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Abstract: The dynamics of surface and sub-surface water events can lead to slope instability 
resulting in anomalies such as slough slides on earthen levees. Early detection of these anomalies 
by a remote sensing approach could save time versus direct assessment. We have implemented a 
supervised Mahalanobis distance classification algorithm for the detection of slough slides on levees 
using complex polarimetric Synthetic Aperture Radar (polSAR) data. The classifier output was 
followed by a spatial majority filter post-processing step which improved the accuracy. The 
effectiveness of the algorithm is demonstrated using fully quad-polarimetric L-band Synthetic 
Aperture Radar (SAR) imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited 
Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower 
Mississippi River valley in the southern USA. Slide detection accuracy of up to 98 percent was 
achieved, although the number of available slides examples was small. 

Keywords: Synthetic Aperture Radar; UAVSAR; levee; classification; radar polarimetry; 
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1. Introduction

Earthen levees protect large areas of populated and cultivated land in the United States from 
flooding. The potential loss of life and property associated with the catastrophic failure of levees can 
be extremely large. Over the entire US, there are more than 150,000 kilometers of levee structures of 
varying designs and conditions. One type of problem that occurs along these levees, which can lead 
to complete failure during a high water event if left unrepaired for too long, is a slough slide [1]. 
Slough slides are slope failures along a levee, which leave areas of the levee vulnerable to seepage 
and failure during high water events [2]. The roughness and related textural characteristics of the soil 
in a slide area affect the amount and pattern of radar backscatter. The type of vegetation that grows 
in a slide area differs from the surrounding levee vegetation, which can also be used in detecting 
slides [3].  

SAR technology, due to its high spatial resolution and soil penetration capability, is a good 
choice to identify problematic areas on earthen levees. PolSAR data includes a variety of information 
which relates to the physical properties of the target. In polSAR, the transmitted signal is polarized 
and different polarizations of the backscatter signal are detected as: VV (vertical transmit and vertical 
receive), HV (horizontal transmit and vertical receive), and HH (horizontal transmit and horizontal 
receive). Hence, it provides much more information on the form of the scattering elements than a 
single channel SAR [4]. On the other hand, polSAR classification is challenging due to the complexity 
of available information from its multiple polarimetric channels [5-6]. Feature extraction from the 
polSAR image is one of the main issues in the classification of polarimetric data. Since the elements 
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of a scattering matrix are related to the properties of the target, several decomposition methods based 
on the scattering matrix have been proposed to identify target scattering characteristics [7-8]. Kong 
et al. [9] proposed an optimal polarimetric classifier based on the complex Gaussian distribution with 
single-look data. Lee et al. [10] proposed a maximum likelihood classifier of multi-look SAR data 
based on the complex Wishart distribution, and also an improved method using unsupervised 
classification combined with the H/alpha decomposition [11]. Cloude and Pottier introduced [12] the 
entropy-alpha-anisotropy (H/α/A) classification based on the eigenvalues of the polarimetric (or 
coherency) covariance matrix.  

The magnitude data itself may be sufficient for the classification of targets, but this data alone 
may not be enough to describe the complete structure of the targets. The phase data also has very 
useful information about the target details.  In this paper, we implemented a supervised 
classification algorithm for the identification of slough slides on levees using the magnitude, phase, 
and complex data (magnitude and phase) of polSAR imagery.  The classification result was further 
followed by a majority filter, which improved the classification accuracy. Higher classification 
accuracy for the complex data is obtained when compared with the magnitude and phase 
classification alone.  

Three different sample area segments, which each contain at least one active slide, are used 
for the analysis. The effectiveness of the presented method is demonstrated using fully quad-
polarimetric L-band SAR imagery from the NASA JPL’s UAVSAR. 

2. Method 

The presented method consists of image segmentation of the levee area, training the 
classifier, testing the area of interest, and validating the results using ground truth data. The 
classification algorithm adopted here is a supervised Mahalanobis distance classification for the 
identification of anomalies such as slough or slump slides on the levee. These slides are slope failures 
along a levee, which leave areas of the levee vulnerable to seepage and failure during high water 
events. Majority post-classification filtering uses a moving window (kernel) where each central pixel 
is assigned to the majority class of the pixels within the window. This filter is applied to a 
classification image to change isolated pixels within a large single class to the dominant class. The 
classification is performed using the magnitude, phase, and complex data of the Multi-Look Cross 
products (MLC) of the UAVSAR acquired. The MLC data is derived from an average of 3 pixels in 
range and 12 pixels in azimuth of the single look complex data (SLC) pixel [13]. Three complex data 
bands HHHV, HHVV, and HVVV back scatter magnitudes are used as features for the classification.  
The portion of the levee from the center line to its river side toe is segmented for analysis. The 
probabilities of occurrence of slides are greater on the river side. The supervised classification method 
is trained with two training classes: slide (anomalous) and nonslide (healthy) areas.  We used 
ground truth reference data to train and test the classification algorithms. A majority filter is applied 
to the classifier output to further improve the accuracy of the classification.  Finally, the overall, 
slide, and nonslide accuracies are computed using the confusion matrix. These processing steps for 
levee slide detection are illustrated in Figure 1. 
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Figure 1. Processing steps for slide detection on levee. 

2.1 Data and Study Area 

The study area for this work focuses on the mainline levee system of the Mississippi River 
along the eastern side of the river in Mississippi, USA. This study used airborne L-band polSAR data 
acquired by NASA JPL’s UAVSAR instrument. The L-band radar is capable of penetrating dry soil 
to few centimeters depth. Thus, it is valuable in detecting changes in levees that are key inputs to a 
levee condition classification system [13].  

The data set consists of the HHHV, HHVV, and HVVV MLC, as well as individual 
polarization channel magnitude and phase data.  The MLC data consists of 3 sets of complex floating 
points values. These complex products are derived from an average of 3 pixels in range and 12 pixels 
in azimuth, i.e., the number of range looks in MLC and number of azimuth looks in MLC are 3x12 of 
the product of each SLC pixel, which correspond to HHHV, HHVV, and HVVV. The slant range pixel 
spacing for the MLC data is by 7.2m x 4.99m for the azimuth and range directions, respectively. The 
pixel spacing for the SLC data is by 0.6m x 1.66m for the azimuth and range directions, respectively. 
The SLC data sets (HH, HV, and VV) are oversampled in nature and are dominated by speckle noise. 
We chose the MLC data sets to reduce the speckle effects. For the MLC data used, the projected 
ground sample distance is of size 5.5m by 5.5m. 

The image sample 1 consists of 66x68 pixels. Sample 2 is 52x54, and sample 3 is 61x89. The 
lengths of the levee segments in these samples are 484m, 381m, and 633m respectively. The locations 
of each are indicated on the flight segment radar image shown in Figure 2. For the multi-polarized 
SAR imagery, it is useful to create a color composite image from the HH, HV, and VV channels that 
are being mapped to red, green, and blue, as shown in Figure 2, which includes both an overview 
image as well as a close-up view of the test segments, overlaid on the base map. The entire flight 
segment image has a swath width of 20 km and a total length of 200 km. The radar is fully polarimetric 
with a bandwidth of 80 MHz (resulting in better than 2 m range resolution) and flies at a nominal 
altitude of 13,800 m [13]. The radar image was acquired on January 25, 2010. 
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Figure 2.   Study area with radar color composite 3 band (HH, VV, & HV) image overlaid on base map. 

2.2 Training Data 

The availability of ground truth data for training the supervised classification processes is a 
challenge since the targets of interest are portions of the levee that show signs of impending failure. 
Once these are detected, they are quickly repaired depending on their severity [14]. The study area is 
one in which the levees are managed by the US Army Corps of Engineers (USACE) and are well-
monitored. The Corps, in association with the local levee boards, maintains a good cumulative history 
of past problems and has identified particularly problematic sections of levees in the study area as 
shown in Table 1. These are used as training samples [13]. In addition to the ground truth data 
provided by the Corps, we have conducted field trips at the time of image acquisition to visually 
inspect the slides area and levee condition. The active slides (slides 1, 2, and 5) were present and 
unrepaired during the radar image acquisition time on January 25, 2010. Though the date of slide 
appearance was not identified by the Corps for slide 5, it is visible in the NAIP (National Agriculture 
Imagery Program) imagery collected in 2009 and 2010, and was not repaired until after the image 
acquisition as shown in Table 2. Hence, it was an active slide during the time of the image. Training 
masks were created for the slide events and labeled as either repaired or unrepaired at the time of 
acquisition. The training sample data from slide and nonslide (healthy) parts of the levees were 
obtained from the radar data using the training masks for analysis. The samples from the healthy 
parts of the levee near the slide events were used for training of the nonslide (healthy levee) class.  

 

Table 1. Ground truth data from Mississippi Levee Board. 

Slide 
Number 

Length Vert. 
Face 

Dist. 
from  

Crown 

Latitude 
North 

Longitude 
West 

Date Slide 
Appeared  

Date Slide
Repaired 

1 135' 15' 12' N33-07'-
44.4" 

W91-04'-
46.1" 

Oct. 2009 Mar. 2010 

2 230' 7' 9' N32-37'-
37.2" 

W90-59'-
56.2" 

Oct. 2009 Apr. 2010 

3 80' 2' 30' N32-36'-
37.7" 

W90-59'-
42.3" 

Oct. 2009 Nov. 2009 

4 120' 3' 15' N32-36'-
32.0" 

W90-59'-
46.3" 

Aug. 2008 Nov. 2009 

5 200' 8' 8' N32-36'-
29.1" 

W90-59'-
48.0" 

 - Sept. 2010 
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Table 2. Updated slides ground truth from Mississippi Levee Board. 

Slide 
No. 

From Levee Board 
(April 8, 2011) 

From visual aerial photo 
inspection 

Date Slide 
Appeared 

Date Slide 
Repaired 

NAIP 2009    
(May-Sep) 

NAIP 2010    
(May-Sep) 

1 Oct. 2009 Mar. 2010 Not Visible 
(July 25) 

Unrepaired 
(Aug. 3) 

2 Oct. 2009 Apr. 2010 Not Visible 
(July 25) 

Unrepaired 
(June 22) 

3 Oct. 2009 Nov. 2009 
Not Visible 

(July 25) 
Repaired 
(June 22) 

4 Aug. 2008 Nov. 2009 
Unrepaired  

(July 25) 
Repaired 
(June 22) 

5 - Sept. 2010 Unrepaired  
(July 25) 

Unrepaired 
(June 22) 

2.3 Mahalanobis distance classification 

The Mahalanobis distance is a direction sensitive distance classifier that uses statistics for 
each class in a manner similar to the maximum likelihood classifier but it assumes all class 
covariances are equal and weighing factors are not required [15-16]. Therefore, it is a faster method. 
The Mahalanobis distance algorithm is similar to the minimum distance algorithm, except that it uses 
the covariance matrix instead. It can be more useful than the minimum distance in cases where 
statistical criteria are taken into account and it is largely based on a normal distribution of the data in 
each band which is used as input to classification [17]. Unlike the minimum distance, this method 
takes the variability of classes into account. The maximum distance error can be a zero threshold for 
all the classes, or single value (0 to 0.9) for all the classes, or different values (0 to 0.9) for individual 
classes. The distance threshold is the distance within which a class must fall from the center or mean 
of the distribution for a class. We used a zero threshold for all the classes. The Mahalanobis distance 
classification calculates the distance for each pixel in the image to each class using the following 
equation [15]: 	 = 	 − ∑ − 	    (1) 
where: 

D =Mahalanobis distance 
i = the ith class 
x = n-dimensional data (where n is the number of features) 
Σ-1 = the inverse of the covariance matrix of a class 
 = mean vector of a class 

4. Results and Discussion  
The Mahalanobis distance supervised classification process was run separately with the 

magnitude only, phase only, and full complex (magnitude and phase) SAR multi-looked cross 
product data on each of the three sample images. The cross-polarized products, HHHV, HHVV, and 
HVVV, are used based on the assumption that they carry more information about relevant surface 
scattering properties than the co-polarized channels.  

Using the reference (ground truth) data, image masks were created bounding the active slide 
area and a subset of the non-slide area within each sample image. A sample of the pixels in of each 
of these two classes was then used to train the classifier. The accuracy of the resulting classification 
was tested using the remaining reference data pixels for testing, and the conventional statistics of 
user producer, and overall accuracy were computed for each case. 

The class maps resulting from applying the classifier to sample image 1 using the full 
complex data features, both with and without the majority filter applied, are shown in Figure 3. The 
training masks are shown in Figure 3(c) for both slide and non-slide classes. These areas cover 48 and 
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132 pixels for the slide and non-slide area respectively. Of these, 24% (180 pixels) were used for 
training the classifier and the remainder used for testing its accuracy. The accuracy assessment results 
are tabulated in Table 3 for this case as well as the lower-accuracy magnitude-only and phase-only 
cases. A graphical summary of the accuracy results for sample 1 is shown in Figure 4. Similarly, the 
class maps resulting from sample image 2 are shown in Figure 5. The training masks shown in Figure 
5(c) cover 57 and 124 pixels for the slide and non-slide area respectively. Of these, 31% (181 pixels) 
were used for training the classifier and the remainder used for testing its accuracy. The accuracy 
assessment results are tabulated in Table 4 for this case as well as the lower-accuracy magnitude-only 
and phase-only cases. A graphical summary of the accuracy results for sample 2 is shown in Figure 
6. Finally, the class maps for sample image 3 are shown in Figure 7. The training masks, shown in 
Figure 7(c), cover 78 and 84 pixels for the slide and non-slide area respectively. Of these, 17% (162 
pixels) were used for training the classifier and the remainder used for testing its accuracy. The 
accuracy assessment results are tabulated in Table 5 for this case as well as the lower-accuracy 
magnitude-only and phase-only cases. A graphical summary of the accuracy results for sample 3 is 
shown in Figure 8. 

All 3 sample results show good detection of the slide pixels, but numerous false positive 
detections as well. In each sample, the use of both phase and magnitude data resulted in higher 
accuracies than either alone, indicating the both of these data components carry useful information 
relevant to identifying the slides. Furthermore, in each case the application of a majority filter 
improved the classification results by eliminating many of the false positives which were isolated 
pixels or very small groups of pixels. The premise of using the majority filter is that actual slides are 
not likely to be as small in area as these isolated areas. Thus the filter reduced the false positives 
without hurting the true positive performance. 

 
Figure 3. Complex data classification for the segment Sample 1: (a) without majority filter; (b) with majority 

filter; (c) optical image overlaid with slide and nonslide class shapes. 
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Table 3. Accuracy analysis of the Mahalanobis distance (MD) classification, and with majority filter (MDF) for 
slide and nonslide areas, of the segment Sample 1, using magnitude, phase, and complex data. 

Data Type 
Classification     Producer 

Accuracy 
% 

User  
Accuracy 

 % 

Overall 
Accuracy 

 % Method Class 

Magnitude 
Data 

MD 
slide1 66  58  

78 
nonslide 82  87  

MDF 
slide1 75  78  

87 
nonslide 92  91 

Phase Data 
MD 

slide1 52 43  
69 

nonslide 75 81 

MDF 
slide1 47 46 

71 
nonslide 79  80 

Complex Data 
MD 

slide1 72  61  
80 

nonslide 83  89      

MDF 
slide1 81 95  

93 
nonslide 98  93  

 

 
Figure 4. Accuracy comparison of the Mahalanobis distance classification and with majority filter, of the 

segment Sample 1, for the phase, magnitude, and complex data. 
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Figure 5. Complex data classification for the segment Sample 2: (a) without majority filter; (b) with majority 

filter; (c) optical image overlaid with slide and nonslide class shapes. 
 
 

Table 4. Accuracy analysis of the Mahalanobis distance (MD) classification, and with majority filter (MDF) for 
slide and nonslide areas, of the segment Sample 2, using magnitude, phase, and complex data. 

Data Type 
Classification      Producer 

Accuracy 
 % 

User  
Accuracy 

 % 

Overall 
Accuracy 

 % Method Class 

Magnitude Data 
MD 

slide2 85  71  
84 

nonslide 83  92  

MDF 
slide2 92  92  

95 
nonslide 96  96 

Phase Data 
MD 

slide2 59 34 
51 

nonslide 47 71 

MDF 
slide2 63  36  

53 
nonslide 49 74  

Complex Data 
MD 

slide2 85  72  
85 

nonslide 84  92  

MDF 
slide2 92 100  

97 
nonslide 100  96 
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Figure 6. Accuracy comparison of the Mahalanobis distance classification and with majority filter, of the 

segment Sample 2, for the phase, magnitude, and complex data. 

 

Sample 3 included, in addition to the one active slide, 2 slides (numbered 3 and 4) which 
had been repaired by the time of image acquisition. Many of the false positive pixels fall in this area. 
Because these slide areas were repaired only two months prior to the time of image acquisition, 
they still have characteristics more similar to the active slide than the “healthy” areas, in terms of 
surface roughness and differences in the grass cover. These characteristics likely influenced the 
classification. 

  
Figure 7. Complex data classification for the segment Sample 3: (a) without majority filter; (b) with majority 

filter; (c) optical image overlaid with slide and nonslide class shapes. 
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Table 5. Accuracy analysis of the Mahalanobis distance (MD) classification and with majority filter (MDF) for 

slide and nonslide areas, of the segment Sample 3, using magnitude, phase, and complex data. 

Data Type 
Classification     Producer 

Accuracy 
% 

User 
Accuracy 

% 

Overall 
Accuracy 

 % Method Class 

Magnitude Data 
MD 

slide5 85  93  
90 

nonslide 94  87 

MDF 
slide5 94  100  

97 
nonslide 100  95 

Phase Data 
MD 

slide5 60  71 
69 

nonslide 77  67 

MDF 
Slide5 69  90 

81 
nonslide 92 76 

Complex Data 
MD 

slide5 91  97  
94 

nonslide 97  92  

MDF 
slide5 98 100 

96 
nonslide 100  98 

 
Figure 8. Accuracy comparison of the Mahalanobis distance classification and with majority filter, of the 

segment Sample 3, for the phase, magnitude, and complex data. 

5. Conclusions  

A supervised classification method based on the Mahalanobis distance for levee slide detection 
using complex SAR imagery is presented. In addition, we have implemented a majority filter as a 
post-processing step in order to improve the accuracy. The effectiveness of the algorithms is 
demonstrated using fully quad-polarimetric L-band SAR imagery from the NASA JPL’s UAVSAR. 
The cross-polarized products, HHHV, HHVV, and HVVV, are used based on the assumption that 
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they carry more information about the surface scattering properties. The study area is a section of the 
lower Mississippi River valley in the southern USA. The classification results obtained for all three 
cases (magnitude, phase, and full complex data), with accuracies for the complex data being higher, 
indicate that the use of polarimetric SAR can effectively detect slump slides on earthen levees. In 
addition to the active slide areas, other anomalous areas are also detected. Some of these are previous 
slide areas that had been repaired just two months prior to the time of image acquisition and still 
appear similar enough to the active slide to be detected by the classification technique. Furthermore, 
although the test study area is small, including only one active slide area for each segment, the 
methodology presented in this paper shows promising results. Planned future work includes the use 
of larger test areas consisting of more active slides, seasonal images acquired by the SAR, and 
different geometrical orientations of the levee. 

Acknowledgments: This work was supported by the National Science Foundation grant number: OISE-1243539, 
and by the NASA Applied Sciences Division under grant number: NNX09AV25G. The authors would like to 
thank the US Army Corps of Engineers, Engineer Research and Development Center and Vicksburg Levee 
District for providing ground truth data and expertise; NASA Jet Propulsion Laboratory for providing the 
UAVSAR image; and GRI levee team.   

Author Contributions: Ramakalavathi Marapareddy implemented the classification methods on image 
processing tools. James V. Aanstoos supervised the work, provided imagery and data and was the principal 
investigator for the project.  Nicolas H. Younan supervised and provided guidance. Ramakalavathi 
Marapareddy, James V. Aanstoos, and Nicolas H. Younan analyzed the results and wrote the paper.   

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Aanstoos, J. V.; Hasan, K.; O’Hara, C.G.; Prasad, S.; Dabbiru, L.; Mahrooghy, M.; Nobrega, R.; Lee, M.L.; 
Shrestha, B. Use of Remote Sensing to Screen Earthen Levees. In Proceedings of the 39th Applied Imagery 
Pattern Recognition Workshop (AIPR), Washington, DC, USA, 13–15 October 2010; pp. 1–6.  

2. Dunbar, J.;USACES’s Lower Mississippi Valley Engineering Geology and Geomorphology Mapping 
Program for Levees, presentation at the Vicksburg, MS, USA, 16 April 2009. 

3. Hossain, A.K.M.A.; Easson, G.; Hasan, K. Detection of Levee Slides Using Commercially Available 
Remotely Sensed Data. Environ. Eng. Geosci. 2006, 12, 235–246.  

4. Lin, S. W.; Ying, K.C.; Chen, S.C.; Lee, Z. J. Particle swarm optimization for parameter determination and 
feature selection of support vector machines. Expert Sys. Appls. An Int. J. 2008, 35(4), 1817-1824.   

5. Ince, T.; Kiranyaz, S.; Gabbouj, M. Classification of Polarimetric SAR Images Using Evolutionary RBF 
Networks. 20th Int. Conf. Pattern Recognition 2010, 4324-4327.  

6. Alvarez-Perez, J. L. Coherence, Polarization, and Statistical Independence in Cloude-Pottier’s Radar 
Polarimetry. IEEE Trans. Geosci. Remote Sens. 2011, 49(1-2), 426-441.  

7. Han, Y.; Shao, Y. Full Polarimetric SAR Classification Based on Yamaguchi Decomposition Model and 
Scattering Parameters. Progress in Informatics and Computing. IEEE Int. 2010, 2, 1104-1108.  

8. Jong-Sen, L.; Pottier, E. Polarimetric radar imaging: from basics to applications. CRC Press, Taylor & 
Francis Group. 1st Ed. 2009, ISBN-13: 978-1420054972.  

9. Kong, J. A.; Schwartz, A. A.; Yueh, H. A.; Novak, L.M.; Shin, R.T. Identification of terrain cover using the 
optimal polarimetric classifier. J. Electromagnet. Waves Applicat. 1988, 2(2), 171-194.  

10. Lee, J. S.; Grunes, M. R. Classification of multi-look polarimetric SAR imagery based on complex Wishart 
distribution. Int. J. Remote Sens. 1994, 15(11), 2299-2311. 

11. Lee, J. S.; Grunes, M.R.; Anisoworth, T.L.; Du, L.J.; Schuler, D.L.; Coulde, S.R. Unsupervised classification 
using polarimetric decomposition and the complex Whishart classifier. IEEE Trans. Geosci. Remote Sens. 
1999, 35, 2249–2258. 

12. Cloude, S. R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. 
IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. 

13. Aanstoos, J. V.; Dabbiru, L.; Gokaraju, B.; Hasan, K.; Lee, M.A.; Mahrooghy, M.; Nobrega, R.A.A.; O’Hara, 
C.G.; Prasad, S.; Shanker, A. Levee Assessment via Remote Sensing; SERRI Report 80023-02; Southeast Region 
Research Initiative; 2012. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2016    doi:10.20944/preprints201608.0109.v1

Peer-reviewed version available at J. Imaging 2016, 2, 26; doi:10.3390/jimaging2030026

http://dx.doi.org/10.20944/preprints201608.0109.v1
http://dx.doi.org/10.3390/jimaging2030026


 12 of 12 

 

14. Aanstoos, J. V.; Hasan, K.; O’Hara, C.; Dabbiru, L.; Mahrooghy, M.; Nobrega, R.A.A.; Lee, M.M. Detection 
of Slump Slides on Earthen Levees Using Polarimetric SAR Imagery. In Proceedings of the Conference: 2012 
IEEE Applied Imagery Pattern Recognition Workshop, Washington, D.C., U.S.A, 9–11 October 2012.  

15. ENVI version 5.1. Exelis visual information solutions user guides and tutorials. 
http://www.exelisvis.com/Learn/Resources/Tutorials.aspx, (accessed Nov. 2014) 

16. Richards, J. A. Remote Sensing Digital Image Analysis 1999, Springer-Verlag, Berlin, 240. 
17. Al-Ahmadi, F. S.;   Hames, A. S. Comparison of Four Classification Methods to Extract Land Use and 

Land Cover from Raw Satellite Images for Some Remote Arid Areas, Kingdom of Saudi Arabia.  Earth Sci. 
2009, 20 (1), 167-191.  

18. Morton, J. C. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms 
for ENVI/IDL and Python 2014, 3rd Ed. CRC Press. 1-576 

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons by 
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2016    doi:10.20944/preprints201608.0109.v1

Peer-reviewed version available at J. Imaging 2016, 2, 26; doi:10.3390/jimaging2030026

http://dx.doi.org/10.20944/preprints201608.0109.v1
http://dx.doi.org/10.3390/jimaging2030026

