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Abstract: The present study aims to develop an efficient numerical method for computing the
diffraction and radiation of water waves with horizontal long cylindrical structures, such as floating
breakwaters in the coastal region, etc. A higher-order scheme is used to discretize geometry of the
structure as well as the physical wave potentials. As the kernel of this method, Wehausen’s free-
surface Green function is calculated by a newly-developed Gauss-Kronrod adaptive quadrature
algorithm after elimination of its Cauchy-type singularities. To improve its computation efficiency,
an analytical solution is derived for a fast evaluation of the Green function that needs to be
implemented for thousands of times. In addition, the OpenMP parallelization technique is applied
to the formation of the influence coefficient matrix, significantly reducing the running CPU time.
Computations are performed on wave exciting forces and hydrodynamic coefficients for the long
cylindrical structures, either floating or submerged. Comparison with other numerical and
analytical methods demonstrates a good performance of the present method.

Keywords: long cylindrical structure; free-surface Green function; higher-order boundary element
method; multipole expansion; singularity elimination; Gauss-Kronrod; numerical quadrature;
OpenMP parallelization

1. Introduction

Cylindrical structures are being widely used in the rapidly developing coastal and offshore
engineering industries in recent decades, in the form of such as floating breakwater, oscillating water
column (OWC) for power generation, etc. These devices are used to either passively avoid the huge
wave kinematic energy from attacking the harbors or actively convert the wave energy into other
kinds of energies. Cylindrical structures are important in the industries probably due to their
simplicity in geometry and the relatively lower fluid forces they may experience. Extensive efforts
have been made on investigation of such kind of important structures, theoretically [1-3], numerically
[4-7] and experimentally [8,9]. In the numerical approaches, boundary element method should be one
of the most popular tools for analysis [5-7]. However, the present work is very different from the
classical researches in the following aspects: (1) since the governing equation used herein is the
Laplace equation instead of the Helmholtz equation, Wehausen’s free-surface Green function [10],
constituted by several simple arithmetic functions, can be employed instead of Haskind’s Green
function [11] which may require many evaluations of the modified Bessel functions; (2) since the free-
surface Green function is used as the kernel instead of the Rankine Green function, meshing of the
geometry could be restricted to only the body surface, such that there’s no need to deal with the open
boundaries as that has been done by Zheng et al. [7]; (3) application of a 3-node higher-order element
rather than a traditional constant or linear element guarantees the accuracy of geometrical/physical
discretization; (4) thanks to the exponential integral functions, the free-surface Green function could
be written in a simpler form and then evaluated in a faster speed with a precise result. All the above
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advantages facilitate the numerical investigation for hydrodynamic performances of such cylindrical
structures.

These horizontal cylindrical structures are so long in its axis direction that the problem to be
solved could be considered in two-dimensional. In comparison to the three-dimensional wave-
structure interaction model within the framework of linear potential flow theory, the present
simplified two-dimensional model have much less unknowns on the body surface, since the surface
integrations have been substituted by line integrations. In our HOBEM (higher-order boundary
element method) model, for a typical frequency domain problem, about 10~50 elements (or in other
word less than 100 nodes) are sufficient to represent an arbitrary cross-sectional shape. Therefore,
generally about 10>~10* evaluations of the Green function are needed for each incident wave period,
in comparison to those O(10°) evaluations in the three-dimensional cases (see [12]). Furthermore, by
taking advantage of the contemporary computational technologies, some special technique may be
applied to parallelize the algorithm on multi-processor machines.

Apart from the HOBEM discretization, efficient evaluation of the free-surface Green function is
another important issue in this work. Numerous studies have been performed in the field since 1980s.
Noblesse and Newman have made the most important contributions for this issue [12-17]. They
developed several popular methods, e.g., separating the local component from the far-field one and
then calculate them by tabulation algorithm, or making the singular functions slow-varying by
subtracting some component and then approximate the resulting functions by Chebyshev
approximation. These methods have been simplified in the present model since the problem to be
considered is two-dimensional and in infinite water depth, in which an extremely convenient
analytical solution can be found for the kernel function. The numerical results in section 3 show the
validity and efficiency of the present method.

2. Mathematical Theory and Algorithms

2.1. Governing Equation and Boundary Conditions

The problem is to consider interactions between linear water waves and a long prismatic rigid
structure in arbitrary cross-sectional shape, either floating or submerged in water of infinite depth,
as shown in Figure 1. The right-handed Cartesian coordinate system (x, z) is defined, with its origin
located at the undisturbed free surface level and the z-axis taken vertically upward. The fluid domain
is denoted by £2 whose boundaries S consists of a free surface boundary Sr, an up-side open
boundary Su, a lee-side open boundary Si, and a wetted surface boundary Se on the structure.

Incident waves Transmitted waves 5

A% ~ 1
v \L_,_/ v

SB

X

Si

Figure 1. Computation domain of the problem.

The fluid is assumed to be inviscid and incompressible, and the motion is assumed irrotational.
For the linear small amplitude wave harmonic in time with an angular frequency @, the velocity
potential can be expressed by

®(x,z,6) =Re[¢(x,z,1)e ], 1)
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where ¢is a time-independent complex velocity potential, which can be further decomposed into
3
6= ¢, +0,—iw) X0, @)
j=1

where the three components denote incident potential, diffraction potential, and radiation potential,
respectively; y represents displacement of the body motion in each mode (sway, heave or roll), and
¢ stands for the corresponding radiation potential to each motion mode.

The incoming wave of amplitude A and frequency @, propagating in the positive x direction in
the water of infinite water depth, can be described by the following incident velocity potential

WA
¢0 — _ieKZJrlel (3)
w

where K is the infinite depth wave number defined by K = w?/g. The four induced wave potentials
& (j =1~4) must satisfy the Laplace equation

Vig =0, )
and be subjected to various boundary conditions in the fluid domain, including the free surface
condition on Sr
%, K¢ =0 (5)

0z ! '

the bottom boundary condition as z—e
Vo, —0, (6)

the boundary condition on the surface Ss of the structure

99, ,
0¢. ——L, =4
R on (] ), (7)
on n, (j=12,3)

and the radiation condition in the far field boundaries Suand St
0

5
—+iK¢.
Ox !

lim

x—oo

=0, 8)

where n is the normal direction of the body geometry, with its three components ni= nx, ne= nz, ns=(z-
Ze)Nx-(X-Xc)1z, where nx and nz are the x and z components of the unit inward normal, respectively, and
(¢, zc) is the rotation centre. The subscripts j =1, 2, 3 denote the direction of sway, heave and roll for
radiation, respectively, and j =4 stands for diffraction.

2.2. Numerical Techniques

According to Green’s second theorem, by employing Wehausen'’s free-surface Green function as
the kernel, a boundary integral equation can be obtained as

M¢, (X)_G(X;Xo)agb-"(x)]dS, )

on on

ag, (x,)= [

Sp

where «is the solid angle. The free-surface Green function is defined to be
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G(x X, 7ln——22[

where path of the contour integral passes below the poles at 1 = K; coordinate of the source point is
xo= (¢ ¢); r is the distance between field point and source point, and r1 is the distance between field
point and the image of source point with respect to the free surface.

On the other aspect, if Rankine Green function were employed as the kernel, the boundary
integral equation would be

0, (x)= [ quj(x)—G(x;xo)%(X)]ds, (11)

Sp+S5+S,+S, on

cos,u X — §)d,u, (10)

where the kernel would be simply expressed by
G(x;xo)zlnr. (12)

In this paper, we denote the method based on Eq. (9) and Eq. (10) as FSG_BEM, and the method based
on Eq. (11) and Eq. (12) as RKG_BEM. The former is applied as the present numerical method, while
the latter one is used as a comparison for computational efficiency.

The 3-node isoparametric element is selected to discrete both the geometry of body surface and
the physical variables, the shape functions of which being expressed by

b, ()= =n(n-1), (13)
h(n)=1-17", (14)

1
h, (n) :;n(nﬂ)f (15)

where 77 is the local coordinate (—1 <7 < 1). Therefore, the velocity potential and its normal
derivative on the boundary surface can be expressed straightforwardly as

[r2= 3 n ()7 a6

9
"\ on
Applying the above discretization and the body surface condition Egs. (5) ~ (8) leads to the following

discrete form of the boundary integral equation of Eq. (9)

Zf >, (n)(@,) [1()]dn
if G("”‘o)‘)—xh(n)lﬂlnr (i=4) (18)
—Zf G(x,)n () dn, (=1,2,3)

Zh()

(17)

BGxx
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where Ns represents the number of total elements along the body surface, and J(7) the Jacobi matrix
for local-global coordinate transformation, the determinant value of which is calculated by

(19)

By employing a collocation process for Eq. (18) that the source point is arranged to be put on
each grid node on the immersed body surface mesh, a linear algebraic system could be obtained in
closed form

4],

where N is the total number of nodes. Solution of the above linear system is sensitive to the diagonal
terms of the left-hand side influence matrix [A], which therefore needs to be evaluated precisely with
caution. However, direct calculation of these diagonal terms is usually inaccurate and troublesome,
due to the high singularity of the Green function in the case when the field point and the source point
coincides with each other. Fortunately, this weakness can be avoided by considering a constant flux
across the fluid (¢=1), thereafter we obtain

¢,

T INxN _[ }Nxzi’

A =- i A, (i=1,.,N). (20)

j=1,j=i

In calculation of each influence coefficient Ajj (j # i), OpenMP parallelization technique is employed
to distribute the computation burden on multiple processors of a single computer. The parallelization
works well since calculation of the influence coefficient on one element is independent from that on
another element. After that, the Gauss elimination algorithm is used to solve the linear system, which
is extremely robust regardless of arbitrary shape of the structure.

Given solution for the linear system, we can get the wave exciting force, added mass and added
damping by directly integrating the corresponding hydrodynamic pressure over the immersed body
surface, respectively, i.e.,

f = ipwf(qﬁo +,)nds, 1)
SH
and
ib
8, +—=p [onas . 22)
SA

2.3. Direct Calculation of Free-surface Green’s Function

As pointed out in the previous section Introduction, accurate calculation of the free-surface
Green function is of great importance to the final solution of the problem. At a preliminary step, we
may apply the function decomposition method which was proposed by Newman [17]. In terms of
the following two coordinates

X=K(x—¢), Y=K|z+(|

Eq. (10) can be normalized into a simplified form
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G=In-—2F (X,Y)-2rie " cos X, (23)
r
1
where i denotes the imaginary unit. The singular part of Eq. (23) is
- e—kY
F(X,Y)=P.V. cos kXdk , (24)
(o) -rw [

where P.V. denotes Cauchy principle value of the integral. The principle task here is to evaluate the
normalized real function Fi(X, Y) for all relevant values of input parameters (X, Y) of possible physical
interest [17]. Using the identity

> dk

PV.] —=0,
k-1

Eq. (24) can be written [18] in a more convenient form from the view point of numerical evaluation

E(X,Y)= OZ%H m%dk (25)
where
1, (k) =e¢ " coskx. (26)

In the neighborhood of k = 1, linear approximation may be applied such that
k)—f(1 ,
M =f, (k) =" [Y cos kx 4 X sin kx] . (27)

Hence Eq. (25) can be evaluated accurately by an adaptive Gauss-Kronrod-type quadrature algorithm
(see Appendix A).

Following a similar procedure, the derivatives of the Green function with respect to x and z can
be normalized as

G =(x- )[ll +2KE, (X,Y)+27iKe " sin X , (28)
ro
G = (Z:C) - (Ztc) —2KF, (X,Y) - 2miKe " cos X , (29)
r r
where their singular parts are
E(xy)=PV.[" ke inkxik (30)
: ° k-1

- keka
E(x,Y)=PV.[

cos kXdk . (31)
o k-1
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Eq. (30) and Eq. (31) can be formulated as the same form as Eq. (25), where
£, (k) =ke ™ sinkex, (32)
f, (k) = ke coskx, (33)
ﬂ (k) =e" [sin kx - kY sin kx + kX cos kx] , (34)
ﬁ (k) =" [cos kx — kY cos kx — kX sin kx] . (35)

2.4. Fast Evaluation by analytical method

Although calculation of the free-surface Green function becomes applicable following the
method described in Section 4, a large amount of computation time would be consumed due to the
direct integration by the meticulous adaptive numerical quadrature method. The reason for that is
the effort of dealing with singularity in the denominator, as well as the oscillating inherence of the
integrand. A possible way for its improvement is to derive an alternative analytical expression which
can automatically remove the troublesome singularity, as described below.

Based on Mclver [19], we can obtain the following representation for the principle value of the
following singular integral without too much of difficulty

eI (i E, (K (24 Q) +KX)), X <0, (24+¢) <0
24C)+HipX
P.V. Ldu: —"IEi(—K(2+¢)), X=0,(z+¢) <0’ (36)

I i E, (K (24 ) +iKX)), X >0, (24¢) <0
where the exponential integrals are defined as

Ei(x) = Ji%dt, (x>0), (37)

E(Z)= Jj%dt, (arg|Z| < m)- (38)

LetZ =K (z + C) +1KX, the real part of Eq. (10) can then be written as

Re{e” (—7r1+E(Z))},X<O,(z+C)§O
Re{c}—ln——z Re{—¢’Ei(-Kz)}, X =0,(z+¢) <0’ (39)
" Re{e” (7r1+E1(Z))},X>0,(z+C)§0

while the imaginary part is obtained by applying the residue theorem, after which we find
Im {G} = —2irRe(¢’), (40)

Based on the following identities of the exponential integral, i.e.,
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dEl <Z> - e’ (41)
dz z'’
dEi(z) ’ )
dz z

it is possible to calculate derivatives of the Green function with respect to x and z, in which their real
parts are corresponding to

Re{iKe” (—mi+E, (Z))—%}, X<0,(z+¢)<0

—210, X=0,(z+¢) <0 (43)

iK

Refe}~(e-g) 5%
Re{iKe” ( 7+, (Z))—?}, X>0,(z+¢)<0

ron

Re{Ke” (i +E, (z))—g}, X<0,(z+¢)<0
z—¢) (z+¢ o 1 , 44
Re{G,} = ( . ) - ) alre| e Ei Kz)JrE}, X=0,(z+¢)<0 44
Re{ Ke” 7ri+E1(Z))§}, X>0,(z+¢)<0
respectively. Their imaginary parts are easily obtained by applying the residue theorem as
Im{G,}= 2iKrIm(e*), (45)
Im {G, } = —2iKnRe(e”). (46)

Through this way, we are able to calculate the free-surface Green function in a fast manner, since Egs.
(39) ~ (40) and Egs. (43) ~ (46) are all in analytical form, which just simply consists of the exponential
functions and the trigonometric functions.

A comparison between plots of the three singular functions Fi(X, Y), F2(X, Y) and F3(X, Y) by the
direct integration method and the analytical solution method is shown in Figures 2~4. In general, the
two methods get almost same results which are hard to be distinguished from each other. It is
obviously to see that Fi(X, Y) and F3(X, Y) are even functions in symmetric with respect to the Y axis,
while F2(X, Y) is an odd function which is anti-symmetric about the Y axis. Remarkable variations
with a period of zin parallel to the X axis can be observed in all the plots for the region of Y€ [0, 3].
It is also important to see that the variation becomes slow-varying with the increase of Y in the region
of YE [3, 9+].
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Figure 2. Comparison of the singular function Fi(X, Y) calculated by the two methods: (a) Contour
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plot by direct integration; (b) Oblique view by direct integration; (c¢) Contour plot by analytical
solution; (d) Oblique view by analytical solution.
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Figure 3. Comparison of the singular function F2(X, Y) calculated by the two methods: (a) Contour
plot by direct integration; (b) Oblique view by direct integration; (c¢) Contour plot by analytical
solution; (d) Oblique view by analytical solution.
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Figure 4. Comparison of the singular function F3(X, Y) calculated by the two methods: (a) Contour
plot by direct integration; (b) Oblique view by direct integration; (c¢) Contour plot by analytical
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solution; (d) Oblique view by analytical solution.
3. Numerical Results and Discussion

Based on the direct calculation method and the analytical solution method described above,
values of the free-surface Green function and its derivatives are compared, as shown in Figures 5 ~ 6,
against variation of the physical horizontal distance |x-&| between the source and the field points.
Both the real part and the imaginary part are compared, showing that they coincide fairly well with
each other. It should be noted that calculation of the imaginary parts is relatively straightforward
since the real parts contain troublesome principal values of the singular integrals.
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Figure 5. Comparison of two methods for calculating Wehausen’s Green function and its derivatives
(K=12m7, {=-1.0m, z =-1.0m): (a) Real part value of G; (b) Imaginary part value of G; (c) Real part
value of Gyx; (d) Imaginary part value of Gx; (e) Real part value of G;; (f) Imaginary part value of G:.
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Figure 6. Comparison of two methods for calculating Wehausen’s Green function and its derivatives
(K=0.001 m?, {=-0.1m, z = -0.2m): (a) Real part value of G; (b) Imaginary part value of G; (c) Real
part value of Gyx; (d) Imaginary part value of Gx; (e) Real part value of Gz; (f) Imaginary part value of
G:.

Due to different nature of the free-surface Green function when the source point locates at the
free surface or not, we need to verify the results for both floating bodies and submerged bodies. In
order to compare with some existing analytical results, we select horizontal floating/submerged
circular cylinders for the benchmark examples. When the cylinder is submerged, its wet body surface
should be considered as a completely immersed circle; when it is floating with its centroid locates on
exactly the mean water surface, whereas its wet body surface should be treated as a half circle. Their
analytical solutions are all obtained based on the so-called multipole expansion method, which were
published in [2,20] for submerged circle in water of infinite depth, and in [1,21] for half circle in water
of infinite depth. The RKG_BEM is also implemented for comparison, in which all the boundaries
should be taken into consideration; whereas for the FSG_BEM, only the body surface needs to be
meshed. In the following illustration, Lr, Lu, L. and Ls denote the length of the boundaries as shown
in Figure 1, respectively, and Nr, Nu, N and Ns denote the number of elements meshed on the
boundaries, respectively.

Table 1. Mesh specifications for the case shown in Figure 4

Method L Lu L Ls Nk Nu Nu N

FSG_BEM / / / za / / / 10
RKG_BEM 60a 20a 20a za 240 90 90 30
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Figure 7 shows modules of complex exciting force, added mass and added damping of a semi-
immersed cylinder of radius a in comparison with those computed by the RKG_BEM and the
analytical multipole expansion method [20].The corresponding meshes used by the two boundary
element methods are specified in Table 1. In Figure 7, the present method based on the analytically
evaluated free-surface Green function achieves good agreement with both of the other two methods.
Noted that, there are some odd points on the curve calculated by the FSG_BEM. This phenomenon
should be attributed to the so-called “irregular frequencies” [22], since the discrete boundary integral

equation is ill-conditioned to be uniquely solvable at these frequencies.
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Figure 7. Comparison of hydrodynamic characteristics of a floating cylinder, in semi-immersed circle

of radius a: (a) Sway exciting force; (b) Heave exciting force; (c) Sway added mass; (d) Heave added

mass; (e) Sway added damping; (f) Heave added damping.
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Figure 8 shows modules of complex exciting forces, added mass and added damping of a
submerged cylinder in comparison with those computed by RKG_BEM and analytical multipole
expansion method [21]. In the solution of multipole expansion method, we derive a new exact
formulation (see Appendix B) for the multipole expansion coefficient Am: which is troublesome for
calculation due to its high singularity in the integrand. In this case, the radius of the cylinder is 4, and
the submergence of its centroid is f/a=1.5. The meshes used by the two boundary element methods
are specified in Table 2. In Figure 8, similar to the case of semi-circle, the present method based on
the analytically evaluated free-surface Green function highly agrees with both of the other two
methods. In addition, there is no “irregular frequencies’ phenomenon, which proves the knowledge
that for submerged bodies, the solution is always unique.

Table 2. Mesh specifications for the case shown in Figure 5

Method L Lu L. Ls Nr Nu Nu N
FSG_BEM / / / 27a / / / 10
RKG_BEM 60a 20a 20a 27a 240 90 90 60
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Figure 8. Comparison of hydrodynamic characteristics of a submerged cylinder: (a) Sway exciting
force; (b) Heave exciting force; (c¢) Sway added mass; (d) Heave added mass; (e) Sway added
damping; (f) Heave added damping.
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Figure 9. CPU time of the two boundary element methods based on different calculation schemes of
the free-surface Green function in sequential or parallel mode: (a) Comparison for the direct
integration method; (b) Comparison for the analytical solution method.

Figure 9 shows a comparison of computation time (unit: sec) for 60 incident wave periods
between the BEMs (boundary element methods) based on the direct integration and the analytical
solution of the free-surface Green function, in either sequential mode or parallel mode. The
computations are implemented on a SONY laptop, with an Intel(R) Core(TM) i7-2670QM CPU of 2.2
GHz, on 64-bit Windows operating system. The OpenMP parallelization technique have been applied
in the parallel mode. In Figure 9, a remarkable trend of reduction in CPU time is shown by using the
parallel mode, which tends to be more apparent with increasing number of the total elements, in both
Figure 9(a) and Figure 9(b). On the other hand, the analytical-based Green function has saved a lot of
computation time for the BEM analysis. Roughly speaking, it has improved the computation speed
for around 27~36 times in the sequential mode, and 12~60 times in the parallel mode, in comparison
to the direct-integration Green function method, depending on the number of total elements in the
input mesh of geometry.
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Figure 10. Convergence test of the present method with respect to the number of elements: (a) Sway
exciting force; (b) Heave exciting force.

Figure 10 shows convergence rate of the present FSG_BEM using analytical solution Green
function with respect to the number of boundary elements. No evident difference can be observed in
accompany with the increase of the number of elements from 10 to 40. This may suggest that, for such
a cylinder, only a few elements are sufficient to obtain a high accuracy, which demonstrates a perfect
convergence of the present boundary method by utilizing the analytically evaluated free-surface
Green function.

4. Conclusions

In this paper, we presented a FSG_BEM, which applies a 3-node higher-order scheme, and an
analytical algorithm of the free-surface Green function. Various numerical results show that the
present method deserves high accuracy, good convergence, and fast computation efficiency.
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Abbreviations

RKG_BEM: Rankine Green function based Boundary Element Method

FSG_BEM: Free-surface Green function based Boundary Element Method

DrG_BEM: Boundary Element Method based on direct integration of the free-surface Green function
AlG_BEM: Boundary Element Method based on analytical solution of the free-surface Green function

Appendix A

Let [a, b] be the integration interval, f be a Riemann integrable function, the following target
integral
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1= [ F(x)ix (A1)

can be approximated by adding n+1 Kronrod points to the n-point Gauss quadrature rule, so that the
function values produced by the lower-order rule can be re-used. This formula is called as Kronrod
extension of Gaussian rules [23], which has a maximum degree of exactness 3n+1, i.e.,

n+1

I:Z”:wif(x;)"'zw;f(x;)' fE P3n+1’ (AZ)

where xi are the Gauss nodes and @ the corresponding weights, x; and wj, denote the Kronrod nodes
and corresponding weights, respectively.

The difference between a Gauss quadrature rule and its Kronrod extension are often used as an
estimate of the approximation error suggested by Piessens et al. [24]:

e =(200G, [a,b]- K, [a,b]

)1.5 ) (A3)

2n+1 [

where G represents the approximation of the initial Gaussian rule, and Ka:+1 the approximation of its
Kronrod extension.

Using the Gauss-Kronrod rule, an adaptive integral algorithm can be developed [25]:

Step 1. Firstly, use n-point Gauss rule and 2n+1-point Gauss-Kronrod rule to integrate f(x) on the
interval [a, b], respectively. Two approximations of the integral, i.e., G» and Ka+1, will be obtained, as
well as Eq. (A3). If the error estimation is smaller than a prescribed tolerance Eps, the more accurate
approximation Ka:+1 is accepted as the final integral value; else, go to Step 2.

Step 2. Divide interval [g, b] into two equal parts, i.e., [a, m] and [m, b], where m = (a + b)/2, and
compute the two sub-integrals independently

I:fﬂmf(x)derfmbf(x)dx. (A4)

Again, the two respective approximations G. and K,,;, as well as the local error estimate & will be
attained

¢ =(200/G, [a,b]- K., [a,0]

2n+1

)" (A5)

where the superscript denotes the ith sub-interval. If & is smaller than Eps, accept Ki,,, as the final
integral value on ith sub-interval, and stop the circulation; if not, continue to subdivide the sub-
intervals and repeat Step 2.

Appendix B

In the multipole expansion method, Linton and Mclver [20] gives an expression for wave
scattering potential of a submerged horizontal cylinder in series form

o= a0, (B1)
n=1
where
—inf 0
o, =——+2 A", (B2)
r m=0

_ (71) S Uy K#mm 1ez;lcd‘u, (BB)

A
" omi(n—1)1Y0 p—K
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where 7 is the radius and {'the submergence. Calculation of the multipole expansion coefficients Amn
is not a trivial task, since usually a direct integration method will be adopted which will leads to some
substantial numerical errors. By the Newton’s binomial theorem and through integration by parts,
we derive the following series representations for its accurate calculation:

A =Re(A )+ilm(A ), (B4)

mn

where
Re(A ):i [—i] (m+n—1)!+2Kem~
" mt (-1 | 2¢

- (m tn_ 1)! Ko ) mn—2-i <2KC)] - (m +n— 1) K2 _ gtE; (*ZKC)

= (man—1-i)it (co¢)" = 2
, (B5)
and
Im(A )= i27r1<"’*"e“‘, (B6)
" mt(n—1)!

where m>0,n>1,mneZ .
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