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Abstract: Computer simulation of normal and diseased human heart activity requires a 3D
anatomical model of the myocardium, including myofibres. For clinical applications, such a model
has to be constructed based on routine methods of cardiac visualisation such as sonography.
Symmetrical models are shown to be too rigid, so an analytical non-symmetrical model with enough
flexibility is necessary. Based on previously made anatomical models of the left ventricle, we
propose a new, much more flexible spline-based analytical model. The model is fully described
and verified based on DT-MRI data. We show a way to construct it on the basis of sonography data.
To use this model in further physiological simulations, we propose a numerical method to utilise
finite differences in solving the reaction-diffusion problem together with an example of scroll wave
dynamics simulation.
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1. Introduction

This model is a further development of another non-symmetrical model of the left ventricle (LV)
of the heart [1], which considers meridional sections of the LV and approximates its subepicardial
and subendocardial borders by simple curves in sectional coordinates. The curves consist of one or
two parts, each defined as a power function of a «latitude» . If both parts are used, an LV-dividing
region «equator» is identified where the LV is mostly distanced from the vertical axis.

A new model must be constructed because, in many situations, a well-fitting LV model cannot
be made. We faced this when we tried to make «power-function» models using sonography and
tomography data of human hearts.

The new model uses splines instead of power functions and, as we will show in this paper, is
flexible enough to fit real medical visualisation data. At the same time, the new model uses analytical
calculations, so some of the derivatives necessary for solving reaction-diffusion systems can be found
exactly. In the proposed model, both anatomy and fibre direction field are defined analytically. We
calculate fibre slope angles in a local coordinate system and compare them with in vitro experimental
data on human hearts.

2. Construction of the LV model

In order to define the LV form, we use a special coordinate system (1, ¢, ¢), where the variable
v € [0,1] corresponds with position of a point in the LV wall layer: ¢ = 0is the endocardium, v = 1is
the epicardium, ¢ € [0, 71/2] is an analogue of latitude, ¢ = 0 is the upper plane part of the LV model
(fibrous ring and valve zone), i = 7r/2 is the LV apex, and ¢ € [0,277) is an analogue of longitude.
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Initial data for the model construction are

1. meridians ¢;,i = 0,1, ...n — 1, where measurements are taken;

2. coordinates p?’;l, z?’;l, i=01...n—1,j=0,1,... nfp " —1, of marked points on the epicardium;
3. coordinates pl‘f’}do, zf’}d”, i =01...n-1,j] =0, 1,...nf"d" — 1, of marked points on the
endocardium.

Now we describe our algorithm to construct the LV model. First, for each meridian of the
epicardium, we connect the marked points by an interpolation curve (Fig. 1). We obtain a set of n
curves in this step. Second, for each latitude ¢, we connect the n points on the curves by a closed
interpolation curve. Algebraically, this means that we use a periodic spline. We obtain an epicardial
surface in this step. Next, we do the same for the endocardium and, finally, we fill the space between
the epi- and endocardium by a linear function of .

This schema can be formalised using the following equations. To transform the special
coordinates into cylindrical ones (p, ¢, z), we use a simple formula for z-coordinate transformation:

2(ry) =2 = (Z=hy)siny, ey

where Z is the LV height, and & is the LV wall thickness at the apex. Using this formula, we calculate
y-coordinates of the marked points:

(v, z) = arcsin ( ZZ—_hz'y) . (2)

As mentioned above, 7 = 0 on the epicardium, and y = 1 on the endocardium.
In each section ¢; on the epicardium (endocardium), we make an epicardial (endocardial) curve

o7, ¢i) = spline(; ¢ — o), 0™ (4, ¢1) = spline(; 1% > pf1). &)

Here, spline is a cubic spline with zero second derivative at the endpoints. The notation spline(x; x; —
y;) means a spline constructed by two given arrays of data, x; as an argument and y; as a response
variable. Then, we interpolate to obtain a surface between the curves:

oV (, ¢) = spline(¢; ¢ — pP (P, 9:)), P (y,¢) = spline(¢; ¢ — P (¢, ;). (4)

Here, we use a periodic cubic spline. And finally, we fill the entire LV wall:

p(7, 9, 9) = o (1, ) (1 — ) + p" (¢, $)7- ®)

Usually, if n meridional sections are considered, the angles between them are uniform, so ¢; = irt/n,
i=01,...n—-1

2.1. Spiral surfaces

Hierarchically, the LV model is subdivided into muscle layers. In its turn, each layer is filled
by myofibres. All the layers have a spiral-like shape so we call them «spiral surfaces» (SS). These
surfaces have the same equation in special coordinates:

P (Y, Pmin, Pmax) = Pmin + YPmax, 6)

where ¢max is the SS twist angle (which is the same for all SS), and different values of ¢min € [0,277)
determine different surfaces. The equation of the SS in the cylindrical coordinates is shown below

(see (5), (1))

Py bmin) = (S22, 9) )
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Figure 1. Vertical (meridional) sections of the LV free wall (on the left) and the IVS (on the right) of a
human heart. The points represent DT-MRI data; the solid red line represents the model epicardium;
the dashed blue line represents the model endocardium. The circles show the interpolation (marked)
points given by a user. The horizontal axis is p; the vertical axis is z. On the right panel, we see a
papillar muscle in the RV cavity (vertical one, p = 25...45 mm) and an RV free wall (inclined).

(10, gm) = = (2002, ). @

2.2. Filling a spiral surface with fibres

We have utilised J. Pettigrew’s proposal [2] as we did in our previous models [1,3]. This
proposal has been chosen because it can be formalised easily, and it describes both myofibres and
sheets. Myocardial fibres are obtained as images of chords Y = const, Y € [0,1) of sector P < 1,
® € [myo, 1] (the chords are parallel to the diameter Y = 0) on the SS (Fig. 2). Here, 7o and
71 (0 < 99 < 71 < 1) are necessary parameters to fit the sub-epicardial and sub-endocardial fibre
angles. The parameter of any chord is the polar angle ® € [®g, ®;], where &y = max(arcsinY, 71y)
and ®; = min(7r — arcsin Y, 71y1). The mapping of a chord point (P, ®) to an SS point is defined by
the formulae below (Fig. 3):

. b — TTY0
N = (1 = 70)’
$(P)=(1-P)- 7.

For instance, if 9 = 0 and 7 = 1, the semicircle diameter is transformed into a fibre that begins
on the basal epicardium, descends to the apex (® = 71/2), then ascends and ends on the basal
endocardium. Images of shorter chords are located closer to the LV base and have shorter lengths.
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Figure 2. Horizontal chords on the sector P < 1, ® € [m7yg, 777y1]. Here, ®y and ®; are polar angles of
the right and left chord ends, respectively. Parameter 9 = 0.1 and y; = 0.95.
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Figure 3. Images of the sector chords in (1, ¢) coordinates. The horizontal axis is 7, and the vertical
axis is . Parameter g = 0.1 and y; = 0.95.

2.3. Calculation of the fibre direction in points of the LV model

In practical applications of cardiac anatomical models, it is necessary to compute a vector of
fibre direction in a point whose position is given in a Cartesian coordinate system. Let the point

coordinates be (x,y,z). One can easily convert them into cylindrical coordinates (p, ¢, z). The vector
of fibre direction can be found using the following algorithm:

1. Use formula (5) to find the special coordinates v and ¢ of the point numerically. This problem
can be reduced to solving one algebraic equation with one unknown quantity -y on the segment
[0, 1]. We utilise the expression for §(+y, z) from formula (1) and substitute it into (5):

p =P (P(7,2),¢)(1 — 1) + p™ ($(7,2), ¢)7-

We solve this equation with respect to vy. Let the root be . Hence, the point’s special coordinate
1§ = arcsin ZZ_*hZV .

2. Differentiate (numerically or analytically) the function p(vy, ¢, ¢) with respect to all arguments
and obtain three partial derivatives p,, py, and py. We can find one derivative analytically:

py = P (, ) — o7 (9, ).

3. The LV model point is an image of a point on the sector P < 1, ® € [r1yg, 7y1]. This point, the
preimage, has polar coordinates P 20

=1-=5,® = my(y1 — Y0) + Yo and Cartesian coordinates
X =Pcos®d,Y =Psind.

4. The LV point 7, parameterised by ®, has Cartesian coordinates

(@) = p(v(@), Y(P(P)), ¢(7(P), Pmin, Pmax)) €08 P(7(P), Pmin, Pmax),
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y(®@) = p(v(®), p(P(P)), (7(P), Pmin, Pmax)) sin ¢(7(P), Pmin, Pmax),
2(®@) = p(v(®), p(P(®))),

where Pmin = ¢ — YPmax, P(P) = Y/ sin . B
5. The non-normalized vector @ = (wx, wy, wz) = é% of the fibre direction has components

sin ® T
wx = : max — + max ) - COSP) —cos¢ - py - — - cos D,
(T 29) (s —7a) " Ymax = (01 + Pgmax) - cos ) PPy
in ®
wy = s - (X¢pmax + (07 + PpPmax) - sing) —sing - py - T cos o,
2y — ) (711 —70) 2
hsin®siny T
wz = +(Z —hy)cosp - — - cos D.
2y — 7)(71 — 70) ( 7)cosy 2

2.4. Fitting the LV form

In the paper [1], a fitting of the more rigid model to a real canine heart dataset was done with
satisfactory results. Yet, fitting the dataset of a human heart into that model was less successful,
partially due to the limitations of the model’s parameters. In this study, the same dataset of the
human heart was used for the flexible model. The dataset is accessible online at

http://gforge.icm. jhu.edu/gf/project/dtmri_data_sets/docman/

The fitting procedure began with finding the LV axis Oz. Then, we sectioned the LV by N = 12
meridional half-planes ¢; = 27i/N,i = 0,1...N — 1, passing this axis, and we manually marked
points on the epi- and endocardium in each section. The mean numbers of points were 10 for the
sub-endocardium and 11 for the sub-epicardium. In total, taking into account the coincidence of two
apical points in all the sections, there were 227 points. After setting the points, we used periodic cubic
¢-splines and cubic ¢-splines.

3. Methods for model and experimental data comparison

In the work [1], the theoretical model and experimental data were compared along normals to
epicardial meridional sections as described in [4]. However, this method is not useful: normals do not
have to intersect the endocardium, and they may intersect each other, so the task of finding a normal
passing through a point may result in multiple solutions. In the present article, we use the special
coordinates to construct straight pinning lines that do not intersect each other and always intersect
the endocardium. These lines have a simple equation: ¢ = const, ¢ = const.

We will now describe the comparison procedure. To compare angles along such a pinning line,
one needs to specify a point A on the epicardium. Let its special coordinates be vy = 0, ¥ = ¢* and
¢ = ¢*. Let us consider a corresponding meridional section ¢ = ¢* of the model, semiplane I1. The
line lies in IT and intersects the endocardium at a point B, having coordinates 7 = 1, i = ¢* and
¢ = ¢*. On the segment AB, we set k unidistant points, including its ends, so that A = Aq, Ay, ...,
Ay = B. The position of a point A; on the segment AB is defined by the variable

, _ AB
i~ AB

(for the endocardium t = 0, for the epicardium t = 1). We have to draw an SS through every point
Ai(vi = (i—1)/(k—1),¢*,¢*). The problem of finding such an SS is reduced to solving the SS
equation (6) with respect to ¢min:

Pmin = 4)* — YiPmax-

Strictly speaking, there can be no points from the tomogram exactly on semiplane I1; therefore,
we selected points lying no further than A = 1 mm from the straight line AB and inside the dihedral
angle |p — ¢*| < Ap = 0.1 rad= 5.7°.
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Figure 4. Epicardial and endocardial surfaces of the model that was constructed based on DT-MRI
data. On the left, the epicardium is opaque. On the right, the epicardium is semi-transparent. Colour
shows z-coordinates.

Figure 5. A spiral surface (SS) with fibres on it. Two views are shown. The left of the figure depicts
a view from the top and side of the SS, while the right of the image provides a side view with the
mid-myocardial part on the left and the epicardial layer on the right. Colour shows z-coordinates.
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Streeter proposed specifying a fibre direction using a local coordinate system (u, v, w) and two
angles, ‘true fibre angle” « and ’helix angle” a; [4, p. 78] (see Fig. 6); these angles are sufficient for
specifying a fibre direction in a point. The axis u is a normal to the epicardium pointed away from the
LV; w is a meridian, i.e. an epicardial tangent lying in a meridional semiplane and pointed upwards;
v is a parallel, i.e. vector w x u. Angle & € [0,71/2] is between a fibre and the parallel, and angle
ay € [—7/2, /2] is between the fibre projection on the plane uv and the parallel.

Figure 6. The definition of the local coordinate system is shown on the left of the image. Oxyz is
the global Cartesian coordinate system. The blue axis is normal, u, to the epicardium. The red
axis is parallel tangent, v. The dark green axis is meridian tangent, w. The colourful surface is the
epicardium; the colour depends on altitude z. The curve inside is a model fibre and it does not lie on
the epicardium. The normal axis intersects the curve at a point. On the right, the definitions of the
true fibre angle « and the helix angle a; are shown. The thick, dashed line is a tangent to a myofibre
segment constructed at the origin of the coordinates. The dashed-and-dotted lines are projections of
the myofibre tangent.

We changed 'mormal’ in these definitions to ‘pinning line’ and compared the two angular
characteristics of fibre directions with the experimental data in two meridians (one meridian lies in
the LV free wall, another lies in the IVS) in upper, middle and lower parts of the LV wall.

4. Results of comparing the model with human heart data

The following parameter values, which are common for all meridians, were used: LV height
Z = 68 mm, LV wall thickness at the apex h = 8 mm, SS twisting angle ¢max = 377, endocardial fibre
parameter 9 = 0.13 and epicardial fibre parameter v; = 0.9.

4.1. Comparison along straight pinning lines

Graphs of the dependency of angles &, @1 on a point position on pinning lines are shown in
Figs. 7-12. We will now analyse the results obtained.

At the upper and middle LV areas (e.g., Figs. 7 and 8, A), one can see that the vertical axis does
not go through the centre of the horizontal LV sections, but it is situated closer to the IVS. The axis is
positioned there because it must go through the apical LV area, and the LV apex projection to its basal
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plane is not situated at the centre of the base. If one moves the axis to the base centre, then the apex
is far from the axis in one of the meridional sections; therefore, we cannot fit the LV wall shape using
the central position of the axis.

Let us consider the fibre slope angles in one of the LV free-wall meridians. In the upper LV part
(see Fig. 7), the true fibre angle a (panel C) in the model accurately reproduces the DT-MRI data.
Angle a descends from 75° on the endocardium to approximately 15° at the middle of the wall, then
it reaches 65° on the epicardium. The helix angle (panel D) in the model is also quite close to the
experimental data. The middle part of the free wall, which is determined by height (see Fig. 8), shows
an essentially large dispersion of the both angles’ values in the subendocardial zone (x < 0.2). These
angles” values are similar to those in the basal zone, so the model can reproduce them well. The
angles at the lower part of the LV free wall (see Fig. 9) are predicted by the model with slightly lesser
accuracy.

In the upper part of the IVS (see Fig. 10), the model behaves in a different way than the
experimental data. In the middle part of the IVS (see Fig. 11), the model reproduces the angles
reasonably accurately. Fig. 12 shows that the model simulates the angles in the interior part of the
myocardium better than in the exterior part.
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Figure 7. Fibre angles in the model and in the experimental data. The basal area () = 10°) of the LV
free wall is shown. A is a horizontal LV section. The points are myocardial points from a DT-MRI scan.
B is a meridional LV section. The solid (dashed) curve is the model epicardium (endocardium), and
the points are myocardial points from a DT-MRI scan. C and D show the angles « and «, respectively.
The X-axis displays the position of points in the wall depth; 0 corresponds to the endocardium, and
1 corresponds to the epicardium. The points show the experimental data, while the curves show the

model data.

If one considers the fibres in the radial direction, our model (like the model from [3]) imitates
the distinctive arrangement of fibres in the ventricular wall (see [3], Fig. 14). This arrangement was
called the “Japanese fan” by Streeter (see [4], Fig. 42, C).
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Figure 8. Fibre angles in the model and experimental data. The LV free wall in the middle area
(¢ = 25°) is shown. The conventional signs are the same as in Fig. 7.
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shown. The conventional signs are the same as in Fig. 7.
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shown. The conventional signs are the same as in Fig. 7.

4.2. 3D wverification

We compared the fibre directions of the tomography dataset and the model in all DT-MRI points
located inside the model LV wall, and we made a histogram of the results (Fig. 13). The mean angle
between the two directions is 21° and the median is 15°.

0 HHNN WN‘N‘ 000810008 8000t i

0 w20 30 40 o 60 10 80 90

Figure 13. Histogram of angles between fibres in experiment and model data. X-axis is the angle;
Y-axis is the number of points in the segments; the segment [0,90°] was divided into 100 segments of

equal length.

We can conclude that our model reproduces the fibre directions adequately.
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5. Constructing a model based on sonography data

The proposed model can be constructed based on sonography data. We made one such
measurement using data from two- and four-chamber views of one patient’s heart. In Fig. 14,
we show a comparison of two models: the old model based on power functions and the present
spline-based one. The model was made using 44 marked points, from which 22 were endocardial
and 22 were epicardial. Since the right part of the LV wall has a complex curved shape, it cannot be
approximated accurately by the first model, but it can be well approximated by the second one. The
left part of the LV wall has a simpler shape, so both models can be fitted into it well.

Figure 14. A sonographical two-chamber view of a patient’s heart and two measurements: the first for
the power-function-based model (white lines) and the second for the spline-based model (blue lines
show the endocardium; red lines show the epicardium). The patient suffered from an old myocardial
infarction, and a scar is present. The marked points are shown as crosses. This view gives data for
two model meridians. The model axis and base are shown as grey lines. The image has been rotated
so that the model axis Oz is vertical.

6. Numerical method for solving reaction-diffusion systems on the model

Electrophysiological processes in the myocardium are usually simulated using reaction-diffusion
systems of partial differential equations. In the monodomain case, they are

i =div(Dgradu) + f(u,7), 9)
7 =3(u, 7). (10)
Here, u is the transmembrane potential, 7 is the vector of other phase variables (its components differ

in different models), the diffusion matrix D has elements D;; = D,6" + (Dy — Dy)w; (Aw;(7),1,] =
1,2,3, and w is the unit vector of fibre direction.
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The boundary condition of zero flux of the potential through the myocardial boundary looks like
D gradu =0, (11)

where # is a normal vector to the boundary. In the case of complex cardial shape, implementation of
the boundary condition is difficult, and it requires either a special method of Laplacian computation
near the boundary in Cartesian coordinates or a special coordinate system where the boundaries are
coordinate surfaces.

The LV base, epicardium and endocardium are just coordinate surfaces in the special coordinates
linked with this model. Indeed, the base has the equation ¢ = 0, while the equation y = const
describes the epicardium and endocardium. For the symmetrical LV model, we proposed an
algorithm [5] which has been used in a study of scroll wave dynamics [6]. For the previous
(power-functions based) non-symmetrical model [1], a modified algorithm has been described
elsewhere [7]. That algorithm can be used in the present case as well without any changes. However,
since it was not published in English, we depict its dissimilarity with the symmetrical-case method
briefly here.

6.1. Formulae for the Laplacian in the special coordinates

Let us denote the special coordinates (7, i, ¢) uniformly as (o, &1, ¢2) and consider matrices

J= (]z]) <§§l>
W= (W) = (g:;) ;o 5=(8)= (gg) ,

K omky _ [ 9%Ck k _ [k Pxy
T = (le) - <axi aX] ’ H" = (Hz]) agz ag]

where v = (vg, v1,v7) is the unit fibre direction vector. These matrices are linked by the relations

W=S§],
- ; Tu(OTHY ) mp

The Laplacian can be written as

div(D grad u) Zpk E)C +Zle 8§ 8§

where
pi = Datr T + (Dy = D2) - (W) te(S)) + OSJv) + V' T,

and gy, are elements of matrix Q:
Q=JoJ".
6.2. The no-flux boundary conditions in the special coordinates

The boundary condition
nDgradu =0, (12)

where n is the normal vector to the LV surface, can be written in the form

ou ou
nIDJ7— +nTDlP +n'DJ?— =0, 13
J 3 J 1p J 39 (13)
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where J7'¥/¢ are the vector-columns of derivatives of the special coordinates with respect to Cartesian
ones:
Y
] = Ty
Yz

and so on. We use the method of fictitious nodes and make an additional layer of nodes outside the
LV model. Values of the potential are found based on first-order derivatives with respect to the special
coordinates. This method allows us to calculate the Laplacian in all non-fictitious nodes, be it points
on the LV boundary or in its depth, on a consistent basis.

For the endo- and epicardium, equation (13) has to be solved for %. Then, we find the potential
at the fictitious node behind the endocardium (in the LV cavity) or the epicardium, respectively.

For the LV base, we transform equation (12) to form

298 | du _
E(E) o

k

and express %:
ou (D*x + D?'yy + D21:) g4 + (D¢ + D* ¢ + D?¢:) 54

o D2y, + D21y, + D2y,

The required derivatives can be found numerically. The fictitious node is located above the LV base.

6.3. The method to rarefy the computation mesh

Let us consider a mesh node with indices i, j, k of special coordinates -, ¢, ¢. In the case of
the symmetric LV model, we propose that its y- and y-neighbours have indices i 1, j £1. Its
¢-neighbours have indices k + Q[j], where Q is an array of natural numbers, and the differences are
found so that the Cartesian distances between nodes are within some given limits. In the case of the
non-symmetric LV model, we have to introduce six arrays instead of one, ng{r, where var € {7, ¢, ¢},
dir € {+1,—1}. The meaning of Q%" is that the index of y-neighbour of the node in direction dir
is i 4 dir - Q‘ff’. The index of -neighbour in direction dir is j + dir - Q‘Jfr. The index of ¢-neighbour
in direction dir is k + dir - Qgi’. The values of Q have to be found once, at the initialization stage. If
for a node (i, j, k) at least one of Q%" [i][j][k] cannot be found, this node is marked ’out-of-mesh’. We
compute the potential in this node not by a finite difference method but by interpolation, using the
node’s closest ‘in-mesh’ neighbours.

The flowchart in Fig. 15 depicts all the steps of construction and the use of the model in
electrophysiological simulations.

7. An example of the spline-based model’s practical usage in electrophysiological simulations

The model was used to study the dynamics of scroll waves of electrical excitation. Such waves
are solutions of classical reaction-diffusion systems, and they correspond to dangerous arrhythmias,
such as paroxysmal ventricular tachycardia and ventricular fibrillation. Our simulation was based
on the Aliev—-Panfilov model [8] of electrical excitation in the myocardium and the aforementioned
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Figure 15. Flowchart displaying the steps for the construction and use of the spline-based LV model.
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DT-MRI dataset and anatomical model (see Sections 2.4 and 4). The electrophysiological model is
dimensionless and has the following form:

%{ =div(Dgradu) — ku(u —a)(u —1) — uv,
% =e(u,v)(—v—ku(u—a—1)), (14)
p1o

e(u,v) =€+

u—i—#z'

where u is the transmembrane potential, v is the conductivity for the K current in the membrane, D »
are diffusion coefficients along and across fibres, and k, a, €¢, y1, yi2 are cell model parameters. These
parameters had the values D; = 7.12 mm?/ms, Dy = D1/9,k = 8,a = 0.1, ¢, = 0.01, pup = 0.12,
#2 = 0.3. A boundary condition provided zero flux through the LV boundary. Initial conditions were
u =1, v = 0 (initial stimulation) at y < 0.4 -71/2,0 < ¢ < 271/12; u = 0, v = k (initial temporary
block of propagation) at < 0.4-71/2,27t/12 < ¢ <27 /6;and u = 0, v = 0 (resting state) elsewhere.

We used the spatial mesh size dr = 0.5 mm; the time step dt = 0.01 ms; and the dimension
coefficients 5.4 ms, as the model time unit, and 6.2 mm, as the model length unit, based on the period
and wavelength of a spiral wave simulated on a flat isotropic surface. The duration of the simulation
was 10 sec.

The results we obtained are shown in Fig. 16, 17. From these results, we can see that the solitary
filament drifted towards the base (¢ = 0), and then several filaments appeared. The number of
filaments slowly increased from 1 to 9 and then decreased to 5-6. This observation means that a
tachycardia paroxysm transformed into a fibrillation.

Latitude psi, rad
o
-1
=)
|

Time, sec
_ 628 ——
- L]
S AT
= Oy, -
2 314
E ’
@
(=]
g
3

Time, sec

Figure 16. The special coordinates ¢ and ¢ of the scroll wave filaments.

8. Discussion

This section analyses the algorithm, compares it with other models and techniques, examines its
methods of verification, and concerns the usage and further development of the constructed model.

8.1. Advantages and disadvantages of the proposed model

The model adequately reproduces the fibre angles in the LV free wall and in the middle zone of
the IVS of the human heart. Nevertheless, the data agreement in the apical zone of the IVS is only
qualitative; in the IVS upper part of the human heart, the model yields results that differ from the
experimental data.
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Figure 17. The number of filaments (x10; blue circles) and their lengths (red dots).

Our model has the following merits:

It has relatively few parameters for shape, fibres and sheets.

The LV apex is smooth thanks to the special choice of function z. This is a useful feature for
integration methods sensitive to the smoothness of the boundary.

It uses only simple 1-variable splines, and no 2- or 3-parametric splines are required.

The fitting of shape and fibre directions are independent tasks in this model.

It is flexible enough to fit not only normal but pathological LVs.

It yields not only fibres but also sheets.

Limitations of the model include the following;:

e Similar to our previous models, its base is flat, which is not the case in real mammal anatomy.
e The fibres are not geodesic lines in the model sheets. It is difficult to determine if this is a

disadvantage of the fibres, the sheets or both.
e Model fibres end at the base. However, this demerit can be amended by combining this model

with the toroids-based one described in [9].
o Itis unclear whether the model is generalisable for both ventricles.

8.2. The present model compared with other qualitative models

The ventrucilar myocardium’s structure and its qualitative description have been explored for
several centuries. Reviews of experimental findings and theoretical conceptions can be found, for
example, in [10,11] and other reviews in the Supplementary Volume [12]. The present model is
conceptually close to Krehl’s nested toroids to the extent that the LV myocardium, except the papillary
muscles, is filled by nonoverlapping surfaces, and each surface is filled by nonoverlapping curves.
The distinctive feature of the proposed model is the spiral shape of the surfaces. Whether the SSs are
close enough to real heart sheets is a topic for future research.

In [4], Streeter proposed the geodesic principle of winding fibres on the sheets. This principle
holds in the toroidal model but not in the present one. However, if we keep the fibres only, the
surfaces may be adjusted to them. This interesting problem remains for future research: How should
we draw a set of nonoverlapping surfaces on the given set of curves so that the curves are geodesic
on the surfaces?

Some qualitative models of the myocardium describe its structure on the levels of cells, myofibres
and myolaminae (see, for example, [13-15]); such models examine interconnetions and arrangement
of cardiomyocytes and other types of cardiac cells. However, the main task of our model is to
yield fibre and sheet normal directions in all points of the LV myocardium but not to represent the
amazingly complex micro- and macrostructure of the cardiac muscle. A union of our model with
a structural tissue-level model which includes Y-junctions of the cells, capillaries, fibrous tissue and
other elements would be of great practical value.
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A key feature of the proposed model is its numerical, quantitative nature, so it should be
compared with other quantitative models and data.

8.3. Comparison with experimental data and quantitative models

Some experimental techniques that can be used to verify our model have been mentioned in our
previous work [1]. They include DT-MRI (already used here) as well as micro-CT [16], histological
investigation [17] and quantitative polarized light microscopy [18].

Experimental data on the fibre orientation obtained as described above may be used for the
construction of anatomical computational models in different ways:

e as a discrete dataset in finite element models [19-21],
e or for the verification of rule-based models, i.e. the models formed on the basis of some
constitutive rule [22-25].

A comparison with a recent rule-based method, the Laplace-Dirichlet algorithm [24], and with
a wrapping-based myocardium model [26] was done in our pevious paper [1]. The idea of using
splines to fit cardiac imaging data is not new. An example of such LV shape model, constructed with
B-splines, together with a review of spline-based models can be found in [27]. A common weak point
of many such models, however, is a lack of computing fibre direction field.

A quantitative comparison with a model from [24] can be made by measuring the mean
difference angle between the experimental and model data. Bayer et al. in [24] report that their
result is 23° £ 20°. Our result is 21° £ 18°, which is comparable with their achievement.

Our model fits the shape of the LV and has only three parameters (Yo, Y1, $max) to adapt fibre
directions. Fibre directions can also be fitted through widely used fitting functions with many more
parameters as it was done in [28]. In that work, fibre direction field in mice was approximated in
spheroidal coordinates by a product of two algebraic and one trigonometric polynomials. A certain
advantage of that approach is its flexibility. The reported root-mean-square error was about 2.3-10°.
Yet, that method usually requires about 10 parameters for each algebraic and 1040 for trigonometric
polynomials, whereas our technique uses only 3 parameters. Also, the parameters in [28] have
unclear geometrical or physical meaning, unlike ours. Moreover, the numbers of those parameters
for different hearts vary, so the coefficients cannot be averaged to obtain recommended species-level
parameter sets. We hope that our parameters can be averaged or fitted on the species level or at
least for the norm and pathologies of particular species. This will allow researchers to construct fibre
direction fields based on the shape of patients” hearts without DT-MRI data.

8.4. Further development and usage of the model

The model does not include the uppermost part of the ventricular myocardium, the basal ring,
where myofibres form torus-like shapes [29, Fig. 14]. Moreover, some of the data available on the
apical region show that myofibres there make toroidal layers, similar to basal ones [29, Fig. 6].

The spline apparatus enables researchers to use this model in cases of complex wall geometry,
such as in patients with old myocardial infarctions, and other situations where the wall has locuses
of thickening and thinning.

The analytical description of cardiac geometry has been used in developing a new numerical
method for the study of the electrophysiological activity of the LV. The model can also be utilised to
generate different anisotropical properties of the heart, to alter the LV shape (by changing the model
parameters) and to study their influence on cardiac electrical and mechanical functions.
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Abbreviations

The following abbreviations are used in this manuscript:

CT: computed tomography

DT-MRI: diffusion tensor magnetic resonance imaging
DTTI: diffuse tensor imaging

IVS: interventricular septum

LV: left ventricle

RV: right ventricle

SS: spiral surface
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