,q)(P, D, Q)L process is the following 

recursion: 

1(1 ) 1,2,....,t t tZ Z X tλ λ−= − + = ;    (3)

where tZ  is the EWMA statistic, tX  is a sequence of ARIMA (p,d,q)(P, D, Q)L process, λ  is a 
smoothing parameter, and the initial value is a constant ( 0Z  = u).  

The general autoregressive processes denoted by ARIMA (p,d,q)(P, D, Q)L process can be 
written as: 

d L D 2 P L 2L PL
1 2 P L 2L PL t(1 B) (1 B ) (1 B B ... B )(1 B B ... B )X− − − φ − φ − − φ − φ − φ − − φ  

2 q L 2L qL
0 1 2 q L 2L qL t(1 B B ... B )(1 B B ... B ) ,θ + − θ − θ − − θ − θ − θ − − θ ξ  

(4)

where ξt  are independent and identically distributed observed sequences of Exponential 

distribution. The initial value 0ξ  = 1, an autoregressive coefficient 1 1φ− ≤ ≤i  and a moving 
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average coefficient 1 1θ− ≤ ≤i , a seasonal autoregressive coefficient 1 1φ− ≤ ≤iL  and a seasonal 

moving average coefficient 1 1θ− ≤ ≤iL . It is assumed the initial value of ARIMA (p,d,q)(P, D, Q)L 
process equal to 1. 

 The first passage time of an EWMA chart is denoted by: 

inf{ 0 : }H tt Z Hτ = ≥ ≥ , (5)

where H is constant parameter known as the upper control limit. 

3. ARL Explicit Formulas for ARIMA (p,d,q)(P, D, Q)L Process of EWMA Chart 

 In this section, we derive explicit solution of Fredholm Integral Equation of the second kind 

which is called ARL explicit formulas of EWMA chart for ARIMA (p,d,q)(P, D, Q)L process. 
Let ( )L u  denote the ARL of a one-sided EWMA control chart when the initial value is ,u  

0 .=Z u  Since 0ξ ≥t  we can assume that the lower and upper limits are 0=LH  and =UH H  

respectively. For the EWMA statistics 1Z  in an in-control state: 

10 (1 ) .t tZ X Hλ λ−< − + <  

Then the function ( )L u  is defined as follows: 

0( ) ( ) , .τ∞= ≥ =L u T Z u    (6)

To consider the function ( )L u : 

1 1 1
( ) 1 ( ) ( ) .L u L Z f dξ ξ= +   (7)

Equation 7 is a Fredholm integral equation of the second kind. 
Consequently the function ( )L u  is obtained as: 

( ) 1 ((1 ) ) ( ) .tL u L u X f y dyλ λ= + − +  

Changing the integration variable, the function ( )L u  is given by: 

0

1 (1 )( ) 1 ( ) ( )
H

t
y u

L u L y f X dy
λ

λ λ
− −= + −  (8)

Therefore, we obtain  

(1 )

0

1( ) ( ) .
tXuy

H
L u L y e e dy

λ
λβ βλβ

λβ

 − +−  
 =  

  Let the function ( )G u  be given by: 

(1 )

( ) .
tXu

G u e

λ
λβ β

 − + 
 =  

Consequently, 

0

( )( ) 1 ( ) ; 0 .
yHG u

L u L y e dy u Hλβ
λβ

−
= + ≤ ≤  

Let  
0

( ) ,
yH

k L y e dyλβ
−

=    so we have; ( )( ) 1 .G u
L u k

λβ
= +   

Therefore, we obtain 
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(1 )
1( ) 1

tXu

L u e k

λ
λβ β

λβ

 − + 
 = +  (9)

Solving a constant ;k  

( )( 1) .
11 ( 1)

t

H

X H

e
k

e e

λβ

β β

λβ

λ

−

 
− 

 

− −=

+ −

 

Substituting k  into Eq. (9)  thus the function ( )L u  can be written as 

(1 )

( 1)( ) 1 .
11 ( 1)

t

t

Xu H

X H

e e
L u

e e

λ
λβ β λβ

β β
λ

 − + − 
 

 
− 

 

−= −

+ −

 
(10)

As mentioned above, the value of the parameter β  is equal to 0β  when the process is in 
control process. Therefore, substituting 0β β=  into Eq. (10) gives the formula for the ARL0 as:  

0 0 0

0 0

(1 )

0
( 1)1 .

11 ( 1)

t

t

Xu H

X H

e e
ARL

e e

λ
λβ β λβ

β β
λ

 − + − 
 

 
− 

 

−= −

+ −

 
(11)

The formula for ARL1 can be obtained in a similar manner. When the process is out of control 
process the value of the parameter β  in Eq. (11) will be 1β β= . The formula for ARL1 can therefore 
be written as: 

1 1 1

1 1

(1 )

1
( 1)1 ,

11 ( 1)

t

t

Xu H

X H

e e
ARL

e e

λ
λβ β λβ

β β
λ

 − + − 
 

 
− 

 

−= −

+ −

 
(12)

where tX  is a sequence of ARIMA (p,d,q)(P, D, Q)L process, (0,1)λ ∈  is the smoothing parameter, 
u  is the initial values  and H  is the upper control limit.  

According to Equation 11 and 12, for example, the explicit formulas of ARL, for example 
ARIMA(1,1,1)(0, 1, 1)L process can be written tX  as 

1 1 1 (1 ) 1 (1 ) 1 1 1 (1 ) 1 2 1 (2 )t t t L t L L t L t L t t L t t L t t LX X X X X X X Xμ ξ θ ξ θ ξ θ θ ξ φ φ φ φ− − − + − − − + − − + − − += + − − + + + − + − − +

ARIMA(0,1,2)(1, 1, 2)L process can be written tX  as  

1 1 2 2 1 2 2 (2 ) 2 2 1 2 (1 2L)

1 (1 ) 2 (1 ) (1 2 )

t t t t L t L t L L t L L t L L t

t L t t L L t L L t L L t L L t L

X

X X X X X X X

μ ξ θ ξ θ ξ θ ξ θ θ ξ θ θ ξ θ ξ θ θ ξ

φ φ φ φ

− − − + − + − − +

− − − + − − − + − +

= + − − − + + − +

+ + − + − − +        
 

ARIMA(0,1,1)(1, 0, 2)L process can be written tX  as 

1 1 1 (1 ) 2 2 1 2 (1 2L) 1 (1 )t t t L t L L t L L t L L t t L t L L t LX X X Xμ ξ θ ξ θ ξ θ θ ξ θ ξ θ θ ξ φ φ− − − + − − + − − − += + − − + − + + + −  

Using the explicit formulas in Equation 11 and 12, we can provide the tables for the optimal 
smoothing parameter ( λ ) and width of control limit ( H ) for designing EWMA chart with 
minimum of ARL1. We firstly describe a procedure for obtaining optimal designs for EWMA chart. 
The criterions for choosing optimal values are smoothing parameter ( λ ) and width of control limit 
( H ) for designing EWMA chart with minimum of ARL1 for a given in-control parameter value 

0β =1, 0 =ARL T and a given out-of-control parameter value ( β β= 1 ). We compute optimal 
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( ,λ H ) values for T= 370 and magnitudes of change. Table of the optimal parameters values are 
shown in Table 4.  

The numerical procedure for obtaining optimal parameters for EWMA designs 
1. To select an acceptable in-control value of ARL and decide on the change parameter value 

( 1β ) for an out-of-control process.   
2. For given 0β and T, find optimal values of λ  and H  to minimize the ARL1 (ARL1*) values 

given by equation 12 subject to the constraint that ARL0=T in Equation 11, i.e. λ  and H are 
solutions of the optimality problem 

4. Numerical Results 

In this section, we compare the results of ARL0 and ARL1 for ARIMA (p,d,q)(P, D, Q)L process 
which obtained from the explicit formulas with numerical solution of integral equation method for 
the number of division point m = 500. A numerical scheme to evaluate solution of the integral 
equations (IE) is given by 

1
1

( ) =  1 ( ) ( ) ( ) ( ).
m

t j j j t
j

L u L a F a u X w L a f a a u X
=

+ − − + + − −    (13)

where 1( )
2j

H
a j

m
= −   and = j

H
w

m
 ; = 1, 2,..., .j m   

The results of ARL are presented in Table 1 - Table 3. The parameter values for EWMA chart 
were chosen by given desired ARL0 = 370 and 500, in-control parameter 0β = 1 and magnitudes of 
change. We consider the performance of the explicit formulas in term of the computational times 
and the absolute percentage difference can be computed as follows: 

( )% 100.Explicit  Formulas Numerical  IE

Explicit  Formulas

ARL ARL
Diff   

ARL

−
= ×  

We compare the numerical results for ARL0 and ARL1 for Exponential (1) obtained from explicit 
formulas with results obtained from the Integral Equation method for parameter values 0.05λ = . 
The table shows that the outputs obtained by explicit formulas are very close to IE results. The choice 
of method for calculating ARL values should therefore be made based on other factors (e.g. CPU 
times, available software or programming). However, the table also shows that the computational 
time for evaluating the suggested formula is much less than the CPU times required for IE method. 
The numerical results in terms of optimal EWMA smoothing parameter ( λ ) and width of control 
limit ( H ) and minimal of ARL1 are shown in Table 4. For example, if we want to detect a parameter 
change from 0β =1 to 1β =1.05 and the ARL value is T = 370, then the optimality procedure given 

above will give optimal parameter values λ  = 0.01 and H  = 0.00527571. On substituting the 
values for β , λ  and H  into Equation 12 we obtain an optimal ARL1 value of ARL1* = 10.31.  
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Table 1. Comparison of ARL values for ARIMA (1,1,1)(0,1,1)12 using explicit formula against NIE 
when λ=0.05 1 1 120.2, 0.2, 0.2φ θ θ= = =  

β  
ARL0 =370 

H=0.0266609 Diff (%)
ARL0 =500 

H =0.0266759 Diff (%) 
Explicit Numerical IE Explicit Numerical IE 

.1 00 
370.101 
(0.14) 

370.1009 (17.682) 
0.00003 

500.589 
(0.14) 

500.589  
(18.361) 0.00000 

1.01 
43.6705 
(0.14) 

43.6705 
 (17.821) 0.00000 

45.0132 
(0.14) 

45.0132 
 (18.429) 0.00000 

1.02 
23.6665 
(0.14) 

23.6665  
(18.116) 0.00000 

24.0439 
(0.14) 

24.0439  
(18.617) 0.00000 

1.03 
16.4421 
(0.14) 

16.4421 
 (18.372) 0.00000 

16.6181 
(0.14) 

16.6181  
(19.015) 0.00000 

1.04 
12.7154 
(0.14) 

12.7154  
(17.757) 0.00000 

12.8175 
(0.14) 

12.8175  
(18.447) 0.00000 

1.05 
10.4413 
(0.14) 

10.4413 
 (18.522) 0.00000 

10.5082 
(0.14) 

10.5082 
 (18.603) 0.00000 

1.06 
8.90899 
(0.14) 

8.90898 
 (17.734) 0.00011 

8.95634 
(0.14) 

8.95633  
(18.738) 0.00011 

1.07 
7.8063 
(0.14) 

7.8063  
(18.142) 0.00000 

7.84171 
(0.14) 

7.8417 
 (18.862) 0.00013 

1.08 
6.97476 
(0.14) 

6.97476 
 (18.469) 0.00000 

7.0023 
(0.14) 

7.0023 
 (19.026) 0.00000 

1.09 
6.32527 
(0.14) 

6.32527  
(18.718) 0.00000 

6.34736 
(0.14) 

6.34736 
 (18.761) 0.00000 

1.10 
5.80392 
(0.14) 

5.80392 
 (17.972) 0.00000 

5.82207 
(0.14) 

5.82207 
 (19.152) 0.00000 

1.30 
2.63948 
(0.14) 

2.63948 
 (18.438) 0.00000 

2.64204 
(0.14) 

2.64203 
 (19.384) 0.00038 

1.50 
1.99607 
(0.14) 

1.99607 
 (19.216) 0.00000 

1.99719 
(0.14) 

1.99719 
 (19.493) 0.00000 

( ) Computational Time (Sec.) 
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Table 2. Comparison of ARL values for ARIMA (0,1,2)(1,1,2)6 using explicit formula against NIE 

when λ=0.05 6 10 1 0 1. , . ,φ θ= = 2 6 120 1 0 1 0 1. , . , .θ θ θ= = =  

β  
ARL0 =370 

H=0.0266609 Diff (%)
ARL0 =500 

H =0.0266759 Diff (%) 
Explicit Numerical IE Explicit Numerical IE 

.1 00 
370.207 
(0.14) 

370.207  
(18.627) 0.00000 

500.26 
(0.14) 

500.259  
(19.427) 0.00020 

1.01 
42.8521 
(0.14) 

42.8521  
(18.751) 0.00000 

44.1401 
(0.14) 

44.1401  
(19.513) 0.00000 

1.02 
23.1993 
(0.14) 

23.1993  
(18.941) 0.00000 

23.5606 
(0.14) 

23.5606 
 (19.732) 0.00000 

1.03 
16.1131 
(0.14) 

16.1131  
(19.203) 0.00000 

16.2815 
(0.14) 

16.2815 
 (19.846) 0.00000 

1.04 
12.4602 
(0.14) 

12.4602  
(19.378) 0.00000 

12.5578 
(0.14) 

12.5578 
 (20.018) 0.00000 

1.05 
10.2319 
(0.14) 

10.2319  
(19.504) 0.00000 

10.2958 
(0.14) 

10.2958 
 (20.273) 0.00000 

1.06 
8.73071 
(0.14) 

8.73071 
 (19.665) 0.00000 

8.77601 
(0.14) 

8.77601 
 (19.785) 0.00000 

1.07 
7.65069 
(0.14) 

7.65068  
(19.737) 0.00013 

7.68455 
(0.14) 

7.68455 
 (20.262) 0.00000 

1.08 
6.83634 
(0.14) 

6.83634  
(18.823) 0.00000 

6.86269 
(0.14) 

6.86269 
 (19.925) 0.00000 

1.09 
6.20036 
(0.14) 

6.20036  
(19.138) 0.00000 

6.22149 
(0.14) 

6.22149 
 (20.328) 0.00000 

1.10 
5.68991 
(0.14) 

5.6899 
 (19.269) 0.00018 

5.70728 
(0.14) 

5.70727  
(20.273) 0.00018 

1.30 
2.5933 
(0.14) 

2.5933 
 (18.872) 0.00000 

2.59575 
(0.14) 

2.59574 
 (19.877) 0.00038 

1.50 
1.96475 
(0.14) 

1.96475 
 (19.212) 0.00000 

1.96582 
(0.14) 

1.96582 
 (20.351) 0.00000 

( ) Computational Time (Sec.) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2016            doi:10.20944/preprints201608.0146.v1 

 

  

http://dx.doi.org/10.20944/preprints201608.0146.v1


 9 of 11 

 

Table 3. Comparison of ARL values for ARIMA (0,1,1)(1,0,2)4 using explicit formula against NIE 
when λ=0.05 1 0.1,θ = 4 80.2, 0.3θ θ= =  

β  
ARL0 =370 

H=0.0266609 Diff (%)
ARL0 =500 

H =0.0266759 Diff (%) 
Explicit Numerical IE Explicit Numerical IE 

.1 00 
370.359 
(0.14) 

370.359 
(18.783) 0.00000 

500.202 
(0.14) 

500.202 
(17.588) 0.00000 

1.01 
46.745 
(0.14) 

46.745 
(17.466) 0.00000 

48.281 
(0.14) 

48.281 
(16.24) 0.00000 

1.02 
25.428 
(0.14) 

25.428 
(14.196) 0.00000 

25.863 
(0.14) 

25.863 
(18.954) 0.00000 

1.03 
17.684 
(0.14) 

17.684 
(16.879) 0.00000 

17.887 
(0.14) 

17.887 
(18.606) 0.00000 

1.04 
13.679 
(0.14) 

13.679 
(19.531) 0.00000 

13.797 
(0.14) 

13.798 
(18.289) 0.00000 

1.05 
11.233 
(0.14) 

11.233 
(18.199) 0.00000 

11.310 
(0.14) 

11.310 
(16.941) 0.00000 

1.06 
9.583 
(0.14) 

9.583 
(18.82) 0.00000 

9.637 
(0.14) 

9.637 
(19.64) 0.00000 

1.07 
8.394 
(0.14) 

8.394 
(17.472) 0.00000 

8.435 
(0.14) 

8.435 
(19.385) 0.00000 

1.08 
7.497 
(0.14) 

7.497 
(18.108) 0.00000 

7.529 
(0.14) 

7.529 
(19.069) 0.00000 

1.09 
6.797 
(0.14) 

6.797 
(62.792) 0.00000 

6.823 
(0.14) 

6.823 
(17.736) 0.00000 

1.10 
6.234 
(0.14) 

6.234 
(16.475) 0.00000 

6.255 
(0.14) 

6.255 
(18.451) 0.00000 

1.30 
2.814 
(0.14) 

2.814 
(18.111) 0.00000 

2.817 
(0.14) 

2.817 
(17.087) 0.00000 

1.50 
2.114 
(0.14) 

2.114 
(17.857) 0.00000 

2.116 
(0.14) 

2.116 
(16.802) 0.00000 

( ) Computational Time (Sec.) 
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Table 4. Optimal design parameters and ARL1* for EWMA chart given 0β =1, ARL0 =370. 

 
β

ARIMA(1,1,1),(0,1,1)12  
β

ARIMA(0,1,2),(1,1,2)12 
λ H ARL1* λ H ARL1* 

1.01 0.01 0.00527571 43.125 1.01 0.01 0.00498754 42.350 
1.02 0.01 0.00527571 23.360 1.02 0.01 0.00498754 22.918 
1.03 0.01 0.00527571 16.230 1.03 0.01 0.00498754 15.918 
1.04 0.01 0.00527571 12.553 1.04 0.01 0.00498754 12.311 
1.05 0.01 0.00527571 10.310 1.05 0.01 0.00498754 10.111 
1.06 0.01 0.00527571 8.799 1.06 0.01 0.00498754 8.630 
1.07 0.01 0.00527571 7.712 1.07 0.01 0.00498754 7.564 
1.08 0.01 0.00527571 6.891 1.08 0.01 0.00498754 6.760 
1.09 0.01 0.00527571 6.251 1.09 0.01 0.00498754 6.133 
1.10 0.01 0.00527571 5.737 1.10 0.01 0.00498754 5.629 
1.30 0.01 0.00527571 2.618 1.30 0.01 0.00498754 2.573 
1.50 0.01 0.00527571 1.983 1.50 0.01 0.00498754 1.953 

5. Conclusions  

We have presented the explicit formulas for Average Run Length of EWMA chart for 
Autoregressive Integrated Moving Average: ARIMA (p,d,q)(P, D, Q)L process for the case of an 
exponential white noise. We have shown that the proposed explicit formulas are easy to calculate 
and program. The explicit formulas obviously take the computational time much less than 
Numerical Integral Equation method.  
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