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Abstract: We introduce the Symplectic Structure of Information Geometry based on Souriau’s Lie 
Group Thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances 
through co-adjoint action of a group on its moment space, defining physical observables like 
energy, heat, and moment as pure geometrical objects. Using Geometric (Planck) Temperature of 
Souriau model and Symplectic cocycle notion, the Fisher metric is identified as a Souriau 
Geometric Heat Capacity. Souriau model is based on affine representation of Lie Group and Lie 
algebra that we compare with Koszul works on G/K homogeneous space and bijective 
correspondence between the set of G-invariant flat connections on G/K and the set of affine 
representations of the Lie algebra of G. In the framework of Lie Group Thermodynamics, an 
Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new 
variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau 
integral. The Souriau-Fisher metric is linked to KKS (Kostant-Kirillov-Souriau) 2-form that 
associates a canonical homogeneous symplectic manifold to the co-adjoint orbits. We apply this 
model in the framework of Information Geometry for the action of an affine Group for exponentiel 
families, and provide some illustrations of use cases for multivariate Gaussian densities. 
Information Geometry is presented in the context of seminal work of Fréchet and his 
Clairaut-Legendre equation. Souriau model of Statistical Physics is validated as compatible with 
Balian gauge model of thermodynamics. We recall the precursor work of Casalis on affine group 
invariance for natural exponential families. 

Keywords: Lie Group Thermodynamics; Moment map; Gibbs Density; Gibbs Equilibrium; Maximum 
Entropy; Information Geometry; Symplectic Geometry; Cartan-Poincaré Integral Invariant; Geometric 
Mechanics; Euler-Poincaré Equation; Fisher Metric; Gauge Theory; Affine Group 

 

“Lorsque le fait qu’on rencontre est en opposition avec une théorie régnante, il faut accepter le fait et 
abandonner la théorie, alors même que celle-ci, soutenue par de grands noms, est généralement 
adoptée » - Claude Bernard 

« Au départ, la théorie de la stabilité structurelle m'avait paru d'une telle ampleur et d'une telle 
généralité, qu'avec elle je pouvais espérer en quelque sorte remplacer la thermodynamique par la 
géométrie, géométriser en un certain sens la thermodynamique, éliminer des considérations 
thermodynamiques tous les aspects à caractère mesurable et stochastiques pour ne conserver que la 
caractérisation géométrique correspondante des attracteurs. » René Thom – 1982 

1. Preamble 

   This MDPI Entropy Special Issue on “Differential Geometrical Theory of Statistics" collects a 
limited number of selected invited and contributed talks presented during the conference GSI'15 on 
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"Geometric Science of Information" in October 2015. This paper is an extended version of [15] 
“Symplectic Structure of Information Geometry: Fisher Metric and Euler-Poincaré Equation of Souriau Lie 
Group Thermodynamics” published in GSI’15 Proceedings. At GSI’15 conference, a special session was 
organized on “Lie Groups and Geometric Mechanics/Thermodynamics”, dedicated to Jean-Marie Souriau 
works in Statistical Physics, organized by Gery de Saxcé and Frédéric Barbaresco , and an invited 
talk on “Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to 
Lagrangian and Hamiltonian systems” by Charles-Michel Marle, addressing “Souriau’s Thermodynamics 
of Lie groups”. In honor of Jean-Marie Souriau died in 2012 and Claude Vallée [166, 192, 193] in 2015, 
this Special Issue will publish three papers on Souriau’s Themrodynamics: C.M. Marle paper on 
“From Tools in Symplectic and Poisson Geometry to Souriau’s theories of Statistical Mechanics and 
Thermodynamics”, G. de Saxcé paper on “Link between Lie Group Statistical Mechanics and 
Thermodynamics of Continua” and this paper by F. Barbaresco. This paper proposes new 
developments, compared to paper [14] that has initiated relations between Souriau and Koszul 
models. 
   This paper, as papers of Marle and de Saxcé in this special issue, is intended to honor the memory 
of the French Physicist Jean-Marie souriau and to popularize his works, for the time being little 
known on Statistical Physics and Thermodynamics. Souriau is well known for his seminal and major 
contributions in Geometric Mechanics, the discipline he created in the 60's , from previous 
Lagrange’s works that he conceptualized in the framework of Symplectic Geometry, but very few 
people know or have exploited Souriau’s works contained in Chapter IV of his book [174] “Structure 
des systèmes dynamiques” published in 1970 and only translated in English in 1995 in book “Structure 
of Dynamical Systems: A Symplectic View of Physics”, in which he applied the formalism of Geometric 
Mechanics to Statistical Physics . The personal author contribution is to place the work of Souriau in 
the broader context of the emerging “Geometric Science of Information” (addressed in GSI’15 
conference), for which the author shows that the Souriau model of Statistical Physics is particularly 
well adapted to generalize “Information Geometry”, that  the author illustrates for  exponential 
densities familly and multivariate Gaussian densities . The author demonstrates that the Riemannian 
metric introduced by Souriau is a generalization of Fisher metric, used in “Information Geometry”, as 
being identified to the hessian of the logarithm of the generalized repartition function (Massieu 
characteristic function), for the case of densities on homogeneous Manifolds where a non-abelian 
group acts transively. For group of time translation, we recover the classical Thermodynamics and 
for the Euclidean space, we recover the classical Fisher Metric used in Statistics.  The author 
elaborates a new Euler-Poincaré equation for Souriau’s Thermodynamics, action on “geometric 
heat” variable Q (element of dual Lie algebra), and parameterized by “geometric temperature”  
(element of Lie algebra). The author integrates Souriau Thermodynamics in a variational model by 
defining an extended Cartan-Poincaré Integral Invariant defined by Souriau “Geometric 
characteristic function” (the logarithm of the generalized Souriau repartition function parameterized 
by geometric temperature). These results are illustrated for Multivariate gaussien densities, where 
the assoiated group is identified to compute Souriau moment map and reduced Euler-Poincaré 
equation of geodesics, but also the symplectic cocycle and Souriau-Fisher metric deduced from Lie 
Group Thermodynamics model. 
 
Main contributions of the author in this paper are the following: 
• Souriau Model of Lie Group Thermodynamics is presented with standard notations of Lie 

Group Theory in place of Souriau equations with less classical conventions (that have limited 
understanding of his work by his contemporaries). 

• We prove that Souriau Riemannian metric introduced with symplectic cocycle is a 
generalization of Fisher Metric, called Souriau-Fisher metric, that preserves the property to be 

defined as hessian of repartition function logarithm 
2
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2 log
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Φ∂−= Ωg as in classical 

Information Geometry. We then establish the equality of two terms, the first one given by 
Souriau definition from Lie group cocycle Θ  and parameterized by “geometric heat” Q 

Peer-reviewed version available at Entropy 2016, 18, 386; doi:10.3390/e18110386

http://dx.doi.org/10.20944/preprints201608.0078.v2
http://dx.doi.org/10.3390/e18110386


 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2016         doi:10.20944/preprints201608.0078.v2 

 

3 of 63 

(element of dual Lie algebra) and “geometric temperature” β (element of Lie algebra) and the 
second one, the hessian of the characteristic function ( ) )(log βψβ Ω−=Φ  with respect to the 
variable β :  
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This Souriau-Fisher metric is also equal to the inverse of the hessian of “geometric entropy” 

)(Qs  with respect to the variable Q: 
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Fisher metric that describes the covariance of the log-likelihood gradient, whereas 
( )( )[ ] )()( ξξξβ VarQQEI T =−−=  that describes the covariance of the observables.  

 
• This Souriau-Fisher metric is also demonstrated to be proportional to the first derivative of the 

heat 
ββ ∂

∂−= Q
g , and then comparable by analogy to geometric “specific heat” or “calorific 

Capacity”.   
• We prove that the Souriau-Metric is invariant with respect to the action of the group 

( ) )()( ββ IAdI g = , due to the fact that the characteristic function ( )βΦ  after the action of the 

group is linearly dependant to β . As the Fisher Metric is proportional to the hessian of the 
characteristic function, we have the following invariance: 
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• We have proposed, based on Souriau’s Lie group model and on analogy with mechanical 
variables, a variational principle of Thermodynamics deduced from Poincaré-Cartan  integral 
invariant. The Variational Principle holds on g the Lie alebra, for variations [ ]ηβηδβ ,+=  , 
where  )(tη  is an arbitrary path that vanishes at the endpoints, 0)()( == ba ηη :  

( ) 0.)(
1

0

=Φ
t

t

dttβδ                                                (3)                  

where the Poincaré-Cartan invariant  Φ=Φ
ba CC

dtdt ).().( ββ  is defined by )(βΦ , the Massieu 

characteristic function, with the 1-form ( ) ( ) dtsdtQdtsQdt ..,.,).( −=−=Φ= βββω   

• We have deduced an Euler-Poincaré Equations for Souriau model:  
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where Q  is the Souriau Geometric heat (element of dual Lie algebra) and β  is the Souriau 
Geometric Temperature (element of the Lie algebra). The 2nd equation is linked to the result of 
Souriau based on the moment map that a symplectic manifold is always a coadjoint orbit, affine 
of its group of Hamiltonian transformations (a symplectic manifold  homogeneous under the 
action of a Lie group, is isomorphic, up to a covering, to a coadjoint orbit; symplectic leaves are 
the orbits of the affine action that makes equivariant the moment map).  

• We have established that the affine representation of Lie group and Lie algebra by Jean-Marie 
Souriau is equivalent to Jean-Louis Koszul affine representation developed in the framework of 
hessian geometry of convex sharp cones. Both Souriau and Koszul have elaborated equations 
requested for Lie group and Lie algebra to ensure the existence of an affine representation. We 
have compared both approaches of Souriau and Koszul in a table. 
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• We have applied Souriau model for exponential famillies and especially for Multivariate 
Gaussian densities.  

• We have applied Souriau-Koszul model Gibbs density to compute the maximum entropy 
density for Symmetric Positive Definite Matrices, using the inner product 

( ) )(,   ,  , nSymTr T ∈∀= ξηξηξη  given by Cartan-Killing form: 
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• For the case of Multivariate Gaussian densities, we have considered )(nGA  a sub-group of 
affine group, that we defined by a (n+1)x(n+1) embeding in Matrix Lie group 

affG , and that acts 

for Multivariate gaussians laws by: 
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• For Multivariate Gaussian densities, as we have identified the acting sub-group of affine group 
M , we have also developed the computation of the associated Lie algebras 

Lη  and 
Rη , adjoint 

and coadjoint operators, and especially the Souriau “moment map” 
RΠ : 
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Using Souriau Theorem (geometrization of Noether theorem), we use the property that this 
moment map is constant (its componants are equal to Noether invariants), to reduced the 
Euler-Lagrange equation of geodesics between two multivariate gaussian densities to the 
Euler-Poincaré equation: 
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From these invariants, we have reduced the Euler-Lagrange equation: 
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in the new equation: 
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that we solve by “geodesic shooting” based on Eriksen equation of exponential map. 
• For the families of Multivariate Gaussian densities, that we have identified as homogeneous 

manifold with the associated sub-group of the affine group  
mR /
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elements of exponential families, that play the role of geometric heat Q  in Souriau Lie Group 
Thermodynamics, and  β the geometric (planck) temperature: 
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We have considered that these elements are homeomorph to the (n+1)x(n+1) matrix elements: 
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to compute the Souriau symplectic cocycle of the Lie group: 
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( ) ξβξθ ˆ)(ˆ)( *
MM AdAdM −=                                                                  (13) 

Where  the adjoint operator is equal to: 
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and the co-adjoint operator:  
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• Finally, we have computed the Souriau-Fisher metric [ ] [ ]( ) [ ]( )2121 ,,
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Multivariate Gaussian densities, given by: 
[ ] [ ]( ) [ ]( ) [ ]( ) [ ][ ]

( ) [ ] [ ][ ]2121

21212121

,,,ˆ,,                           

,,,ˆ,,
~

,,
~

,,,

ZZZZ

ZZZZZZZZg

βξβ

βξββββ ββ

+Θ=

+Θ=Θ=
                           (17)   

with element of Lie algebra given by 
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   The plan of the paper is the following. After this preamble in chapter 1, in chapter 2, we develop 
position of Souriau Symplectic Model of Statistical Physics in historical developments of 
Thermodynamics concepts. In chapter 3, we develop and revisit Lie Group Thermodynamics model 
of Jean-Marie Souriau in modern notations. In chapter 4, we make the link between Souriau 
Riemannian metric and Fisher Metric defined as a Geometric Heat Capacity of Lie Group 
Thermodynamics. In chapter 5, we elaborate Euler-Lagrange equations of Lie Group 
Thermodynamics and a Variational model based on Poincaré-Cartan Integral Invariant. In chapter 6, 
we explore Souriau Affine representation of Lie Group and Lie Algebra (including the notions of: 
Affine representations and cocycles, Souriau Moment Map and Cocycles, Equivariance of Souriau 
Moment Map, Action of Lie Group on a Symplectic Manifold and Dual spaces of finite-dimensional 
Lie Algebras) and we analyse the link and parallelisms with Koszul affine representation, developed 
in another context (comparison is synthetized in a table). In chapter 7, we illustrate Koszul and 
Souriau Lie Group models of Information Geometry for Multivariate Gaussian densities. In chapter 
8, after identifying the affine group acting for these densities, we compute the Souriau moment map 
to obtain the Euler-Poincaré equation, solved by geodesic shooting method. In chapter 9, Souriau 
Riemannian metric defined by cocycle for Multivariate Gaussian Densities is computed. We give a 
conclusion in chapter 10 with research prospects in the framework of affine Poisson Geometry [112] 
and Bismut Stochastic Mechanics. We have 3 appendices: Appendix A develops the 
Clairaut(-Legendre) Equation of Maurice Fréchet associated to “distinguished functions” as seminal 
equation of Information geometry; Appendix B is about Balian Gauge Model of Thermodynamics 
and its compliance with Souriau model; Appendix C is devoted to the link of Casalis-Letac works on 
Affine Group Invariance for Natural Exponential Families with Souriau works.    

2. Position of Souriau Symplectic Model of Statistical Physics in historical developments of 
Thermodynamics concepts 

   In this chapter, we will explain the emergence of thermodynamic concepts that give rise to the 
generalization of Souriau model of statistical physics. To understand Souriau’s theoretical model of 
heat, we have to consider first his work in Geometric Mechanics where he introduced the concept of 
“moment map” and “Symplectic Cohomology”. We will then introduce the concept of 
“characteristic function” developed by François Massieu, and generalized by Souriau on 
homogeneous Symplectic Manifolds. In his Statistical Physics model, Souriau has also generalized 
the notion of “heat capacity”, that was initially extended by Pierre Duhem as a key structure to 
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jointly consider Mechanics and Thermodynamics under the umbrella of the same theory. Pierre 
Duhem has also integrated, in the Corpus, the Massieu’s characteristic function as a 
Thermodynamics Potential.  Souriau idea to develop a covariant model of Gibbs density on 
homogeneous manifold was also influenced by the seminal work of Constantin Carathéodory that 
axiomatized thermodynamics in 1909 based on Carnot’s works. Souriau has adapted his Geometric 
Mechanical model for the Theory of Heat, where  Henri Poincaré didn’t succeed in his paper on 
attempts of mechanical explanation for the principles of thermodynamics.  
 
 Lagrange works on “Mécanique Analytique (Analytic Mechanics)” has been interpreted by 
Jean-Marie Souriau in the framework of differential geometry and has initiated a new discipline 
called after Souriau, “Mécanique Géométrique (Geometric Mechanics)” [1,2, 133]. Souriau has 
observed that the collection of motions of a dynamical system is a manifold with an antisymmetric 
flat tensor, that is a symplectic form where the structure contains all the pertinent information of the 
state of the system (positions, velocities, forces, etc.). Souriau said : “Ce que Lagrange a vu, que n'a pas 
vu Laplace, c’était la structure symplectique [What Lagrange saw , that has not seen Laplace was the symplectic 
structure]”. Using the symmetries of a symplectic manifold, Souriau introduced a mapping which he 
called the “moment map” [90, 109, 110], which takes its values in a space attached to the group of 
symmetries (in the dual space of its Lie algebra). He called Dynamical Groups every dimensional 
group of symplectomorphisms (an isomorphism between symplectic manifolds, a transformation of 
phase space that is volume-preserving), and introduced Galileo Group for Classical Mechanics and 
Poincaré Group for Relativistic Mechanics (both are sub-groups of Affine Group [80, [159]). For 
instance, Galileo Group could be represented in a matrix form by (with A rotation, b the boost, c 
space translation and e time translation): 
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   Souriau associated to this moment map, the notion of symplectic cohomology, linked to the fact 
that such a moment is defined up to an additive constant that brings into play an algebraic 
mechanism (called cohomology). Souriau proved that the moment map is a constant of the motion, 
and provided geometric generalization of Emmy Noether Invariant Theorem (invariants of E. 
Noether theorem are the components of the moment map). For instance, Souriau gave ontological 
definition of mass in classical mechanics as the measure of the symplectic cohomology of the action 
of the Galileo group (the mass is no longer an arbitrary variable but a characteristic of the space). 
This is no longer true for Poincaré Group in relativistic Mechanics, where the symplectic 
cohomology is null, explaining the lack of conservation of mass in relativity. All the details of 
classical mechanics thus appear as geometric necessities, as ontological elements. Souriau has also 
observed that the symplectic structure has the property to be able to be reconstructed from its 
symmetries alone, through a 2-form (called Kirillov-Kostant-Souriau form) defined on coadjoint 
orbits. Souriau said that the different versions of mechanical science can be classified by the 
geometry that each implies for space and time ; geometry is determined by the covariance of group 
theory. Thus Newtonian mechanics is covariant by the group of Galileo, the Relativity by the group 
of Poincaré; General Relativity by the "smooth" group (the group of diffeomorphisms of space-time). 
But Souriau added “However, there are some statements of mechanics whose covariance belongs to 
a fourth group rarely considered: the affine group, a group shown in the following diagram for 
inclusion. How is it possible that a unitary point of view (which would be necessarily a true 
Thermodynamics) , has not yet come to crown the picture? Mystery ...”. 
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Figure 1. Souriau Scheme about mysterious “Affine Group” of a true thermodynamics between 
Galileo Group of Classical Mechanics, Poincaré Group of Relativistic Mechanics and Smooth Group 
of General Relativity. 

   As soon as 1966, Souriau applied his theory to Statistical Mechanics, developed it in the chapter 
IV of his book “Structure of Dynamical systems”, and elaborated what he called a “Lie Group 
Thermodynamics” [172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184]. Using Lagrange’s 
viewpoint, in Souriau Statistical Mechanics, a statistical state is a probability measure on the 
manifold of motions (and no longer in phase space [122]). Souriau observed that Gibbs equilibrium 
is not covariant with respect to Dynamic groups of Physics. To solve this braking of symmetry, 
Souriau introduced a new “Geometric Theory of Heat” where the equilibrium states are indexed by 
a parameter β  with values in the Lie algebra of the group, generalizing the Gibbs equilibrium 
states, where β  plays the role of a geometric (Planck) temperature. The invariance with respect to 
the group, and the fact that the entropy s  is a convex function of this geometric temperature β , 
imposes very strict, universal conditions (e.g. there exist necessarily a critical temperature beyond 
which no equilibrium can exist).  Souriau observed that the group of time translations of the 
classical Thermodynamics [161, 162] is not a normal subgroup of the Galilei group, proving that if a 
dynamical system is conservative in an inertial reference frame, it need not be conservative in 
another. Based on this fact, Souriau generalized the formulation of the Gibbs principle to become 
compatible with Galileo relativity in Classical Mechanics and with Poincaré relativity in Relativistic 
Mechanics. The Maximum Entropy principle [95, 96, 97, 98, 99, 100, 101, 102, 151, 196] is preserved, 
and the Gibbs density is given by the density of Maximum Entropy (among the equilibrium states 
for which the average value of the energy takes a prescribed value, the Gibbs measures are those 
which have the largest entropy), but with a new principle “If a dynamical system is invariant under a Lie 
subgroup G’ of the Galileo group, then the natural equilibria of the system forms the Gibbs ensemble of the 
dynamical group G’ ”. The classical notion of Gibbs canonical ensemble is extended for an 
homogneous Symplectic Manifold on which a Lie Group (Dynamic group) has a symplectic action. 
When the group is not abelian (non-commutative group), the symmetry is broken, and new 
“cohomological” relations should be verified in Lie algebra of the group [81, 84, 85, 86].  A natural 
equilibrium state will thus be characterized by an element of the Lie algebra of the Lie group, 
determining the equilibrium temperature β .  The Entropy )(Qs , parametrized by Q  the 
geometric heat (mean of energy U , element of the dual Lie algebra) is defined by the Legendre 
transform [64, 149, 150, 154] of the Massieu Potential ( )βΦ  parametrized by β  ( ( )βΦ  is the minus 
logarithm of the partition function ( )βψ Ω ): 
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Souriau completed his “Geometric Heat Theory” by introducing a 2-form in the Lie algebra, that is a 
Riemannian metric tensor in the values of adjoint orbit of β , [ ]Z,β  with Z  an element of the Lie 
algebra. This metric is given for ( )Q,β : 

[ ] [ ]( ) ( ) [ ] [ ][ ]212121 ,,,,, ,,, ZZQZZZZg βββββ +Θ=                                              (21) 

Where Θ  is a cocycle of the Lie algebra, defined by θeT=Θ  with θ  a cocycle of the Lie group 
defined by ( ) QAdAdQM MM

*)()( −= βθ  . We have observed that this metric βg  is also given by the 

hessian of the Massieu Potential 
22

2 log

β
ψ

ββ ∂
∂

=
∂

Φ∂−= Ωg  as Fisher metric in classical Information 

Geometry theory [77], and this is a generalization of the Fisher Metric for homogeneous manifold. 

We call this new metric, the Souriau-Fisher metric. As 
ββ ∂

∂−= Q
g  , Souriau compared it by analogy 

with classical thermodynamics to a “Geometric Specific heat” (Geometric Calorific Capacity).                        

  The Potential theory of Thermodynamics and the introduction of “characteristic function” 
(previous function ( ) )(log βψβ Ω−=Φ  in Souriau theory) was initiated by François Jacques 
Dominique Massieu [137, 138, 139, 140]. Massieu was the son of Pierre François Marie Massieu and 
Thérèse Claire Castel. He married in 1862 with Mlle Morand and had 2 children. Graduated from 
Ecole Polytechnique in 1851 and Ecole des Mines de Paris in 1956, he has integrated « Corps des 
Mines ». He defended his PhD in 1861 on « Sur les intégrales algébriques des problèmes de mécanique » 
and on « Sur le mode de propagation des ondes planes et la surface de l'onde élémentaire dans les cristaux 
biréfringents à deux axes » with the jury composed of Lamé, Delaunay et Puiseux. In 1870, François 
Massieu presented his paper to the Academy of Sciences on “characteristic functions of the various 
fluids and the theory of vapors”. The design of the characteristic function is the finest scientific title of 
Mr. Massieu . A prominent judge , Joseph Bertrand , do not hesitate to declare , in a statement read to 
the Academy of Sciences July 25, 1870 , that "the introduction of this function in formulas that summarize 
all the possible consequences of the two fundamental theorems seems, for the theory, a similar service almost 
equivalent to the Clausius has made by linking the Carnot’s theorem to entropy”. The final manuscript was 
published by Massieu in 1873, « Exposé des principes fondamentaux de la théorie mécanique de la chaleur 
(Note destinée à servir d'introduction au Mémoire de l'auteur sur les fonctions caractéristiques des divers 
fluides et la théorie des vapeurs) ». 
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Figure 2. Extract from the 2nd paper of François Massieu to the French Academy of Sciences. 

   Massieu introduced the following potential )(βΦ , called “characteristic function”, that is the 

potential used by Souriau to generalize the theory: ( ) S
T

Q
QQs

T

−=ΦΦ−=
= 1

)(,
β

ββ . But in his 3rd 

paper, Massieu was influenced by M. Bertrand to replace the variable 
T

1=β (that he used in his two 

first papers) by T . We have then to wait 50 years more for the paper of Planck, who introduced 

again the good variable 
T

1=β  , and then generalized by Souriau, giving to Planck temperature β  

an ontological and geometric status as element of the Lie algebra of the dynamic group.  

 
Figure 3. Remark of Massieu in 1876 paper, where he explained why he took into account the “good 
advice” of M. Bertrand to replace variable 1/T, used in his initial paper of 1869, by the variable T. 

   This Lie Group Thermodynamics of Souriau is able to explain astronomical phenomenon 
(rotation of celestial bodies: the Earth and the starts rotating about themselves). The geometric 
temperature β  can be also interpreted as a space-time vector (generalization of the temperature 
vector of Planck), where the temperature vector and entropy flux are in duality unifing heat 
conduction and viscosity (equations of Fourier and Navier). In case of centrifuge system (e.g. used 
for enrichment of uranium), the Gibbs Equilibrium state [77, 78] are given by Souriau equations as 
the variation in concentration of the components of an inhomogeneous gas. Classical statistical 
mechanics corresponds to the dynamical group of time translations, for which we recover from 
Souriau equations the concepts and principles of dassical thermodynamics (temperature, energy, 
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heat, work, entropy, thermodynamic potentials) and of the kinetic theory of gases (pressure, specific 
heats, Maxwell's velocity distribution, …). 

  Souriau also studied Continuous Medium Thermodynamics, where the « Temperature Vector » is 
no longer constrained to be in Lie Algebra, but only contrained by phenomenologic equations (e.g. 
Navier equations, …). For Thermodynamic equilibrium, the « Temperature Vector » is then a Killing 
vector of Space-Time. For each point X, there is a « Temperature Vector » )(Xβ , such it is an 
infinitesimal conformal transform of the metric of the univers 

ijg . Conservation equations can be 

then deduced for components of Impulsion-Energy tensor ijT  and Entropy flux jS : 
0  and  0ˆ =∂=∂ j

i
ij

i ST . 

Equation Killing 0

 vectoreTemperatur ofcomponent  :

derivativecovariant  :.ˆ
   with  

2
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∂







=Γ−∂+∂
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g
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   Leon Brillouin made the link between Boltzmann Entropy and negentropie of Information theory 
[27,28,29,30], but before Jean-Marie Souriau, only Constantin Carathéodory and Pierre Duhem [65, 
66, 67, 68] initiated first theoretical works to generalize Thermodynamics .  

   After three years as lecturer at Lille university, Duhem published a paper in the official revue of 
the Ecole Normale Supérieure, in 1891, « On general equations of thermodynamics » [Sur les équations 
générales de la Thermodynamique] in Annales Scientifiques de l’Ecole Normale Supérieure. Duhem 
generalized the concept of “virtual work” under the action of “external actions” by taking into 
account both mechanical and thermal actions. In 1894, the design of a generalized Mechanics based 
on thermodynamics was further developed : ordinary mechanics had already become “a particular 
case of a more general science”. Duhem writes “We made Dynamics a special case of thermodynamics , a 
science that embraces common principles in all changes of state bodies , changes of places as well as changes in 
physical qualities » [Nous avons fait de la Dynamique un cas particulier de la Thermodynamique, une Science 
qui embrasse dans des principes communs tous les changements d’état des corps, aussi bien les changements de 
lieu que les changements de qualités physiques]. In the equations of his generalized 
Mechanics-Thermodynamics, some new terms had to be introduced, in order to account for the 
intrinsic viscosity and friction of the system. As observed by Stefano Bordoni, Duhem aimed at 
widening the scope of physics: the new physics could not confine itself to “local motion” but had to 
describe what Duhem qualified “motions of modification”. If Boltzmann had tried to proceed from 
“local motion” to attain the explanation of more complex transformations, Duhem was trying to 
proceed from general laws concerning general transformation in order to reach “local motion” as a 
simplified specific case. Four scientists were credited by Duhem with having carried out “the most 
important researches on that subject”: F. Massieu had managed to derive Thermodynamics from a 
“characteristic function and its partial derivatives”; J.W. Gibbs had shown that Massieu’s functions 
“could play the role of potentials in the determination of the states of equilibrium” in a given system; 
H. von Helmholtz had put forward “similar ideas”; von Oettingen had given “an exposition of 
Thermodynamics of remarkable generality” based on general duality concept in “Die 
thermodynamischen Beziehungen antithetisch entwickelt“ published at St. Petersburg in 1885.  
Duhem took into account a system whose elements had the same temperature and where the state of 
the system could be completely specified by giving its temperature and n other independent 
quantities. He then introduced some “external forces”, and held the system in equilibrium. A virtual 
work corresponded to such forces, and a set of n+1 equations corresponded to the condition of 
equilibrium of the physical system. From the thermodynamic point of view, every infinitesimal 
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transformation involving the generalized displacements had to obey to the first law, which could be 
expressed in terms of the (n+1) generalized Lagrangian parameters. The amount of heat could be 
written as a sum of (n+1) terms. The new alliance between Mechanics and Thermodynamics led to a 
sort of symmetry between thermal and mechanical quantities. The n+1 functions played the role of 
generalized thermal capacities, and the last term was nothing else but the ordinary thermal capacity. 
The knowledge of the “equilibrium equations of a system” allowed Duhem to compute the partial 
derivatives of the thermal capacity with regard to all the parameters which described the state of the 
system, apart from its derivative with regard to temperature. The thermal capacities were therefore 
known “except for an unspecified function of temperature”. 

   The axiomatic approach of thermodynamics was published in 1909 in Mathematische Annalen 
[37] under the title “Examination of the foundations of thermodynamics” [Untersuchungen überdie 
Grundlagen der Thermodynamik] by Constantin Carathéodory based on Carnot works [38]. 
Carathéodory introduced Entropy through a mathematical approach based on the geometric 
behavior of a certain class of partial differential equations called Pfaffians. Carathéodory’s 
investigations start by revisiting the first law and reformulating the second law of thermodynamics 
in the form of two axioms. The first axiom applies to a multiphase system change under adiabatic 
conditions (axiom of classical thermodynamics due to Clausius [57][61]). The second axiom assumes 
that in the neighborhood of any equilibrium state of a system (of any number of thermodynamic 
coordinates), there exist states that are inaccessible by reversible adiabatic processes. In the Book of 
Misha Gromov “Metric Structures for Riemannian and Non-Riemannian Spaces“, written and edited 
by Pierre Pansu and Jacques Lafontaine, a new metric is introduced called “Carnot-Carathéodory 
metric”. In one of his paper, Misha Gromov gives historical remarks “This result (which seems obvious 
by the modern standards) appears (in a more general form) in the 1909-paper by Carathéorody on formalization 
of the classical thermodynamics where horizontal curves roughly correspond to adiabatic processes. In fact, the 
above proof may be performed in the language of Carnot (cycles) and for this reason the metris distH were 
christened ‘Carnot-Carathéodory’ in Gromov-Lafontaine-Pansu book”. When I ask this question to Pierre 
Pansu, he gives me the answer that “In section 4, entitled Hilfsatz aus der Theorie des Pfaffschen 
Gleichungen (Lemma from the theory of Pfaffian equations) opens with a statement relating to the differential 
1-forms . Carathéodory says If a Pfaffian equationdx0 + X1 dx1 + X2 dx2 + … + Xn dxn = 0 is given, in which 
the Xi are finite, continuous, differentiable functions of the xi , and one knows that in any neighborhood of an 
arbitrary point P of the space of xi there is a point that one cannot reach along a curve that satisfies this equation 
then the expression must necessarily possess a multiplier that makes it into a complete differential.” In the 
introduction of his paper, Caracthéodory said “Finally, in order to be able to treat systems with arbitrarily 
many degrees of freedom from the outset, instead of the Carnot cycle that is almost always used, but is intuitive 
and easy to control only for systems with two degrees of freedom, one must employ a theorem from the theory of 
Pfaffian differential equations, for which a simple proof is given in the fourth section.”. 

   We have also to make reference to Henri Poincaré [121] that published the paper [155] “On 
attempts of mechanical explanation forthe principles of thermodynamics [Sur les tentatives 
d'explication mécanique des principes de la thermodynamique]” at the Comptes rendus de l'Académie des 
sciences in 1889, in which he tried to consolidate links between mechanics and thermomechanics 
principles. These elements were also developed in Poincaré’s Lecture of 1892 [156] on 
“Thermodynamique” in chapter XVII “ Reduction of thermodynamics principles to the general principles of 
mechanics [Réduction des principes de la thermodynamique aux principes généraux de la mécanique] ”. 
Poincaré writes in his book “It is otherwise with the second law of thermodynamics . Clausius was the first to 
attempt to bring it to the principles of mechanics , but not succeed satisfactorily . Helmholtz in his memoir on 
the principle of least action , developed a theory much more perfect than that of Clausius ; However, it can not 
account irreversible phenomena. [Il en est autrement du second principe de la Thermodynamique. Clausius, a le 
premier, tenté de le ramener aux principes de la Mécanique, mais sans y réussir d’une manière satisfaisante. 
Helmoltz dans son Mémoire sur le Principe de la moindre action, a développé une théorie beaucoup plus parfaite 
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que celle de Clausius ; cependant elle ne peut rendre compte des phénomènes irréversibles.]”. About Helmoltz 
work, Poincaré observes “It follows from these examples that the Helmholtz hypothesis is true in the case of 
body turning around an axis; So it seems applicable to vortex motions of molecules  [Il résulte de ces exemples 
que l’hypothèse d’Helmoltz est exacte dans le cas de corps tournant autour d’un axe; elle parait donc applicable 
aux mouvements tourbillonnaires des molecules.]”, but he adds in the following that Helmoltz model is 
also true in case of vibrating motions as molecular motions. But he finally observes that Helmoltz 
model cannot explain increasing of Entropy and concludes “All attempts of this nature must be 
abandoned ; the only ones that have any chance of success are those based on the intervention of statistical laws , 
for example, the kinetic theory of gases. This view , which I can not develop here, can be summed up in a 
somewhat vulgar way as follows: Suppose we want to place a grain of oats in the middle of a heap of wheat ; it 
will be easy ; Then suppose we wanted to find it and remove it; we can not achieve it. All irreversible phenomena, 
according to some physicists, would be built on this model [Toutes les tentatives de cette nature doivent donc 
être abandonnées; les seules qui aient quelque chance de success sont celles qui sont fondées sur l’intervention 
des lois statistiques comme, par exemple, la théorie cinétique des gaz. Ce point de vue, que je ne puis développer 
ici, peut se résumer d’une façon un peu vulgaire comme il suit : Supposons que nous voulions placer un grain 
d’avoine au milieu d’un tas de blé ; cela sera facile ; supposons que nous voulions ensuite l’y retrouver et l’en 
retirer ; nous ne pourrons y parvenir. Tous les phénomènes irréversibles, d’après certains physiciens, seraient 
construits sur ce modèle]”.In this Poincaré’s Lecture, Massieu has greatly influenced Poincaré to 
introduce Massieu Characteristic function in Probability [157]. As we have observed Poincaré has 
introduced characteristic function in Probability Lecture after his Lecture on Thermodynamics 
where he discovered in its 2nd edition, the Massieu’s characteristic function. We can read “ Since from 
the functions of Mr. Massieu one can deduce other functions of variables, all equations of thermodynamics can 
be written so as to only contain these functions and their derivatives ; it will thus result in some cases , a great 
simplification [Puisque des fonctions de M. Massieu on peut déduire les autres fonctions des variables, toutes 
les équations de la Thermodynamique pourront s'écrire de manière à ne plus renfermer que ces fonctions et 
leurs dérivées; il en résultera donc, dans certains cas, une grande simplification].”. He added “MM . Gibbs 
von Helmholtz , Duhem have used this function H = U - TS assuming that T and V are constant. Mr. von 
Helmotz has called it ‘free energy’ and also proposes to give him the name of ‘kinetic potential’; Duhem called it 
‘the thermodynamic potential at constant volume’ ; this is the most justified naming [MM. Gibbs, von 
Helmoltz, Duhem ont fait usage de cette function H=TS-U en y supposant T et V constants. M. von Helmotz l’a 
appellée énergie libre et a propose également de lui donner le nom de potential kinetique; M. Duhem la nomme 
potentiel thermodynamique à volume constant ; c’est la dénomination la plus justifiée]”. In 1906, Henri 
Poincaré also published a note [158] “Reflection on The kinetic theory of gases”[Réflexions sur la théorie 
cinétique des gaz], where he said that: “The kinetic theory of gases leaves awkward points for those who are 
accustomed to mathematical rigor … One of the points which embarrassed me most was the following one: it is 
a question of demonstrating that the entropy keeps decreasing, but the reasoning of Gibbs seems to suppose that 
having made vary the outside conditions we wait that the regime is established before making them vary again. 
Is this supposition essential, or in other words, we could arrive at opposite results to the principle of Carnot by 
making vary the outside conditions too fast so that the permanent regime has time to become established ?”.  

   Jean-Marie Souriau has elaborated a disruptive and innovative “théorie géométrique de la chaleur 
(Geometric Theory of Heat)”after the works of his predecessors: “théorie analytique de la chaleur 
(Analytic Theory of Heat)” by Jean Baptiste Joseph Fourier, “théorie mécanique de la chaleur (Mechanic 
Theory of Heat)” by François Clausius and François Massieu and  “théorie mathématique de la 
chaleur (Mathematic Theory of Heat)” by Siméon-Denis Poisson [111], as illustrated on this figure: 
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Figure 4. “théorie analytique de la chaleur (Analytic Theory of Heat)” by Jean Baptiste Joseph 
Fourier, “théorie mécanique de la chaleur (Mechanic Theory of Heat)” by François Clausius and  
“théorie mathématique de la chaleur (Mathematic Theory of Heat)” by Siméon-Denis Poisson. 

3. Revisited Souriau Symplectic Model of Statistical Physics 

In this chapter, we will revisite Souriau model of Thermodynamics but with modern notations, 
replacing personal Souriau conventions used in his book of 1970 by more classical ones. 

 
In 1970, Souriau introduced the concept of co-adjoint action of a group on its momentum space 

(or “moment map”: mapping induced by symplectic manifold symmetries), based on the orbit 
method works, that allows to define physical observables like energy, heat and momentum or 
moment as pure geometrical objects (the moment map takes its values in a space determined by the 
group of symmetries: the dual space of its Lie algebra). The moment(um) map is a constant of the 
motion and is associated to symplectic cohomology (assignment of algebraic invariants to a 
topological space that arises from the algebraic dualization of the homology construction).  Souriau 
introduced the moment map in 1965 in a lecture notes at Marseille university and published it in 
1966. Souriau gave the formal definition and its name based on its physical interpretation in 1967. 
Souriau then studied its properties of equivariance, and formulated the coadjoint orbit theorem in 
his book in 1970. But in its book, Souriau also observed in chapter IV that Gibbs equilibrium states 
are not covariant by dynamical groups (Galileo or Poincaré groups) and then he developed a 
covariant model that he called “Lie Group Thermodynamics”, where equilibriums are indexed by a 
“geometric (planck) temperature”, given by a vector β  that lies in the Lie algebra of the dynamical 
group. For Souriau, all the details of classical mechanics appear as geometric necessities (e.g., mass is 
the measure of the symplectic cohomology of the action of a Galileo group). Based on this new 
covariant model of thermodynamic Gibbs equilibrium, Souriau has formulated statistical mechanics 
and thermodynamics in the framework of Symplectic Geometry by use of symplectic moments and 
distribution-tensor concepts, giving a geometric status for temperature, heat and entropy.  

There is a controversy about the name “momentum map” or “moment map”. Smale referred to 
this map as the “angular momentum”, while Souriau used the French word “moment”. Cushman 
and Duistermaat have suggested that the proper English translation of Souriau's French word was 
“momentum” which fit better with standard usage in mechanics. On the other hand, Guillemin and 
Sternberg have validated the name given by Souriau and have used “moment” in English. In this 
paper, we will see that name “moment” given by Souriau was the most appropriate word. In his 
Chapter IV of his book, studying statistical mechanics, Souriau has geniously observed that 
moments of inertia in Mechanics are equivalent to moments in Probability in his new geometric 
model of Statistical Physics . We will see that in Souriau Lie Group Thermodynamics model, these 
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statistical moments will be given by the Energy and the Heat defined geometrically by Souriau, and 
will be associated with “moment map” in dual lie algebra. 

This work has been extended by Claude Vallée [192, 193] and Gery de Saxcé [163, 164, 165, 166]. 
More recently, M. Kapranov has also given a thermodynamical interpretation of the moment map 
for toric varieties [107] and Pavlov, Thermodynamics from the differential geometry standpoint 
[152].  

The conservation of the moment of a Hamiltonian action was called by Souriau the “Symplectic 
or Geometric Noether theorem”. Considering phases space as symplectic manifold, cotangent fiber of 
configuration space with canonical symplectic form, if Hamiltonian has Lie algebra, moment map is 
constant along system integral curves. Noether theorem is obtained by considering independently 
each component of moment map. 

 
In a first step to establish new foundations of Thermodynamics, Souriau has defined Gibbs 

canonical ensemble on symplectic manifold M  for a Lie group action on M. In classical statistical 
mechanics, a state is given by the solution of Liouville equation on the phase space, the partition 
function. As symplectic manifolds have a completely continuous measure, invariant by 
diffeomorphisms,  the Liouville measure λ, all statistical states will be the product of Liouville 
measure by the scalar function given by the generalized partition function )(,)( ξββ Ue −Φ defined by 
the energy  U  (defined in dual of Lie Algebra of this dynamical group) and the geometric 
temperature β , where Φ  is a normalizing constant such the mass of probability is equal to 1, 

 −−=Φ
M

U de λβ ξβ )(,log)(  [43] . Jean-Marie Souriau then generalizes the Gibbs equilibrium state to all 

symplectic manifolds that have a dynamical group. To ensure that all integrals, that will be defined, 
could converge, the canonical Gibbs ensemble is the largest open proper subset (in Lie algebra) 
where these integrals are convergent. This canonical Gibbs ensemble is convex. The derivative of Φ , 

β∂
Φ∂=Q (thermodynamic heat) is equal to the mean value of the energy U . The minus derivative of 

this generalized heatQ ,  
β∂

∂−= Q
K  is symmetric and positive (this is a geometric heat capacity). 

Entropy s  is then defined by Legendre transform of Φ , Φ−= Qs ,β . If this approach is applied 

for the group of time translation, this is the classical thermodynamic theory. But Souriau has 
observed that if we apply this theory for non-commutative group (Galileo or Poincaré groups), the 
symmetry has been broken. Classical Gibbs equilibrium states are no longer invariant by this group. 
This symmetry breaking provides new equations, discovered by Souriau. 

 
We can read in his paper this prophetical sentence “Peut-être cette thermodynamique des groups de 

Lie a-t-elle un intérêt mathématique [This Lie Group Thermodynamics could be also of first interest for 
Mathematics]”. He explains that for dynamic Galileo group with only one axe of rotation, this 
thermodynamic theory is the theory of centrifuge where the temperature vector dimension is equal 
to 2 (sub-group of invariance of size 2), used to make “uranium 235” and “ribonucleic acid”. The 
physical meaning of these 2 dimensions for vector-valued temperature are “thermic conduction” 
and “viscosity”. Souriau said that the model unifies “heat conduction” and “viscosity” (Fourier and 
Navier equations) in the same theory of irreversible process. Souriau has applied this theory in 
details for relativistic ideal gas with Poincaré group for dynamical group. 
 
Before introducing Souria Model of Lie Group Thermodynamics, we will first remind classical 
notation of Lie Group Theory to apply them for Lie Group Thermodynamic: 
• The coadjoint representation of G is the contragredient of the adjoint representation. It 

associates to each Gg ∈  the linear isomorphism )(* *gGLAdg ∈ , which satisfies, for each 
*g∈ξ and g∈X : 

)(,),( 11
* XAdXAd

gg −− = ξξ                                                               (23) 
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• The adjoint representation of the Lie algebra g  is the linear representation of g  into itself 
which associates, to each g∈X , the linear map g)(gladX ∈ . ad  Tangent application of  Ad   
at neutral element e   of G :   

[ ]YXYadGTYX

GTEndGTAdTad

Xe

eee

,)(,

                 )(:

=∈
→=


                                                     (24) 

• The coadjoint representation of the Lie algebra g  is the contragredient of the adjoint 
representation. It associates, to each g∈X , the linear map )(* *gglad X ∈ which satisfies, for each 

*g∈ξ and g∈X : 

)(,),(* YAdYad XX −− = ξξ                                                                 (25) 

We can illustrate for group of matrices for )(KGLG n=  with CRK or    = . 

)(KMGT ne = , 1)(    ),( −=∈∈ gXgXAdGgKMX gn
                                             (26) 

[ ]YXYXXYYAdTYadKMYX XeXn ,)()()(    )(, =−==∈                                         (27) 
Then, the curve from  )0(cIe d ==  tangent to )1(cX =  is given by )exp()( tXtc =                  
and transform by Ad : )exp()( tXAdt =γ    

YXXYtXYtX
dt

d
Yt

dt

d
YAdTYad

tt
XeX −====

=

−

= 0

1

0

)exp()exp()()()()( γ                           (28) 

 
For each temperature β , element of the Lie algebra g , Souriau has introduced a tensor βΘ~ , 

equal to the sum of the cocycle Θ~ and the Heat coboundary (with [.,.] Lie bracket): 
( ) ( ) [ ]21222121 ,)(  with    )(,,

~
,

~
11

ZZZadZadQZZZZ ZZ =+Θ=Θ β                                  (29) 

This tensor βΘ~  has the following properties: 

• YXYX ),(),(
~ Θ=Θ where the map Θ  is the one-cocycle of the Lie algebra gwith values in *g , 

with ( ))()( eXTX eθ=Θ  where θ  the one-cocycle of the Lie group G. ( )YX ,
~Θ  is constant on M 

and the map ( ) ℜ→×Θ gg:,
~

YX  is a skew-symmetric bilinear form, and is called the Symplectic 
Cocycle of Lie algebra  g  associated to the moment map J , with the following properties: 

[ ] { } { } MapMoment   the  andBracket Poisson  .,.  with  ,),(
~

, JJJJYX YXYX −=Θ                    (30) 

[ ] [ ] [ ] 0),,(
~

),,(
~

),,(
~ =Θ+Θ+Θ YXZXZYZYX                                                   (31) 

where
XJ linear application from g  to differential function on M : 

XJX

RMC

→
→ ∞ ),(g  

and the associated differentiable application J , called moment(um) map:  

  )(     

 ,),()(such that       :

xJx

XXxJxJMJ X


gg* ∈=→                                             (32) 

If instead of J  we take the following moment map: MxQxJxJ ∈+=   ,  )()('         
where *g∈Q is constant, the symplectic cocycle θ  is replaced by QAdQgg g

*)()(' −+= θθ  

where QAdQ g
*' −=−θθ  is one-coboundary of G with values in *g . We have also properties 

)()()( 12
*

21 1
ggAdgg g θθθ +=  and 0)( =eθ . 

• ββ Θ∈ ~
 Ker , such that ( )     ,   0,

~
g∈∀=Θ ββββ                                                   (33) 

• The following symmetric tensor βg , defined on all values of [ ],.(.) ββ =ad  is positive definite: 

[ ] [ ]( ) [ ]( )2121 ,,
~

,,, ZZZZg βββ ββ Θ=                                                            (34) 

[ ]( ) ( ) ( )( ).Im  ,   ,   ,
~

,, 212121 βββ β adZZZZZZg ∈∀∈∀Θ= g                                           (35) 

( ) ( )( ).Im,   ,   0, 2121 ββ adZZZZg ∈∀≥                                                               (36) 
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where the linear map g)(glad X ∈  is the adjoint representation of the Lie algebra g  defined by 
[ ]YXYadGTYX Xe ,)(), ==∈ g( , and the co-adjoint representation of the Lie algebra g  the 

linear map )(* *gglad X ∈ which satisfies, for each *g∈ξ and g∈YX , : )(,),(* YadYad XX −= ξξ  

These equations are universal, because they are not dependent of the symplectic manifold but only 
of the dynamical group G, the symplectic cocycle Θ , the temperature β  and the heat Q . Souriau 
called this model “Lie Groups Thermodynamics”.       

   We will give the main theorem of Souriau for this “Lie Group Thermodynamics”: 
 
Theorem 1 (Souriau Theorem of Lie Group Thermodynamics). Let Ω  be the largest open proper 
subset of g , Lie algebra of G, such that  −

M

U de λξβ )(,  and  −

M

U de λξ ξβ )(,.  are convergent integrals, this set 

Ω  is convex and is invariant under every transformation (.)gAd , where (.)gAdg   is the adjoint 

representation of G, such that
geg iTAd = with 1: −ghghig  . Let ** gg →×Ga :  a unique affine action a  

such that linear part is coadjoint representation of G , that is the contragradient of the adjoint representation. It 
associates to each Gg ∈  the linear isomorphism )(* *gGLAd g ∈ , satisfying, for each: 

*g∈ξ and g∈X : )(,),( 1
* XAdXAd

gg −= ξξ . 

Then, the fundamental equations of Lie Group Thermodynamics are given by the action of the group: 
• )(ββ gAd→                                                                      (37) 

• ( ) βθ ,1−−Φ→Φ g                                                               (38) 

• ss →                                                                             (39) 
• ( )gQAdQgaQ g θ+=→ )(),( *                                                       (40) 

 
Souriau equations of Lie Group Thermodynamics are summarized in the following figures: 

 
Figure 5. Global Souriau scheme of Lie Group Thermodynamics 
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Figure 6. broken of symmetric on geometric heat Q due to adjoint action of the Group on 

temperature β  as element of the Lie algebra 
 

For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the equivariance 
of the moment map with respect to an affine action of the group on the dual of its Lie algebra has 
been studied by C.M. Marle & P. Libermann [128] and Lichnerowics [129, 130]: 
 
Theorem 2 (Marle Theorem on cocycles). Let G  be a connected and simply connected Lie group, 

)(: EGLGR → be a linear representation of G  in a finite-dimensional vector space E, and )(: Eglr →g  be 
the associated linear representation of its Lie algebra g . For any one-cocycle E→Θ g: of the Lie algebra g  for 
the linear representation r, there exists a unique one-cocycle EG →:θ  of the Lie group G  for the linear 
representation R such that ( ))()( eXTX eθ=Θ , which has Θ  as associated Lie algebra one-cocycle. The Lie 
group one-cocycle θ  is a Lie group one-coboundary if and only if the Lie algebra one-cocycle Θ  is a Lie 
algebra one-coboundary. 

Let G  be a Lie group whose Lie algebra is g . The skew-symmetric bilinear form Θ~ on 
GTe=g  can be extended into a closed differential two-form on G , since the identity on Θ~  means 

that its exterior differential Θ~d  vanishes. In other words, Θ~  is a 2-cocycle for the restriction of the 
de Rham cohomology of G  to left invariant differential forms. In the framework of Lie Group 
Action on a Symplectic Manifold, equivariance of moment could be studied to prove that there is a 
unique action a(.,.) of the Lie group G  on the dual *g  of its Lie algebra for which the moment map 
J  is equivariant, that means for each Mx ∈ : 

( ) ( ) )()())(,()( * gxJAdxJgaxJ gg θ+==Φ                                                         (41) 

where MMG →×Φ :  is an action of Lie Group G on differentiable manifold M, the 
fundamental field associated to an element  X   of Lie algebra g  of group G is the vectors field  

MX  on M  : 

( )
0

)exp()(
=

−Φ=
t

tXM x
dt

d
xX                                                                        (42) 

with ( ) )()(
2121

xx gggg Φ=ΦΦ  and xxe =Φ )( . Φ  is hamiltonian on a Symplectic Manifold  M , if  

Φ  is symplectic and if for all  g∈X  , the fundamental field  
MX  is globally Hamiltonian. The 

cohomology class of the symplectic cocycle θ  only depends on the Hamiltonian action Φ , and not 
on J . 
 
   In Appendix B, we observe that Souriau Lie Group Thermodynamics is compatible with Balian 
Gauge theory of thermodynamics [8], that is obtained by symplectization in dimension 2n+2 of 
contact manifold in dimension 2n+1. All elements of the Souriau geometric temperature vector are 
multiply by the same gauge parameter.  
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   We conclude this chapter by this Bourbakiste citation of Jean-Marie Souriau “Il est évident que l’on 
ne peut définir de valeurs moyennes que sur des objets appartenant à un espace vectoriel (ou affine) ; donc – si 
bourbakiste que puisse sembler cette affirmation – que l’on n’observera et ne mesurera de valeurs moyennes que 
sur des grandeurs appartenant à un ensemble possédant physiquement une structure affine. Il est clair que cette 
structure est nécessairement unique – sinon les valeurs moyennes ne seraient pas bien définies. [It is obvious 
that one can only define average values on objects belonging to a vector (or affine) space ; Therefore - so 
Bourbakist may seem this assertion - that will be observed and measured average values as quantity belonging 
to a set having physically an affine structure . It is clear that this structure is necessarily unique - if not the 
average values would not be well defined.] » 

4. Souriau-Fisher Metric as Geometric Heat Capacity of Lie Group Thermodynamics 

  We prove that Souriau Riemannian metric introduced with symplectic cocycle is a generalization 
of Fisher Metric, that we call Souriau-Fisher metric, that preserves the property to be defined as 

hessian of repartition function logarithm 
2

2

2

2 log

β
ψ

ββ ∂
∂

=
∂

Φ∂−= Ωg as in classical Information 

Geometry. We will establish the equality of two terms, between Souriau definition based on Lie 
group cocycle Θ  and parameterized by “geometric heat” Q (element of dual Lie algebra) and 
“geometric temperature” β (element of Lie algebra) and hessian of characteristic function 

( ) )(log βψβ Ω−=Φ  with respect to the variable β :  

[ ] [ ]( ) ( ) [ ] [ ][ ]
2

2

212121

log
,,,,, ,,,

β
ψβββββ ∂

∂
=+Θ= ΩZZQZZZZg                                 (43)                  

If we differentiate this relation of Souriau theorem ( ) ( )gQAdAdQ gg θβ += )()( * , this relation occurs: 

[ ]( ) [ ]( ) [ ] [ ]( ),.,
~

),.(,,.,
~

,., 1.11 1
ββββ

β β ZAdQZZ
Q

Z Θ=+Θ=−
∂
∂                                       (44) 

[ ]( ) [ ]( ) [ ] [ ]( )212.2121 ,,
~

),(,,,
~

.,,
1

ZZZAdQZZZZ
Q

Z ββββ
β βΘ=+Θ=

∂
∂−         (45) 

[ ] [ ]( )21 ,,, ZZg
Q ββ
β β=

∂
∂−                 (46) 

   As the entropy is defined by Legendre transform of characteristiv function, this Souriau-Fisher 
metric is also equal to the inverse of the hessian of “geometric entropy” )(Qs  with respect to the 

variable Q: 
2

2 )(

Q

Qs

∂
∂  

   For the maximum Entropy density (Gibbs density), the following three terms coincide: 

2

2 log

β
ψ

∂
∂ Ω that describes the convexity of the log-likelihood function, 













∂
∂

−=
2

2 )(log
)(

β
ξ

β βp
EI the 

Fisher metric that describes the covariance of the log-likelihood gradient, whereas 
( )( )[ ] )()( ξξξβ VarQQEI T =−−=  that describes the covariance of the observables.  

 

We can also observe that the Fisher Metric
β

β
∂
∂−= Q

I )(  is exactly the Souriau Metric defined 

through Symplectic cocycle:  
[ ]( ) [ ] [ ]( )2121 ,,,,,

~
)( ZZgZZI ββββ ββ =Θ=                                          (47) 

 

The Fisher Metric 
ββ

ββ
∂
∂−=

∂
Φ∂−= Q)(

I
2

2

)(  has been considered by Souriau as  a generalization 

of “Heat Capacity”. Souriau called it K  the “Geometric Capacity”.  
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Figure 7. Fourier heat equation in seminal manuscript of Joseph Fourier 

 
 

For 
kT

1=β ,
T

Q
kT

T

kT

T

QQ
K

∂
∂=








∂
∂

∂
∂−=

∂
∂−=

−
2

1
)/1(

β
 linking the geometric capacity to calorific 

capacity, then Fisher metric can be introduced in Fourier heat equation: 

DC
T

Q
T

DCt

T
.  with  

.
=

∂
∂Δ=

∂
∂ κ  ( )[ ] 112

1

)(./ −−
−

Δ=
∂

∂
 βββκβ

FisherIk
t

                               (48) 

We can also observe that Q is related to the mean, and K to the variance of U: 
2

2 )().()(.)()var()( 







−==

∂
∂−== 

MM

dpUdpUU
Q

IK ωξξωξξ
β

β ββ
                                    (49) 

We observe that the entropy s  is unchanged, and Φ  is changed but with linear dependence to β ,  
with consequence that Fisher Souriau metric is invariant: 

( )[ ] ))(()( ββ QsAdQs g =   and   ( ) ( )( )
)(

,
)(

2

2

2

12

β
ββ

βθ
β I

g
AdI g =

∂
Φ∂−=

∂

−Φ∂
−=

−

                (50) 

We have observed that the concept of “heat capacity” is important in Souriau model given a 
geometric meaning to its definition. The notion of “heat capacity” has been generalized by Pierre 
Duhem in gis General equation of Thermodynamics. 

Souriau proposed to define a thermometer (θερμός) device principle that could measure this  
Geometric Temperature using “Relative Ideal Gas Thermometer” based on a theory of Dynamical 
Group Thermometry and has also recovered the (Geometric) Laplace barometric law 

5. Euler-Poincaré equations and Variational Principle of Souriau Lie Group Thermodynamics  

When a Lie algebra acts locally transitively on the configuration space of a Lagrangian 
mechanical system, Henri Poincaré proved that the Euler-Lagrange equations are equivalent to a 
new system of differential equations defined on the product of the configuration space with the Lie 
algebra. C.M. Marle has written the Euler-Poincaré equations [134], under an intrinsic form, without 
any reference to a particular system of local coordinates, proving that they can be conveniently 
expressed in terms of the Legendre and moment maps of the lift to the cotangent bundle of the Lie 
algebra action on the configuration space. The Lagrangian is a smooth real valued function L  
defined on the tangent bundle TM . To each parameterized continuous, piecewise smooth curve 

[ ] Mtt →10 ,:γ , defined on a closed interval [ ]10 ,tt , with values in M , one associates the value at γ  

of the action integral:  





=

1

0

)(
)(

t

t

dt
dt

td
LI

γγ                    (51) 

Peer-reviewed version available at Entropy 2016, 18, 386; doi:10.3390/e18110386

http://dx.doi.org/10.20944/preprints201608.0078.v2
http://dx.doi.org/10.3390/e18110386


 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2016         doi:10.20944/preprints201608.0078.v2 

 

20 of 63 

The partial differential of the function ℜ→×gML :  with respect to its second variable Ld2 , 
which plays an important part in the Euler-Poincaré equation, can be expressed in terms of the 
moment and Legendre maps:  2 ϕϕ  LtpLd *g

=  with )( 2 ϕϕ  LJLdpJ t == *g
 the moment 

map, *:* gg*
g

→×Mp the canonical projection on the second factor, MTTM *→:L the Legendre 

transform, with:  
)(),(  /  : xXXxTMM M=→× ϕϕ g  and ( ))(),()( / : * ξξπξϕϕ JMMT M

tt =×→ *g                (52) 
The Euler-Poincaré equation can therefore be written under the form: 

( )( ) ( ) ( ))(),(
)(

  with  )(),()(),( 1
*

)( tVt
dt

td
tVtLdJtVtJad

dt

d
tV γϕγγγϕ ==





 − L                      (53) 

With ( ) RMTHMTTMMTLH →→∈−= −− ***11 :  ,  :  ,    ,  )()(,)( LLL ξξξξξ                    (54) 

Following the remark made by Poincaré at the end of his note, the most interesting case is when 
the map RML →×g:  only depends on its second variable g∈X . The Euler-Poincaré equation 
becomes:  

( )( ) 0)(*
)( =





 − tVLdad

dt

d
tV

                                             (55) 

We can use analogy of structure when the convex Gibbs ensemble is homogeneous [185]. We 
can then apply Euler-Poincaré equation for Lie Group Thermodynamics. Considering Clairaut 
equation: ( ) ( ) ( ))(),(, 11 QQQQQs −− ΘΦ−Θ=Φ−= ββ              (56)                  

 with *g∈
∂
Φ∂=Θ=
β

β )(Q , g∈Θ= − )(1 Qβ , a Souriau-Euler-Poincaré equation can be 

elaborated for Souriau Lie Group Thermodynamics: 

Qad
dt

dQ *
β=                                                                                     (57) 

or     

( ) 0* =QAd
dt

d
g

                                                                                  (58)       

The first equation, Euler-Poincaré equation is a reduction of Euler-Lagrange equations using 
symmetries and especially the fact that a group is acting homogeneously on the Symplectic 
Manifold: 









∈
∂

Φ∂=∈
∂

∂=

Φ−=
= *gg

β
ββ

ββ
β )(

  , 
)(

)(,)(

   and   *

Q
Q

Qs

QQs

Qad
dt

dQ                    (59)                  

Back to Koszul model of Information Geometry, we can then deduce an equivalent of Euler-Poincaré 
equation for statistical models 









Ω∈
∂

Φ∂=Ω∈
∂

Φ∂=

Φ−=Φ
=

*

x

x
x

x

x
x

xxxx

xad
dt

dx
x )(

  , 
)(

)(,)(

   and   
*

**

***

**
*

            (60) 

                       
We can use this Euler-Poincaré equation to deduce an associated equation on Entropy: 

dt

d
QadQ

dt

d

dt

ds Φ−+= *,, βββ  that reduces to  

dt

d
Q

dt

d

dt

ds Φ−= ,
β                   (61) 

due to 0,, ,, ** ==−= ββξξ ββ adQQadXadXad VV
. 

With these new equation of thermodynamics Qad
dt

dQ *
β=  and ( ) 0* =QAd

dt

d
g

, we can observe that 

the new important notion is related to co-adjoint orbits, that are associated to a Symplectic manifold 
by Souriau or KKS 2-form. 
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We will then define the Poincaré-Cartan Integral Invariant for Lie Group Thermodynamics. 

Classically in mechanics, the Pfaffian form dtHdqp .. −=ω  is related to Poincaré-Cartan integral 
invariant [26]. P. Dedecker has observed, based on the relation: 

( ) ϖω LdtLdtLqLdqL qqq   ∂+=−∂−∂= ....  with dtqdq .−=ϖ                                      (62) 

that the property that among all forms ϖχ mod.dtL≡  the form dtHdqp .. −=ω  is the only one 
satisfying ϖχ mod0≡d , is a particular case of more general T. Lepage congruence.  

Analogies between Geometric Mechanics & Geometric Lie Group Thermodynamics, provides 
the following similarities of structures: 





↔
↔

Qp

q β    ,  








Φ−=↔−=
↔

Φ↔

β

β

,.

)()(

)()(

QsLqpH

QspH

qL




   and   










∂
Φ∂=↔

∂
∂=

∂
∂=↔

∂
∂==

β

β

Q
q

L
p

Q

s

p

H

dt

dq
q




                  (63) 

We can then consider a similar Poincaré-Cartan-Souriau Pfaffian form: 
( ) ( ) dtdtsQdtsdtQdtHdqp ).(.,..,.. βββωω Φ=−=−=↔−=                                   (64) 

This analogy provides an associated Poincaré-Cartan-Souriau Integral Invariant: 

 −=−
ba CC

dtHdqpdtHdqp ....   is transformed in    Φ=Φ
ba CC

dtdt ).().( ββ                         (65) 

We can then deduce an Euler-Poincaré-Souriau Variational Principle for Thermodynamics: 
The Variational Principle holds on g , for variations [ ]ηβηδβ ,+=  , where  )(tη  is an arbitrary path that 
vanishes at the endpoints, 0)()( == ba ηη :   

( ) 0.)(
1

0

=Φ
t

t

dttβδ                                                                               (66) 

6. Souriau Affine representation of Lie Group and Lie Algebra and comparison with Koszul 
Affine representation 

 This affine representation of Lie group/algebra used by Souriau has been intensively studied by 
C.M. Marle [128,132, 135, 136]. Souriau called the Mechanics deduced from this model, “Affine 
Mechanics”. We will explain Affine representations and associated notions as cocycles, Souriau 
Moment Map and Cocycles, Equivariance of Souriau Moment Map, Action of Lie Group on a 
Symplectic Manifold and Dual spaces of finite-dimensional Lie Algebras. We have observed that 
these tools have been developed in parallel by Jean-Louis Koszul. We will establish close links and 
synthetize the comparisons in a table of both approaches. 

6.1. Affine representations and cocycles 

   Souriau Model of Lie Group Thermodynamics is linked with Affine representation of Lie Group 
and Lie Algebra. We will give in the following main elements of this affine representation. 

Let G be a Lie group and E a finite-dimensional vector space. A map )(: EAffGA → always can 
be written as: 

ExGggxgRxgA ∈∈+= ,  with  )())(())(( θ                                                       (67) 
where the maps )(: EGLGR →  and EG →:θ  are determined by A. The map A is an affine 
representation of G in E.  

The map EG →:θ  is a one-cocycle of G with values in E, for the linear representation R; it 
means that θ  is a smooth map which satisfies, for all 

Ghg ∈, : )())()(()( ghgRgh θθθ +=                                                              (68) 
The linear representation R is called the linear part of the affine representation A, and θ  is called 
the one-cocycle of G  associated to the affine representation A. A one-coboundary of  G  with 
values in E, for the linear representation R, is a map EG →:θ  which can be expressed as: 
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GgccgRg ∈−=   ,  ))(()(θ  where c is a fixed element in E                                       (69) 
and then there exist an element Ec ∈  such that, for all Gg ∈ and Ex ∈ : 

ccxgRxgA −+= ))(())((                                                                        (70) 
Let g  be a Lie algebra and E a finite-dimensional vector space. A linear map )(: Eaffa →g  

always can be written as: 
ExXXxXrxXa ∈∈Θ+= ,  with  )())(())(( g                                                      (71) 

where the linear maps )(: Eglr →g  and E→Θ g: are determined by a. The map a is an affine 
representation of G in E . The linear map E→Θ g:  is a one-cocycle of G with values in E, for the 
linear representation r; it means that Θ  satisfies, for all g∈YX , :  

[ ]( ) ( ) ( ))()()()(, XYrYXrYX Θ−Θ=Θ                                                              (72)  
Θ  is called the one-cocycle of g  associated to the affine representation a. A one-coboundary of  
gwith values in E, for the linear representation r, is a linear map E→Θ g:  which can be expressed 
as: g∈=Θ XcXrX   ,  ))(()(  where c is a fixed element in E., and then there exist an element Ec ∈  
such that, for all g∈X and Ex ∈ : 

))(())(( cxXrxXa +=  
 
Let )(: EAffGA →  be an affine representation of a Lie group g  in a finite-dimensional vector 

space E, and g  be the Lie algebra of G . Let )(: EGLGR → and EG →:θ  be, respectively, the 
linear part and the associated cocycle of the affine representation A. Let )(: Eaffa →g  be the affine 
representation of the Lie algebra g  associated to the affine representation )(: EAffGA →  of the Lie 
group G . The linear part of a is the linear representation )(: Eglr →g associated to the linear 
representation )(: EGLGR → , and the associated cocycle E→Θ g:  is related to the one-cocycle  

EG →:θ  by: ( ) g∈=Θ XeXTX e   ,  )()( θ                                                        (73) 
This is deduced from: 

( ) ( )
)())(())((

)(exp()))((exp()()exp(

00

XTxXrxXa
dt

tXxtXRd

dt

xtXdA
e

tt

θθ +=
+=

==

                (74) 

Let G  be a connected and simply connected Lie group, )(: EGLGR → be a linear 
representation of G  in a finite-dimensional vector space E, and )(: Eglr →g be the associated 
linear representation of its Lie algebra g . For any one-cocycle E→Θ g: of the Lie algebra g  for the 
linear representation r, there exists a unique one-cocycle EG →:θ  of the Lie group G  for the 
linear representation R such that: 

( ))()( eXTX eθ=Θ                       (75) 
in other words, which has Θ as associated Lie algebra one-cocycle. The Lie group one-cocycle θ  is 
a Lie group one-coboundary if and only if the Lie algrebra one-cocycle Θ  is a Lie algebra 
one-coboundary. 

( ) ( )( ) ( ) ( ))()()(
)(exp()()()exp(

00

xgRXTLT
dt

tXgRgd

dt

tXgd
gg

tt

Θ=
+=

==

θθθθ                      (76) 

which prove that if it exists, the Lie group one-cocycle θ  such that Θ=θeT  is unique. 

6.2. Souriau Moment Map and Cocycles 

Souriau has introduced first the Moment map in his book. We will give the link with previous 
cocycles of affine representation. 
There exist XJ  linear application from g  to differential function on M : 

XJX

RMC

→
→ ∞ ),(g                                                                                  (77) 

We can then associate a differentiable application J , called moment(um) map for the Hamiltonian 
Lie group action Φ :   
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g

g*

∈=
→

XXxJxJxJx

MJ

X  ,),()(such that   )(     

:


                                                  (78) 

    Let J  moment map, for each gg×∈),( YX , we associate a smooth function ( ) ℜ→Θ MYX :,
~  

defined by:  

[ ] { }YXYX JJJYX ,),(
~

, −=Θ   with  { } BracketPoisson :.,.                                           (79) 

It is a Casimir of the Poisson algebra ),( ℜ∞ MC , that satisfy: 

[ ] [ ] [ ] 0),,(
~

),,(
~

),,(
~ =Θ+Θ+Θ YXZXZYZYX                                                      (80) 

When the Poisson Manifold is a connected symplectic manifold, the function ( )YX ,
~Θ  is 

constant on M and the map: 
( ) ℜ→×Θ gg:,

~
YX                      (81) 

is a skew-symmetric bilinear form, and is called the Symplectic Cocycle  of Lie algebra  g  
associated to the moment map J . 
Let *gg→Θ :  be the map such that for all: 

g∈YX , : ),(
~

),( YXYX Θ=Θ                   (82) 

The map Θ  is therefore the one-cocycle of the Lie algebra g  with values in *g for the coadjoint 
representation *

XadX   of g  associated to the affine action of g  on its dual: 
*gg ∈∈Θ+= −Θ ξξξ  ,     ,   )()())(( * XXadXa X
                                                    (83) 

Let G  be a Lie group whose Lie algebra is g . The skew-symmetric bilinear form Θ~ on 
GTe=g  can be extended into a closed differential two-form on G , since the identity on Θ~  means 

that its exterior differential Θ~d  vanishes. In other words, Θ~  is a 2-cocycle for the restriction of the 
de Rham cohomology of G  to left (or right) invariant differential forms. 

6.3. Equivariance of Souriau Moment Map 

There exist a unique affine action a  such that linear part is coadjoint representation:  

)(),(    

:
*

1 gAdga

Ga

g
θξξ +=

→×

−

** gg                     (84) 

with  XAdXAd gg 1
* ,,1 −=− ξξ  and that induce equivariance of  moment J . 

6.4. Action of Lie Group on a Symplectic Manifold 

   Let  MMG →×Φ :  be an action of Lie Group G on differentiable manifold M, the fundamental 
field associated to an element X  of Lie algebra g  of group G is the vectors field 

MX  on M: 

( )
0

)exp()(
=

−Φ=
t

tXM x
dt

d
xX With ( ) )()(

2121
xx gggg Φ=ΦΦ  and xxe =Φ )(         (85) 

Φ  is hamiltonian on a Symplectic Manifold  M , if  Φ  is symplectic and if for all  g∈X  , the 
fundamental field  

MX  is globally Hamiltonian. 
There is a unique action a of the Lie group G  on the dual *g  of its Lie algebra for which the 

moment map J  is equivariant, that means satisfies for each Mx ∈  
( ) ( ) )()())(,()( *

1 gxJAdxJgaxJ
gg θ+==Φ −               (86) 

*g→G:θ is called Cocycle associated to the differential  θeT   of 1-cocyle θ    associated to  J    
at neutral element e : 

[ ] { }YXYXe JJJYXYXT ,),(
~

),( , −=Θ=θ               (87) 

If  instead of  J  we take the moment map MxxJxJ ∈+=   ,  )()(' μ , where *g∈μ is constant, 
the symplectic cocycle θ  is replaced by:  

μμθθ *)()(' gAdgg −+=                  (88) 

where μμθθ *' gAd−=−  is one-coboundary of G  with values in *g . 
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Therefore the cohomology class of the symplectic cocycle θ  only depends on the Hamiltonian 
action Φ , not on the choice of its moment map J . We have also: 

[ ]YXYXYX ,,),(
~

),('
~ μ+Θ=Θ                    (89) 

This property is used by Jean-Marie Souriau to offer a very nice cohomological interpretation of 
the total mass of a classical (nonrelativistic) isolated mechanical system. He proves that the space of 
all possible motions of the system is a symplectic manifold on which the Galilean group acts by a 
Hamiltonian action. The dimension of the symplectic cohomology space of the Galilean group (the 
quotient of the space of symplectic one-cocycles by the space of symplectic one-coboundaries) is 
equal to 1. The cohomology class of the symplectic cocycle associated to a moment map of the action 
of the Galilean group on the space of motions of the system is interpreted as the total mass of the 
system. 

For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the equivariance 
of the moment map with respect to an affine action of the group on the dual of its Lie algebra has 
been proved by C.M. Marle. C.M. Marle has also developed the notion of symplectic cocycle and has 
proved  that given a Lie algebra symplectic cocycle, there exists on the associated connected and 
simply connected Lie group a unique corresponding Lie group symplectic cocycle. C.M. Marle has 
also proved that there exists a two-parameter family of deformations of these actions (the 
Hamiltonian actions of a Lie group on its cotangent bundle obtained by lifting the actions of the 
group on itself by translations) into a pair of mutually symplectically orthogonal Hamiltonian 
actions whose moment maps are equivariant with respect to an affine action involving any given Lie 
group symplectic cocycle. C.M. Marle has also explained why a reduction occurs for Euler-Poncaré 
equation mainly when the Hamiltonian can be expressed as the moment map composed with a 
smooth function defined on the dual of the Lie algebra; the Euler-Poincaré equation is then 
equivalent to the Hamilton equation written on the dual of the Lie algebra. 

6.5. Dual spaces of finite-dimensional Lie Algebras 

Dual spaces of finite-dimensional Lie algebras. Let g  be a finite-dimensional Lie algebra, and 
*g  its dual space. The Lie algebra g can be considered as the dual of *g , that means as the space of 

linear functions on *g , and the bracket of the Lie algebra g  is a composition law on this space of 
linear functions. This composition law can be extended to the space ),( ℜ∞ *gC  by setting: 
{ } [ ] ** gg ∈ℜ∈= ∞ xCgfxdgxdfxxgf   ,),( and    ,   )(),(,)(,           (90) 

If we apply this formula for Souriau Lie Group Thermodynamics, and for Entropy s(Q) 
depending of Geometric heat Q: 
{ } [ ] ** gg ∈ℜ∈= ∞ QCssQdsQdsQQss   ,),( and    ,   )(),(,)(, 212121

          (91) 

This bracket on ),( ℜ∞ *gC  defines a Poisson structure on *g , called its canonical Poisson 
structure. It implicitly appears in the works of Sophus Lie, and was rediscovered by Alexander 
Kirillov [108], Bertram Kostant and Jean-Marie Souriau. 

The above defined canonical Poisson structure on *g  can be modified by means of a symplectic 
cocycle Θ~ by defining the new bracket: 
{ } [ ] ( ))(),(

~
)(),(,)(, ~ xdgxdfxdgxdfxxgf Θ−=Θ              (92) 

with Θ~ a symplectic cocycle of the Lie algebra g  is a skew-symmetric bilinear map 
ℜ→×Θ gg:~ which satisfies: 

[ ]( ) [ ]( ) [ ]( ) 0,,
~

,,
~

,,
~ =Θ+Θ+Θ YXZXZYZYX               (93) 

This Poisson structure is called the modified canonical Poisson structure by means of the 
symplectic cocycle Θ~ . The symplectic leaves of *g equipped with this Poisson structure are the 
orbits of an affine action whose linear part is the coadjoint action, with an additional term 
determined by Θ~ . 
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6.6. Koszul Affine representation of Lie Group and Lie Algebra 

Previously, we have developed Souriau works on affine representation of Lie group used to 
elaborate the Lie Group Thermodynamics. We will study here an other approach of  affine 
representation of Lie group and Lie algebra introduced by Jean-Louis Koszul. We consolidate the 
link of Jean-Louis Koszul work with Souriau Model. This model uses an affine representations of a 
Lie group and of a Lie algebra in a finite-dimensional vector space, seen as special examples of 
actions. 

   Since the work of Henri Poincare and Elie Cartan, the theory of differential forms has become an 
essential instrument of modern differential geometry [39,40,41,42] used by Jean-Marie Souriau for 
identifying the space of motions as a symplectic manifold. But as said by Paulette Libermann, at the 
Henri Poincaré exception who wrote shortly before his death a report on the work of Elie Cartan 
during his application for the Sorbonne university, the French mathematicians did not see the 
importance of Cartan breakthroughs. Souriau followed Lectures of Elie Cartan in 1945. The 2nd 
student of Elie Cartan was Jean-Louis Koszul. Koszul introduced the concepts of affine spaces, affine 
transformations and affine representations. More especially, we are interested by Koszul definition 
for affine representations of Lie groups and Lie algebras. Koszul studied symmetric homogeneous 
spaces and defined relation between invariant flat affine connections to affine representations of Lie 
algebras, and characterized invariant Hessian metrics by affine representations of Lie algebras. 
Koszul provided correspondence between symmetric homogeneous spaces with invariant Hessian 
structures by using affine representations of Lie algebras, and proved that a simply connected 
symmetric homogeneous space with invariant Hessian structure is a direct product of a Euclidean 
space and a homogeneous self-dual regular convex cone. Let G be a connected Lie group and let G/K 
be a homogeneous space on which G acts effectively, Koszul gave a bijective correspondence 
between the set of G-invariant flat connections on G/K and the set of a certain class of affine 
representations of the Lie algebra of G. The main theorem of Koszul is that let G/K be a homogeneous 
space of a connected Lie group G and let g and k  be the Lie algebras of G and K, assuming that G/K 
is endowed with a G-invariant flat connection, then g  admits an affine representation (f,q) on the 
vector space E. Conversely, suppose that G is simply connected and that g  is endowed with an 
affine representation, then G/K admits a G-invariant flat connection.  

   Koszul has proved the following. Let Ω  be a convex domain in nR  containing no complete 
straight lines, and an associated convex cone ( ){ }+∈Ω∈×∈=Ω RxRRxxV n λλ ,/,)( . Then there exists 
an affine embedding: 

)(
1

: Ω∈







Ω∈ V

x
x                                                                            (94) 

If we consider η  the group of homomorphism of ),( RnA  into ),1( RnGL + given by: 

),1(
10

)()(
),( RnGL

ss
RnAs +∈








∈

qf
                                                           (95) 

and associated affine representation of Lie Algebra: 







00

qf                                     (96) 

with ),( RnA  the group of all affine transformations of nR . We have ( ) ( ))()( Ω⊂Ω VGGη  and the 
pair ( ),η  of the homomorphism ( ))()(: Ω→Ω VGGη  and the map )(: Ω→Ω V  is equivariant. 

  An Hessian structure (D,g) on a homogeneous space G/K is said to be an invariant Hessian 
structure if both D and g are G-invariant. A homogeneous space G/K with an invariant Hessian 
structure (D,g) is called a homogeneous Hessian manifold and is denoted by (G/K, D, g). Another 
result of Koszul is that an homogeneous self-dual regular convex cone is characterized as a simply 
connected symmetric homogeneous space admitting an invariant Hessian structure that is defined 
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by the positive definite second Koszul form (we have identified in a previous paper, that this second 
Koszul form is related to Fisher metric). In parallel, Vinberg [197, 198] gave a realization of a 
homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular 
convex cones admit canonical Hessian structures, improving some results of Pyateckii-Shapiro that 
studied realizations of homogeneous bounded domains by considering Siegel domains in 
connection with automorphic forms. Koszul defined a characteristic function Ωψ  of a regular 
convex cone Ω , and showed that ΩΩ = ψψ logDd  is a Hessian metric on Ω  invariant under affine 
automorphisms of Ω . If Ω  is a homogeneous self dual cone, then the gradient mapping is a 
symmetry with respect to the canonical Hessian metric, and is a symmetric homogeneous 
Riemannian manifold. More information on Koszul Hessian Geometry can be found in [32,33, 141, 
142, 143, 144, 145, 146, 147, 148]. 

 
We will now focus our attention to Koszul affine representation of Lie Group/Algebra. Let G  a 

connex Lie Group and E  a real or complex vector space of finite dimension, Koszul has introduced 
an affine representation of G  in E  such that: 

Gssaa

EE

∈∀
→

   
                                                                               (97) 

is an affine transformation. We set )(EA  the set of all affine transformations of a vector space E ,  
a Lie Group called affine transformation group of E .  The set )(EGL  of all regular linear 
transformations of E , a subgroup of )(EA . 
We define a linear representation from G  to )(EGL : 

Easosaass

EGLG

∈∀−=
→

   )(    

)(

f
f


 :                                                                   (98) 

and an application from G  to E : 

Gssoss

EG

∈∀=
→

   )(    q
q


 :                                                                         (99) 

Then we have Gts ∈∀ , : 
)()()()( ststs qqqf =+                                                                          (100) 

deduced from )()()()()()( ststotssosotssts qqqqqf ===+−=+ . 
On the contrary, if an application q  from G  to E and a linear representation f  from G  to 

)(EGL  verify previous equation, then we can define an affine representation of G  in E , written 
( )qf, : 

EaGssassaasff ∈∀∈∀+=Α ,   )()(:)( qf                                                    (101) 
The condition )()()()( ststs qqqf =+  is equivalent to requiring the following mapping to be an 
homomorphism: 

)()(: EAsffGsff ∈Α∈Α                                                                     (102) 
We write f  the linear representation of Lie algebra g  of G , defined by f  and q  the restriction 
to g  of the differential to q  ( f  and q  the differential of f  and q  respectively), Koszul has 
proved that: 

[ ]( )
EqEglf

YXYXqXqYfYqXf

gg
g

:   and   )(:with   

,   ,)()()()(

→
∈∀=−                                                    (103) 

where )(Egl  the set of all linear endomorphisms of E , the Lie algebra of )(EGL . 
Using the computation, 

( ) )()()()()(
)..( 1

0

1

YqssYfs
dt

sesd
YAdq

t

tY

s fqfq +== −

=

−
                                           (104) 

We can obtain: 

[ ]( ) ( ) )()()()()()()()(
)(

,
0

YqXfXqYfeeYqXf
dt

YAdd
YXq

t

etX +−+==
=

fq
q                         (105) 
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where e  is the unit element in G . Since )(ef  is the identity mapping and 0)( =eq , we have the 
equality: [ ]( ) ,)()()()( YXqXqYfYqXf =− . 
 
A pair ( ) f,q of a linear representation f  of a Lie algebra g  on E  and a linear mapping q  from 
g  to E  is an affine representation of g  on E , if it satisfies [ ]( ) ,)()()()( YXqXqYfYqXf =− . 
Conversely, if we assume that g  admits an affine representation ( ) f,q  on E , using an affine 
coordinate system { }nxx ,...,1  on E , we can express an affine mapping  YqvXfv )()( + by an 

)1()1( +×+ nn  matrix representation: 









=

00

)()(
)(

XqXf
Xaff                                                                        (106) 

where )(Xf  is a nn×  matrix and )(Xq  is a n  row vector.  
)(XaffX   is an injective Lie algebra homomorphism from g  in the Lie algebra of all 

)1()1( +×+ nn  matrices, ( )Rngl ,1+ : 

)(

),1(

XaffX

Rngl


+→g                                                                               (107) 

If we denote )(gg affaff = , we write 
affG  the linear Lie subgroup of ),1( RnGL +  generated by 

affg . 

An element of 
affGs ∈  is expressed by: 









=

10

)()(
)(

ss
sAff

qf                                                                           (108) 

Let 
affM  be the orbit of 

affG  through the origin o , then 
affaffaffaff KGGM /)( == q  where 

{ } ( )qq KersGsK affaff ==∈= 0)(/ . 

Example: 
Let Ω  be a convex domain in nR  containing no complete straight lines, we define a convex cone  

)(ΩV  in RRR nn ×=+1  by ( ){ }+∈Ω∈×∈=Ω RxRRxxV n λλ ,/,)( . Then there exists an affine 
embedding: 

)(
1

: Ω∈







Ω∈ V

x
x                                                                          (109) 

If we consider η  the group of homomorphism of ),( RnA  into ),1( RnGL + given by: 

),1(
10

)()(
),( RnGL

ss
RnAs +∈








∈

qf
                                                         (110) 

with ),( RnA  the group of all affine transformations of nR . We have ( ) ( ))()( Ω⊂Ω VGGη  and the 
pair ( ),η  of the homomorphism ( ))()(: Ω→Ω VGGη  and the map )(: Ω→Ω V  is equivariant: 

 )(ss η=    and  dssd )(η=                                                           (111) 

6.7. Comparison of Koszul and Souriau Affine representation of Lie Group and Lie Algebra 

We will compare in the following table Affine representation of Lie Groups and Lie Algebra from 
Souriau and Koszul approaches: 
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Table 1. Table comparing Souriau and Koszul affine representattion of Lie Group and Lie Algebra. 

 
SOURIAU MODEL OF REPRESENTATION OF LIE 

GROUP AND LIE ALGEBRA 
KOSZUL MODEL OF AFFINE 

REPRESENTATION OF LIE GROUP AND 
LIE ALGEBRA 

ExGggxgRxgA ∈∈+= ,  with  )())(())(( θ
)(: EGLGR →  and EG →:θ  

EaGssassaasff ∈∀∈∀+=Α ,   )()(:)( qf

Easosaass

EGLG

∈∀−=
→

   )(    

)(

f
f


:  

Gssoss

EG

∈∀=
→

   )(    q
q


:  

)())()(()( ghgRgh θθθ +=    with Ghg ∈,  
EG →:θ  is a one-cocycle of G with values in E, 

)()()()( stsst qqfq +=  

ExXXxXrxXa ∈∈Θ+= ,  with  )())(())(( g
The linear map E→Θ g:  is a one-cocycle of G with 
values in E: ( ) g∈=Θ XeXTX e   ,  )()( θ  

 YqvXfv )()( +
f  and q  the differential of f  and q  

respectively 
[ ]( ) ( ) ( ))()()()(, XYrYXrYX Θ−Θ=Θ  [ ]( )

EqEglf

YXXqYfYqXfYXq

gg
g

:   and   )(:with   

,   )()()()(,

→
∈∀−=  

- 








=

00

)()(
)(

XqXf
Xaff  

- 








=

10

)()(
)(

ss
sAff

qf  

 

6.8. Additional elements on Koszul Affine representation of Lie Group and Lie Algebra 

Let { }nxxx ,...,, 21  be a local coordinate system on M, the Christoffel’s symbols k
ijΓ  of the connection 

D  are defined by: 


=∂

∂ ∂
∂=

∂
∂ n

k
k

k
ijj

x
x

Γ
x

D
i 1

                                                                          (112) 

The torsion tensor T of D is given by: 
( ) [ ]YXXDYDYXT YX ,, −−=                                                                   (113) 

k
ji

k
ij

k
ij

n

k
k

k
ijji

T
x

T
xx

T Γ−Γ=
∂
∂=








∂
∂

∂
∂ 

=

   with   ,
1

                                                    (114) 

The curvature tensor R of D is given by:                       
( ) [ ]ZDZDDZDDZYXR YXXYYX ,, −−=                                                          (115) 

( ) −+
∂
∂

−
∂
∂

=
∂
∂=

∂
∂
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∂

∂
∂
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i
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m
kj

i
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ljl

i
kj

k

i
lji

jkli
i

i
jkljlk

ΓΓΓΓ
x

Γ

x

Γ
R

x
R

xxx
R    with   ,                       (116) 

The Ricci tensor Ric of D is given by: 
( ) ( ){ }ZYXRXTrZYRic ,, →=                                                                   (117) 

=







∂
∂

∂
∂=

i

i
kijkjjk R

xx
RicR ,                                                                   (118) 

 
In the following, we will consider a homogeneous space G/K endowed with a G-invariant flat 

connection D (homogeneous flat manifold) written (G/K,D).  Koszul has proved a bijective 
correspondence between the set of G-invariant flat connections on G/K and the set of affine 
representations of the Lie algebra of G. Let ( )KG,  be the pair of connected Lie group G  and its 
closed subgroup K . Let g  the Lie algebra of G  and k  be the Lie subalgebra of g  coresponding 
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to K . *X  is defined as the vector field on KGM /=  induced by the 1-parameter group of 
transformation tXe− . We denote *** XXX

DLA −= , with *X
L  the Lie derivative. 

Let V  be the tangent space of KG /  at { }Ko =  and let consider, the following values at o : 

oX
AXf

,*)( =                                                                                   (119) 
*)( oXXq =                                                                                     (120) 

where **
** XDYA

YX
−=  (where D  is a locally flat linear connection: its torsion and curvature 

tensors vanish identically), then: 
[ ]( ) [ ])(, Yff(X) X,Yf =                                                                         (121) 

[ ]( ) ,)()()()( YXqXqYfYqXf =−                                                               (122) 
where ( ) q=kker , and ),( qf  an affine representation of the Lie algebra g : 

  ∂
∂









+=∈∀

i
i

j

iij
ia

x
XqxXfXgX )()(   ,                                                     (123) 

The 1-parameter transformation group generated by 
aX  is an affine transformation group of V , 

with linear parts given by )(. Xfte−  and translation vector parts : 


∞

=

−−
1

1 )()(
!

)(

n

n
n

XqXf
n

t                                                   (124) 

These relations are proved by using: 
[ ]

[ ] [ ]
**

,

****

**

****

**

   with   
,

,
XDYA
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YXXAYA
YX

YXYX

YX −=






=

=−                                                (125) 

based on the property that the connection D is locally flat and there is local coordinate systems on M 
such that 0=

∂
∂

∂
∂ j
x

x
D

i

 with a vanishing torsion and curvature: 

( ) [ ]YXXDYDYXT YX ,0, =−=                                                              (126) 
( ) [ ]ZDZDDZDDZYXR YXXYYX ,0, =−=                                                      (127) 

deduced from the fact the a locally flat linear connection (vanishing of torsion and curvature). 
Let ω  be an invariant volume element on KG /  in an affine local coordinate system { }nxxx ,...,, 21  
in a neighborhood of o : 

ndxdx ∧∧Φ= .... 1ω                                                                            (128) 

We can write  ∂
∂=

i
i

i

x
X χ*  and develop the Lie derivative of the volume element ω : 

( ) n

j
j

j

j

nj

X

n

XX
dxdx

x
XdxdxLdxdxdxLL ∧∧










Φ







∂
∂+Φ=∧∧∧∧Φ+∧∧Φ=  ........ 1*11

***

χω     (129) 

Since the volume element ω  is invariant by G: 
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j
j

j

j
j

j

X x
X

x
XL

χχω log00 **
*

                                        (130) 

By using **
** XDYA

YX
−= , we have: 
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But as D is locally flat and *X  is an infinitesimal affine transformation with respect to D: 

00)(
2

* =
∂∂

∂
=

∂
∂ ji

k

X
x

xx
AD

i

χ                                                                     (132) 

The Koszul form and canonical bilinear form are given by: 

Φ=
∂

Φ∂= log
log

Ddx
xi

i
i

α                                                                     (133) 

Φ=
∂∂

Φ∂= log
log

,

2

Dddxdx
xx

D
ji

ji
ji

α                                                             (134) 
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0logloglog
,

2
*

*** =
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∂−=
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ji
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j
j

j

XXX
dx

xxx
DDXDLDLL

χχα                   (135) 

Then, gXL
X

∈∀=    0*α . 

By using   ∂
∂−=Φ

j
j

j

x
X

χ
log* , we can obtain: 

( )( )  ∂
∂−=ΦΦ=

=
j

j

j

XL x
DXDX

X

χα
α

loglog)( *

* 0

**                                                 (136) 

By using **
** XDYA

YX
−= , we can develop: 

i
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i

x
jX xx

XD
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j ∂

∂
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∂
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χ*
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As 
oX

AXf
,*)( =  and *)( oXXq = : 

( ) ( ) ( ) ( ))()()( 0
*
0,* XqXo

x
ATrXfTr

i
i

i

oX
ααχ ==

∂
∂−==                                             (138) 

If we use that g∈∀= XL
X

   0*α , then we obtain: 

( )( ) ( ) ( ) ( ) ( ) ( )*******
***** )()()(, XAXAXAXAXDYXD

YYYYY
αααααα =+−=−==                     (139) 

( ) ( ))()()(),( 00 XqYfYqXqD αα =                                                                (140) 
To synthetize the result proved by Jean-Louis Koszul, if 

oα  and 
oDα  are the values of α  and αD  

at o , then: 
( ) ( ) g∈∀= XXfTrXqo     )()(α                                                                  (141) 

( ) ( ) g∈∀== YXYqXfYqXqYqXqD
oo ,    )()()(),()(),( 0αα                                      (142) 

Jean-Louis Koszul has also proved that the inner product .,. on V, given by the Riemannian metric 

ijg , satisfies the following conditions: 

)()(),()(),()()()(),()(),()( ZqYfXqZqXqYfZqXfYqZqYqXf +=+                        (143) 

 
To make the link with Souriau model of thermodynamics, 1st Koszul form 

( ))(log XfTrD =Φ=α  will play the role of the geometric heat Q  and the 2nd koszul form 

o
YqXqDdD )(),(log =Φ=α  will be the equivalent of Souriau-Fisher metric, that is G-invariant.  

 
Koszul theory is wider and integrate “Information Geometry” in irs Corpus. Koszul has proved 
general results, like that on a complex homogeneous space , an invariant volume defines with the 
complex structure, an invariant Hermitian form. If this space is a bounded domain, then this 
hermitian form is positive definite and coincides with the classical Bergman metric of this domain. 
During his stay at Institute for Advanced Study in Princeton, Koszul has also demonstrated the 
reciprocal for a class of complex homogeneous spaces, defined by open orbits of complex affine 
transformation groups. Koszul and Vey [194, 195] have also developed extended results with the 
following theorem for connected hessian manifolds: 

Theorem (Koszul-Vey Theorem). Let M  be a connected hessian manifold with hessian metric g . 
Suppose that M admits a closed 1-form α  such that gD =α  and there exists a group G  of affine 
automorphisms of M  preserving α : 
• If GM /  is quasi-compact, then the universal covering manifold of M is affinely isomorphic to a convex 

domain Ω  of an affine space not containing any full straight line. 
• If GM /  is compact, then Ω  is a sharp convex cone. 

On this basis, Koszul has given a Lie Group construction of a homogeneous cone that has been 
developed and applied in Information Geometry by Shima and Boyom in the framework of Hessian 
Geometry. These results of Koszul are also fundamental in the framework of Souriau 
Thermodynamics. 
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7. Souriau Lie Group model and Koszul hessian geometry applied in the context of Information 
Geometry for Multivariate Gaussian densities 

We will enlighten Souriau’s Model with Koszul hessian geometry applied in  Information 
Geometry [113, 114, 115, 116, 117, 118, 119, 120], recently studied in [13,14,15]. where we have 
previously shown that Information Geometry could be founded on the notion of Koszul-Vinberg 
Characteristic function Ω∈∀= 

Ω

−
Ω xde(x) x   ,

*

, ξψ ξ  where Ω is a convex cone and Ω∗ the dual cone with 

respect to Cartan-Killing inner product ( ))(,, yxByx θ−=  invariant by automorphisms of Ω, with 

( ).,.B  the Killing form and (.)θ the Cartan involution.  We can develop the Koszul characteristic 
function:  

...,)(
2

,
2

* ++−=+ ΩΩ uuxKux(x)u)(x
λλψλψ                                                  (144) 

with 
2

2Φ
(x)  and  )(log)( ,   

Φ

dx

(x)d
Kxx

dx

(x)d
x* =−=Φ= Ωψ                                        (145) 

 
This characteristic function is at the cornerstone of modern concept of Information Geometry, 

defining Koszul density by Solution of Maximum Koszul-Shannon Entropy [127]: 

ξξξξξξξξξ ξξξξ
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e
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                              (147)               

This last relation is a Legendre transform between the logarithm of characteristic function and the 
Entropy: 

[ ]
[ ] )(,ˆ)(,)(

)(log).(log).()(

)(,)(log

*

ˆˆˆ

ˆ

ββξββξξ

ξξξξξ

ββξξ

ξξξ

ξ

Φ−=Φ−=

−=−=

Φ+−=


Ω

ES

pEdppS

p



                    (148)               

 
The inversion )ˆ(-1 ξΘ  is given by the Legendre transform based on the property that the 

Koszul-Shannon Entropy is given by the Legendre transform of minus the logarithm of the 
characteristic function: 

*, ˆ,  and     log)(  with   )(ˆ,)ˆ(
*

Ω∈∀Ω∈∀−=ΦΦ−= 
Ω

− ξξβξββξβξ βξ deS                             (149) 

We can observe the fundamental property that [ ] [ ]( ) *  ,  )( Ω∈= ξξξ ESSE , and also as observed 
by Maurice Fréchet that “distinguished functions” (densities with estimator reaching the 
Fréchet-Darmois bound) are solutions of the Alexis Clairaut Equation introduced by Clairaut in 
1734 [74]: 

[ ] { }Ω∈Θ∈∀ΘΦ−Θ= −− ββξξξξξ /)(ˆ   )ˆ(ˆ),ˆ()ˆ( 11S                                                (150) 

 

 
Figure 8. Clairaut-Legendre Transformation introduced by Maurice Fréchet in his 1943 paper 
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Details of Fréchet elaboration for this Clairaut(-Legendre) equation for “distinguished function” is 
given in Appendix A, and other elements are available on Fréchet’s papers [73, 74, 75, 76]. 
 

In this structure, the Fisher metric )(xI  makes appear naturally a Koszul hessian geometry 
[167, 168], if we observe that 

[ ]
[ ] )(,ˆ)(,)(
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                (151) 

Then we can recover the relation with Fisher metric: 
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with Crouzeix relation established in 1977 [59, 88], 
1

2

2

2

2

ˆ
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∂
∂=

∂
Φ∂

ξβ
S giving the dual metric, in 

dual space, where Entropy S  and (minus) logarithm of characteristic function, Φ  , are dual 
potential functions. 
The 1st Metric of Information Geometry [55, 56], the Fisher Metric is given by the hessian of the 
characteristic function logarithm: 
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[ ]   )(   with   )(2  IgddgdIdds ijij
ij

jiij
T

g ββββββ ===            (154) 

The 2nd  Metric of Information Geometry is given by hessian of the Shannon Entropy: 
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Both metrics will provide the same distance: 
  22

hg dsds =                   (157) 

From the Cartan Inner Product, we can generate logarithm of the Koszul Characteristic 
Function, and its Legendre Transform to define Koszul Entropy, Koszul Density and Koszul Metric, 
as explained in the following Figure: 
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Figure 9. Generation of Koszul elements from Cartan Inner Product. 

 
This Information geometry has been intensively studied for structured matrices [20,22,23,24,25, 34, 
35, 36, 53, 54, 58, 104, 105, 106, 131, 186] and in statistics [89] and is linked to seminal work of Siegel 
[169] on symmetric bounded domains. 

We can apply this Koszul geometry framework for cones of Symmetric Positive Definite 
Matrices. Let the inner product ( ) )(,   ,  , nSymTr T ∈∀= ξηξηξη  given by Cartan-Killing form, Ω  be 

the set of symmetric positive definite matrices is an open convex cone and is self-dual Ω=Ω* .  
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We will in the following illustrate Information Geometry for multivariate Gaussian density 

[201]: 
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If we develop: 
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We can write the density as a Gibbs density: 
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We can then rewrite density with canonical variables: 
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The 1st Potential function (Free Energy / logarithm of characteristic function) is given by: 

[ ] [ ] ( )[ ]πβψβξβψ βξ 2logdet)2(log
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We verify the relation between 1st Potential function and moment: 
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The 2nd  Potential function (Shannon Entropy) is given as Legendre Transform of 1st one: 
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This remark was made by Jean-Souriau in his book as soon as 1969. He has observed that if we 

take vector with tensor components 







⊗

=
zz

z
ξ , components of ξ̂  will provide moments of 1st and 

2nd order of the density of probability )(ˆ ξξp . He used this change of variable aHzHz 2/12/1' −+= , to 

compute the logarithm of the characteristic function )(βΦ : 
 

 
Figure 10. Introduction of Potential Function for Multivariate Gaussian law in Souriau Book 
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We can finally compute the metric from the matrix 
ijg : 

( )[ ]2112

2

1
dRRTrdmRdmddgds T

ij
jiij

−− +== θθ            (168) 

and from classical expression of the Euler-Lagrange equation:  
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That is explicitely given by: 
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                 (170) 

We cannot integrate this Euler-Lagrange Equation. We will see that Lie group Theory will provide 
new reduced equation, Euler-Poincaré equation, using Souriau theorem. 

We give reference to the book of M. Deza that give a survey about distance and metric space 
[63]. 
 
   The case of Natural Exponential families invariant by affine group has been studied by Casalis (in 
1999 paper and in her PhD thesis) [44, 45, 46, 47, 48, 49, 50] and  by Letac [124, 125, 126]. We give the 
details of Casalis development in Appendix 3. Barndorff-Nielsen has also studied transformation 
models for exponential families [16,17,18,19, 103].In this chapter, we will only consider the case of 
Multivariate Gaussian densities. 

8. Affine Group action for Multivariate Gaussian densities and Souriau moment map: 
computation of geodesics by geodesic computation 

   To more deeply understand Koszul and Souriau Lie Group models of Information Geometry, we 
will illustrate their tools for multivariate Gaussian densities.  
   Consider the General Linear Group )(nGL  consisting of the invertible nxn matrices, that is a 
topological group acting linearly on nR  by: 

( ) AxxA

RRnGL nn

,

)( →×                                                                               (171) 

The Group )(nGL  is a Lie group, is a subgroup of the General Affine Group )(nGA , composed of all 
pairs ( )υ,A  where )(nGLA∈  and nR∈υ , the group operation given by: 
( )( ) ( )121212211 ,,, υυυυ += AAAAA                (172) 

)(nGL  is an open subset of 2nR , and may be considered as n2-dimensional differential manifold with 
the same differentiable structure than 2nR . Multiplication and inversion are infinitely often 
differentiable mappings. Consider the vector space )(ngl  of real nn ×  matrices and the 
commutator product: 

( ) [ ]BABAABBA

nglnglngl

,,

)()()(

=−
→×


                (173) 

This is a Lie product making )(ngl  into a Lie Algebra. The exponential map is then the mapping 
defined by: 


∞

=

=

→

0 !
)exp(           

)()(:exp

n

n

n

A
AA

nGLngl


                                                                        (174) 

Restricting A  to have positive determinant one obtains the Positive General Affine Group )(nGA+  
that acts transitively on nR  by: 
( )( ) υυ +AxxA ,,                                                                              (175) 

In case of symmetric Positive definite matrices )(nSym+ , we can use the Cholesky decomposition: 
TLLR =                     (176) 
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where L  is a lower triangular matrix with real and positive diagonal entries, and TL  denotes the 
transpose of L , to define the square root of R .  
Given a positive semidefinite matrix R , according to the spectral theorem, the continuous 
functional calculus can be applied to obtain a matrix 2/1R  such that 2/1R  is itself positive and 

RRR =2/12/1 . The operator 2/1R  is the unique non-negative square root of R . 
{ }n

n
n SymRN +∈Σ∈Σℵ= ,/),( μμ  the class of regular multivariate normal distributions, where μ  is 

the mean vector and Σ  is the (symmetric positive definite) covariance matrix ,is invariant under the 
transitive action of )(nGA . The induced action of )(nGA  on n

n SymR +×  is then given by: 
( )

( ) ( )( ) ( )T

nn

AAAA

nSymRnSymRnGA
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×→×× ++

,,,,

)(

υμμυ 
                                                             (177) 

and 

( )( ) υυ +
→×
AxxA

RRnGA nn

,,

)(                                                                              (178) 

As the isotropy group of ( )nI,0  is eqal to )(nO , wa can observe that: 

)(/)( nOnGANn =                                                                              (179) 

nN  is an open subset of the vectorspace ( ){ }n
n

n SymRT ∈Ω∈Ω= ,/, ηη  and is a differentiable 
manifold, where the tangent space at any point may be identified with 

nT . 
The Fisher information defines a metric given to 

nN  a Riemannian manifold structure. The inner 
product of two tangent vectors ( ) nT∈Ω11 ,η , ( ) nT∈Ω22 ,η  at the point ( ) nN∈Σ,μ  is given by: 

( ) ( ) ( )( ) ( )2
1

1
1

2
1

11111), 2

1
,,, ΩΣΩΣ+Σ=ΩΩ −−−

Σ Trg T ηηηημ
                                              (180) 

Niels Christian Bang Jesperson has proved that the transformation model on nR  with parameter set 
n

n SymR +×   are exacltly those of the form λμμ ΣΣ = ,, fp  where λ  is the Lebesque measure, where 

( ) ( )( ) ( ) 2/11
, det/)( Σ−Σ−= −
Σ μμμ xxhxf T  and [ [ +→+∞ Rh ,0:  is a continuous function with 

+∞<
+∞ −

0

1
2)( dsssh
n

. Distributions with densities of this form are called elliptic distributions. 

To improve understanding of tools, we will consider )(nGA  as a sub-group of affine group, that 
could be defined by a Matrix Lie group 

affG , that acts for Multivariate gaussians laws: 
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We can verify that M is a Lie group with classical properties, that product of M preserve the 
structure, the associativity, the non commutativity, and the existence of neutral element: 
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We can also observe that the inverse preserves the structure: 

affLR G
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MMM
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M ∈
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111
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                                     (183) 
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Figure 11. Affine Lie Group action for Multivariate Gaussian Law 

 
To this Lie group we can associate a Lie algebra whose underlying vector space is the tangent 

space of the Lie group at the identity element and which completely captures the local structure of 
the group.  This Lie group acts smoothly on the manifold, and acts on the vector fields. Any tangent 
vector at the identity of a Lie group can be extended to a left (respectively right) invariant vector 
field by left (respectively right) translating the tangent vector to other points of the manifold. This 
identifies the tangent space at the identity )(GTI=g  with the space of left invariant vector fields, 
and therefore makes the tangent space at the identity into a Lie algebra, called the Lie algebra of G. 





=

→





=

→

MNNRM

GG
R

NMNLM

GG
L

M

affaff

G

M

affaff

G
.

:   and    
.

:


          (184) 

Considering the curve )(tγ  and its derivative )(tγ : 
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We can consider the curve with the point )0(γ  moved at the the identy element on the left or on the 
right. Then, the tangent plan at identity element provides the Lie Algebra: 
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Lie Algebra on the right and on the left is the defined by: 
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We can then observe the velocities in two different ways , either by placing in a fixed outside 
frame, either by putting in place of the element in the process of moving  by placing in the reference 
frame of the element. 
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   In the following, we will complete the global view by the operators which will allow to link 
algebra (from the left or the right) between them and also connect to their dual. We will first consider 
the automorphisms, the action by conjugation of the Lie group on itself, that allows this operator to 
carry a member of the group. 
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If now we consider a curve N(t) curve on the manifold via the identity at t = 0.  Its image by the 
previous operator will be then curve 1).(. −= MtNMγ  passing through Identity element at t = 0. As 

)0(N  is an element of the Lie algebra and its image by previous conjugation operator is called 
Adjoint operator:  
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We can then compute the Adjoint operator for previous Lie group: 
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We recall that the Lie algebra has been defined as the tangent space at the identity of a Lie 
group. We will then introduced a Lie bracket [ ].,. ,  the expression of the operator associated with 
the combined action of the Lie algebra on itself , called adjoint operator. The adjoint operator 
represents the action by conjugation of the Lie algebra on itself and is defined by:  
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We can then compute this operator for our use case: 
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To study the geodesic trajectories of the group, we consider the Lagrangian from the total kinetic 
energy (a quadratic form on speeds). It may therefore in particular be written in the left algebra 
"left", with the scalar product associated with the metric . 

[ ]L
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,
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1 ==                (200) 

If we consider as scalar product:  

( )nkTrnkk,n

R
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→×

,        
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and left algebra: 
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2/12/12/1 mRRR
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we obtain for the total kinetic energy 

( )( )mRmRRTrE T
L  11

2

1 −− +=                (203) 

We will then introduce the coadjoint operator that will enable to work on the elements of the dual 
algebra of the Lie algebra defined above. Like algebra, which is physically the space of instantaneous 
speeds, the dual algebra is the space of moments. For dual of left algebra, the moment is given by: 
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L
L

L
L n

n

E =
∂
∂=Π                   (204) 

Where 
LE  is the kinetic energy of the system and is currently associated with 

LΠ  is an element of 
the left algebra. The moment space is the dual algebra , denoted *g , associated with the Lie algebra 
g . This value is deduced from the computation: 
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Then the moment map is given by:  
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M

n η
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We can obseve that the application that turns left algebra in its dual algebra is the identity 
application but physically, the first are moment and the seconds instantaneous speeds. 
We can also define the moment 

RΠ associated to the right algebra 
Rη  by: 

RRRLLL nMnMn ,,, 1 Π=Π=Π −                                                              (207) 

But as 
LL n=Π , we can deduce that: 
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Then, the operator that transform the right algebra to its dual algebra is given by:  
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As there is an operator to change the view of algebra, there is one that did the same on the dual 
algebra, the co-adjoint operator that is the conjugate action of Lie group on its dual algebra: 
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We can then develop this expression for our use case of affine sup-group, we find: 
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and we can also observed that:  
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And the following relation between the left and the right algebras: 
LRMAd Π=Π*    and   

RLM
Ad Π=Π−

*
1

                                                         (213) 

As we have define a commutateur on the Lie algebra , it is possible to define one on its dual algebra. 
This commutator on the dual algebra can also be defined using operator expressing the combined 
action of the algebra of its dual. This operator is called the co-adjoint operator:  
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We can develop this co-adjoint operator on its dual algebra for our use-case: 
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This co-adjoint operator will give the equation of Euler-Poincaré equation. While the Euler-Lagrange 
equation is defined on the tangent bundle (union of the tangent spaces at each point) of the manifold 
and give the geodesics, the equation of Euler-Poincaré equation gives a differential system on the 
dual Lie algebra of the group associated with the manifold. 
We can also comple these maps by an additional ones. First, GTp M

*∈  the moment associated with 
GTM M∈  in tangent space of G  at M , and also two others that map the element of the dual algebra 

in dual tangent space, respectively on the left and on the right: 
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From these relation, we can also observe that:  
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All theses maps could be summarized in the following figure: 
 

 
Figure 12. Maps between algebras 

 
Heni Poincaré proved that when a Lie algebra acts locally transitively on the configuration space of a 
Lagrangian mechanical system, the Euler-Lagrange equations are equivalent to a new system of 
differential equations defined on the product of the configuration space with the Lie algebra 
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If we consider that the following functional is stationary for a Lagragian l(.) invariant with respect to 
the action of the a group on the left:  

 →==
b

a

LLL RlSdtlS g:   and   0)(   with   )()( ηδηη            (218) 

Solution is given by Euler-Poincaré equation: 
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If we take for the function l(.), the total kinetic energy
LE , using that 

L
L

L
L n

E
MM g∈

∂
∂

==Π − 1 , the  
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The following quantities are conserved : 

0=Π
dt

d R                    (221) 

With this second theorem, it is possible to write the geodesic not from its coordinate system but from 
the quantity of motion, and in addition to determine explicitly what are the conserved quantities 
along the geodesic (conservations are related to the symmetries of the variety and hence the 
invariance of the Lagrangian under the action of the group) . 
For our use-case, the Euler-Poincaré equation is given by: 
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If we remark that we have ( ) RRRRRRR  12/12/12/12/1 −−−− == , then the conserved Souriau moment could 
be given by: 
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Componants of the Souriau moment gives the conserved quantities that are the classical elements 
given by Emmy Noether Theorem (Souriau moment is a geometrization of Emmy Noether 
Theorem): 
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From this constant, we can obtain a reduced equation of geodesic: 

( )



−=
=

TbmBRR

Rbm

                                                                                (225) 

This is the Euler-Poincaré equation of geodesic. We can observe that we have obtained a reduction of 
the following Euler-Lagrange equation [171, 172, 34]: 
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The Fisher information defines a metric turning ( ){ })(, nSymRRmN n
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+×∈=  into a Riemannian 
Manifold. The inner product of two tangent vectors ( ) nTRm ∈11 ,  and ( ) nTRm ∈22 ,  at the point 
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And the geodesic is given by: 
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We can also observe that the manifold of Multivariate Gaussian is homogeneous with respect to 
positive affine group )(nGA+ : 

22
XY dsds =    for ( ){ }0)det(/)(,)(GA   with   2/1 >Σ×∈Σ=+Σ= + RGLRnXY μμ                      (228) 
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Since the special orthogonal group { }1)det(/)()( =∈= δδ RGLnSO  is the stabilizer subgroup of ( )nI,0  
, we have the following isomorphism: 
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We can then restrict the computation of the geodesic from ( )nI,0  and then we can partially integrate 
the system of equations: 
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where ( )( ) ( ) )(,)0()0()0()0(),0()0( 11 RSymRBbmmRRmR n
nT ×∈=+−−   are the integration constants.  

From this Euler-Poincaré equation, we can compute geodesics by geodesic shooting [87, 91, 94, 153] 
using classical Eriksen equations [69, 70, 71, 72], by the following change of parameters: 
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The initial speed of the geodesic is given by ( ))0(),0( Δδ . The geodesic shooting is given by the 
exponential map: 
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This equation can be interpreted by Group Theory. A  could be considered as an element of Lie 
algebra ( )nnso ,1+  of special Lorentz group ),1( nnSOO +  and more specifically as the element p  of 
Cartan Decomposition pl +  where l  is the Lie algebra of a maximal compact sub-group 

( ))()1( nOnOSK ×+=  of the Group ),1( nnSOG O += . We know that its exponential map defines a 
geodesic on Riemannian Symetric space KG / . 
This equation can be established by following developments: 
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We can the deduce that: 
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If δδε 11 −Δ+= T , then ( )δ,Δ  is solution to the geodesic equation presiouly defined. Since 1)0( =ε , it 
suffices to demonstrates that  τε  =  where δδτ 1−Δ= T . 
From Att ).()( Λ=Λ , using that TTTT bb Φ−Δ=δ , we can deduce: 
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Then τε  = , if ( ) δδετγ 11 −− ΦΔ+Δ−= , that could be verified using relation I=ΛΛ −1. , by observing 
that: 
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We can then compute γ  from two last equations: 
( ) δδετγ 11 −− ΔΦ+Δ−= T                                                                         (240)  

As ( )( )δδετδτ 11 −− ΔΦ+Δ−−= TTT bb  then we can deduce that γδτ TT bb −=  and then ετ  = . 
To interprete elements of Λ , ( ) ( ))(),()(),( tttt −−Δ=Γ δγ , opposite points to ( ))(),( tt δΔ , and  

γγδδε 11 11 −− Γ+=Δ+= TT .                            
   Then the geodesic that goes through the origin ( )nI,0  with initial tangent vector ( )Bb −,  is the 
curve given by ( ))(),( tt Δδ . Then the distance computation is reduced to estimate the initial tangent 
vector space related by ( )( ) ( ) )(,)0()0()0()0(),0()0( 11 RSymRBbmmRRmR n

nT ×∈=+−−   
The distance will be then given by the initial tangent vector: 
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1
)0()0()0( RRTrmRmd T  −− +=             (241) 

This initial tanget vector vector will be identified by “Geodesic Shooting”. Let BV Alog= : 
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Geodesic Shooting is corrected by using Jacobi Field J and parallel transport: 
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tJd χχ   with R the Riemann Curvarture tensor. 

We consider a geodesic χ  between 
0θ  and 

1θ  with an initial tangent vector V , and we suppose 
that V  is perturbated by W , to WV + . The variation of the final point 

1θ  can be determined 
thanks to the Jacobi field with 0)0( =J  and WJ =)0( . In term of the exponential map, this could be 
written: 

( )( )
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0
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θ α
α
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d
tJ                                                                    (243) 

This could be illustrated in these figures: 
 

 
Figure 13. Geodesic Shooting Principle 

 
We give some illustration of geodesic shooting to compute distance between multivariate 

Gaussian density for the case n=2: 
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Figure 14. Geodesic Shooting between two multivariate Gaussian in case n=2 

9. Souriau Riemannian metric for Multivariate Gaussian Densities 

   To illustrate the Souriau-Fisher metric, we will consider the family of Multivariate Gaussian 
densities and will develop some elements that we have previously developed purely theoretically.  
 
   For the families of Multivariate Gaussian densities, that we have identified as homogeneous 

manifold with the associated sub-group of the affine group  
mR /
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, we have seen that if we 

consider them as elements of exponential families, we can write  ξ̂  (element of the dual Lie 
Algebra) that play the role of geometric heat Q  in Souriau Lie Group Thermodynamics, and  β the 
geometric (planck) temperature. 
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These elements are homeomorph to the matrix elements in Matrix Lie Algebra and Dual Lie Algebra: 
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If we consider 
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M , then we can compute the co-adjoint operator:  
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We can also compute the adjoint operator: 
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We can rewrite βMAd  with the following identification: 
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We have then to develop ( ))(ˆ βξ MAd , that is to say ( )βξ̂  after action of the group on the Lie 
Algebra for β , given by )(βMAd . By analogy of structure between ( )βξ̂   and β , we can write : 
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We have then to identify the cocycle )(Mθ  from ( ) ( )MAdAd MM θξβξ += )ˆ()(ˆ *  
( ) ξβξθ ˆ)(ˆ)( *

MM AdAdM −=  where :  
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The cocycle is then given by: 
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From ( ) ξβξθ ˆ)(ˆ)( *
MM AdAdM −=  , we can compute cocycle in Lie Algebra 

θeT=Θ                                                                                       (253) 
used to define the tensor: 
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In this seconde part, Twe will compute the Souriau-Fisher Metric given by: 
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  With ...,...  the inner product given by [ ]LHbaTr TT +=βξ ,  with  
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We can then compute: 
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The Souriau-Fisher metric is defined in Lie Algebra [ ] [ ]( )21 ,,, ZZg βββ  where: 
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Another approach to develop the Souriau-Fisher Metric [ ] [ ]( )21 ,,, ZZg βββ  is to compute the tensor 
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~

YXΘ  from the moment map J : 
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We can then write the Souriau-Fisher metric as: 
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Where the associated differentiable application J , called moment map is:  
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This moment map could be identified with the operator that transform the right algebra to an 
element of its dual algebra given by:  
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10. Conclusion  

In this paper, we have developed Souriau’s model of Lie Group Thermodynamics that recovers 
the symmetry broken by lack of covariance of Gibbs density in classical statistical mechanics with 
respect to dynamic groups action in physics (Galileo and Poincaré groups, sub-group of Affine 
group). Ontological model of Souriau gives geometric status to (Planck) temperature (element of Lie 
alebra), heat (element of dual Lie algebra) and Entropy. Souriau said in one of his paper on this new 
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“Lie Group Thermodynamics” that “these formulas are universal , in that they do not involve the 
symplectic manifold, but only the Group G and its symplectic cocycle. Perhaps this Lie group thermodynamics 
could be of interest for mathematics”.  
 
   For this new covariant Thermodynamics, the fundamental notion is the coadjoint orbit that is 
linked to positive definite KKS (Kostant-Kirillov-Souriau) 2-form [21] : 

[ ] M   and   M   with   ,,),( wwwww TVadYTUadXVUwYX ∈=∈==ω                             (271) 

that is the Kähler-form of a G-invariant kähler structure compatible with the canonical complex 
structure of M, and determines a canonical Symplectic structure on M.  When the cocycle is equal to 
zero, the KKS and Souriau-Fisher metric are equal. This 2-form introduced by Jean-Marie Souriau is 
linked to the coadjoint action and the coadjoint orbits of the group on its moment space. Souriau 
provided a classification of the homogeneous symplectic manifolds with this moment map. The 
coadjoint representation of a Lie group G is the dual of the adjoint representation. If g  denotes the 
Lie algebra of G, the corresponding action of G on *g , the dual space to g , is called the coadjoint 
action. Souriau proved based on the moment map that a symplectic manifold is always a coadjoint 
orbit, affine of its group of Hamiltonian transformations, deducing that coadjoint orbits are the 
universal models of symplectic manifolds:  a symplectic manifold  homogeneous under the action 
of a Lie group, is isomorphic, up to a covering, to a coadjoint orbit. So the link between 
Souriau-Fisher metric and KKS 2-form will provide symplectic structure and foundation  to 
Information Manifolds.  For Souriau Thermodynamics, the Souriau-Fisher metric is the canonical 
structure linked to KKS 2-form, modified by the cocycle (its symplectic leaves are the orbits of the 
affine action that makes equivariant the moment map). This last property allows to determine all 
homogeneous spaces of a Lie group admitting an invariant symplectic structure by the action of this 
group: there are the orbits of the coadjoint representation of this group or of a central extension of 
this group (the central extension allowing to suppress the cocycle). For affine coadjoint orbits, we 
give reference to Alice Tumpach PhD [189, 190, 191] that has developed previous works of K.H. 
Neeb, O. Biquard and P. Gauduchon.  

 
Other promising domains of research are theory of Generating maps [51, 52, 199, 200] and the 

link with Poisson geometry through affine Poisson group. As observed by Pierre Dazord [62] in his 
paper “Groupe de Poisson Affines”, extension of Poisson Group to affine Poisson group due to 
Drinfel’d, includes affine structures of Souriau on dual Lie algebra. Let an affine Poisson group, its 
universal covering could be identified to a vector space with an associated affine structure. In case 
that this vector space is an abelian affine Poisson group, we find affine structure of Souriau. For 
abelian group (R3,+), affine Poisson groups are the affine structures of Souriau. 

 
    This Souriau’s model of Lie Group Thermodynamics could be the promising way to achieve 
René Thom dream to replace Thermodynamics by Geometry [187, 188], and could be extended to the 
Second Order Extension of the Gibbs State [92,93]. 
 
    We could explore the links between “Stochastic Mechanics” (mécanique aléatoire) developed by 
Jean-Michel Bismut based on Malliavin Calculus (stochastic calculus of variations) and Souriau “Lie 
Group Thermodynamics”,  especially to extend covariant Souriau Gibbs density on stochastic 
symplectic manifold (e.g. to model centrifuge with random vibrating axe and the Gibbs density). 
 
    To conclude, we will give reference to Alain Berthoz at College de France that has studied brain 
coding of movment. Last studies on this topic, as Alexandre Afgoustidis Phd « Invariant Harmonic 
Analysis and Geometry in the Workings of the Brain » supervised by Daniel Bennequin, 
(https://hal-univ-diderot.archives-ouvertes.fr/tel-01343703) consolidate the idea that brain vestibular 
channels and otolithes code Lie algebra of homogeneous Galileo group. Souriau gave same ideas in 
this direction how the brain could code invariants “Lorsque il y un tremblement de terre, nous assistons à 
la mort de l’Espace. … Nous vivons avec nos habitudes que nous pensons universelles. … La neuroscience 
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s’occupe rarement de la géométrie … Pour les singes qui vivent dans les arbres, certaines propriétés du groupe 
d’Euclide sont mieux câblées dans leurs cerveaux [When there is an earthquake , we are witnessing the death of 
Space. ... We live with our habits that we think universal. ... Neuroscience rarely is interested by the geometry ... 
For the monkeys that live in trees , some properties of the Euclid group are better coded in their brains]”. 
Souriau added anecdotes from discussion with a student of Bohr that “ L’élève demanda à Bohr qu’il ne 
comprenait pas le principe de correspondance. Bohr lui demanda de s’assoir et il tourna autour de lui. Bohr lui 
dit tu dois commencer à avoir mal au cœur, c’est que tu commences à comprendre ce qu’est le principe de 
correspondance  [The student said to Bohr that he did not understand the principle of correspondence. Bohr 
asked him to sit and he turned around. Bohr said, you should start to seasick , it is that you begin to understand 
what the correspondence principle is.]». 
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"Si on ajoute que la critique qui accoutume l’esprit, surtout en matière de faits, à recevoir de simples 
probabilités pour des preuves, est, par cet endroit, moins propre à le former, que ne le doit être la 
géométrie qui lui fait contracter l’habitude de n’acquiescer qu’à l’évidence; nous répliquerons qu’à la 
rigueur on pourrait conclure de cette différence même, que la critique donne, au contraire, plus 
d’exercice à l’esprit que la géométrie: parce que l’évidence, qui est une et absolue, le fixe au premier 
aspect sans lui laisser ni la liberté de douter, ni le mérite de choisir; au lieu que les probabilités étant 
susceptibles du plus et du moins, il faut, pour se mettre en état de prendre un parti, les comparer 
ensemble, les discuter et les peser. Un genre d’étude qui rompt, pour ainsi dire, l’esprit à cette 
opération, est certainement d’un usage plus étendu que celui où tout est soumis à l’évidence; parce 
que les occasions de se déterminer sur des vraisemblances ou probabilités, sont plus fréquentes que 
celles qui exigent qu’on procède par démonstrations: pourquoi ne dirions –nous pas que souvent elles 
tiennent aussi à des objets beaucoup plus importants ? " - Joseph de Maistre 

« Le cadavre qui s’acoutre se méconnait et imaginant l’éternité s’en approrie l’illusion … C’est 
pourquoi j’abandonnerai ces frusques et jetant le masque de mes jours, je fuirai le temps où, de 
concert avec les autres, je m’éreinte à me trahir ». Emile Cioran – Précis de décomposition 

Appendix A: Clairaut(-Legendre) Equation of Maurice Fréchet associated to “distinguished 
functions” as fundamental equation of Information geometry 

Before Rao [160, 31], in 1943, Maurice Fréchet [74] wrote a seminal paper introducing what was 
then called the Cramer-Rao bound. This paper contains in fact much more that this important 
discovery. In particular, Maurice Fréchet introduces more general notions relative to "distinguished 
functions", densities with estimator reaching the bound, defined with a function, solution of 
Clairaut’s equation. The solutions “envelope of the Clairaut’s equation” are equivalents to standard 
Legendre transform without convexity constraints but only smoothness assumption. This Fréchet’s 
analysis can be revisited on the basis of Jean-Louis Koszul works as seminal foundation of 
“Information Geometry”. 
We will use Maurice Fréchet notations, to consider the estimator:  

( )nXXHT ,...,1=                                    (272) 

and the random variable 
θ

θ

∂
∂

=
)(log

)(
Xp

XA                            (273) 
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that are associated to : ( )=
i

iXAU                                                           (274) 

The normalizing constraint 1)( =
+∞

∞−

dxxpθ
 implies that : 1)(... = ∏

+∞

∞−

+∞

∞−
i

i
i dxxpθ

  

If we consider the derivative if this last expression with respect to θ , then 

0)()(... =







  ∏

+∞

∞−

+∞

∞−
i

i
i

i
i dxxpxA θ

 gives : [ ] 0=UEθ                       (275)                  

Similarly, if we assume that [ ] θθ =TE , then ( ) θθ =  ∏
+∞

∞−

+∞

∞−
i

i
in dxxpxxH )(,...,... 1

, and we obtain by 

derivation with respect to θ  :  
( )[ ] 1=− UTE θ                                                         (276) 

But as [ ] θ=TE  and [ ] 0=UE , we immedialty deduce that : 
[ ]( ) [ ]( )[ ] 1=−− UEUTETE                                                                      (277) 

From Schwarz inequality, we can develop the following relations : 
( )[ ] [ ] [ ]222 TEZEZTE ≤  

[ ]( )[ ] [ ]( )[ ] ( )2221 UTUEUETETE σσ=−−≤                                                       (278) 
U being the summation of independant variables, Bienaymé equality could be applied :  
( ) [ ] ( )22

)(
2

A
i

XAU n
i

σσσ ==                                                                    (279) 

From which, Fréchet deduced the bound, rediscoved by Cramer and Rao 2 years later :  

( )
( )2

2 1

A

T
n σ

σ ≥                                                                                (280) 

Fréchet observed that it is a remarkable inequality where the second member is independent of the 
choice of the function H defining the " emperical value " T, where the first member can be taken to 
any empirical value ( )nXXHT ,...,1=  subject to the unique condition [ ] θθ =TE  regardless is θ . 
The classic condition that the Schwarz inequality becomes an equality helps us to determine when 

Tσ  reaches its lower bound 
nnσ

1 . 

The previous inequality becomes an equality if there are two numbers α  and β  (not random and 
not both zero ) such that ( ) 0' =+− UH βθα , with 'H  particular function among eligible H  as we 
have the equality . This equality is rewritten UH '' λθ +=  with 'λ  a non-random number. 
If we use the previous equation, then : 

[ ]( ) [ ]( )[ ] ( )[ ] [ ] 1''1 2 ==−=−− UEUHEUEUTETE θλθ                (281) 
We obtain : ( ) [ ] 1' 2 == AnEXAU

i
i θλ                                (282) 

From which we obrain 'λ  and the form of the associated estimator 'H : 

[ ] [ ] ∂
∂+==

i

iXp

AnE
H

AnE θ
θλ θ )(log1

'
1

'
22

                            (283) 

It is therefore deduced that the estimator that reaches the terminal is of the form: 




∞+

∞−






∂
∂

∂
∂

+=

)(

)(

)(log

'
2

xp

dxxp
n

Xp

H i

i

θ

θ

θ

θ

θθ                                                                    (284) 

with [ ] [ ] θλθ =+= UEHE '' . 
'H  would be one of the eligible functions, if 'H  would be independent of θ . Indeed, if we 

consider [ ] 0'
0

θθ =HE , ( )[ ] ( )[ ] [ ] 0
2

0
2

0 00
 such that     ' θθθ θθ =∀−≤− HEHHEHE .  

0θ=H  satisfies the equation and inequality shows that it is almost certainly equal to 
0θ . 

So to look for 
0θ , we should know beforehand 

0θ . 
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At this stage, Fréchet looked for “distinguished functions” (“densités distinguées” in French), as any 
probability density )(xpθ  such that the function : 


∞+

∞−






∂
∂

∂
∂

+=

)(

)(

)(log

)(
2

xp

dxxp

xp

xh

θ

θ

θ

θ

θθ                                                                   (285) 

is independant of θ . The objective of Fréchet is then to determine the minimizing function 
( )nXXHT ,...,' 1=  that reaches the bound. We can deduce from previous relations that: 

θ
θ

θλ θ −=
∂

∂
)(

)(log
)( xh

xp                                                                      (286) 

But as 0)( >θλ , we can consider 
)(

1

θλ
 as the second derivative of a function )(θΦ  such that : 

[ ]θ
θ

θ
θ

θ −
∂
Φ∂=

∂
∂

)(
)()(log

2

2

xh
xp                                                                  (287) 

Wich we deduce that : 

[ ] )()(
)(

)(log)( θθ
θ
θ

θ Φ−−
∂
Φ∂−= xhxpx                                                        (288) 

Is an independant quantity of θ . A distinguished function will be then given by : 
[ ] )()()(

)(

)(
xxh

exp
+Φ+−

∂
Φ∂

=
θθ

θ
θ

θ                                                                     (289) 

With the normalizing constraint 1)( =
+∞

∞−

dxxpθ
. 

These two conditions are sufficient. Indeed, reciprocally, let three functions )(θΦ , )(xh  et )(x  

that we have, for any θ  : [ ]
1

)()()(
)(

=
+∞

∞−

+Φ+−
∂

Φ∂

dxe
xxh θθ

θ
θ

                                            (290) 

Then the function is distinguished : 

[ ]θ
θ

θλθ

θ

θθ

θ

θ

θ

−
∂
Φ∂+=







∂
∂

∂
∂

+


∞+

∞−

)(
)(

)(

)(

)(

)(log

2

2

2
xhx

xp

dxxp

xp
                   (291) 

If 1
)(

)(
2

2

=
∂
Φ∂
θ

θλ x , when ( )2
2

)(
)(log

)(

1
Adxxp

xp

x
σ

θλ θ
θ =





∂
∂= 

+∞

∞−

                               (292) 

The function is reduced to )(xh  and then is not dependant of θ . 
We have then the following relation: 

[ ] ( )


+∞

∞−

+Φ+−
∂

Φ∂

−







∂
Φ∂= dxexh

x

xxh )()()(
)(

2

2

2

2

)(
)(

)(

1 θθ
θ
θ

θ
θ

θ
λ

                  (293) 

The relation is valid for anyθ , on peut dériver l’expression précédente par rapport à θ  : 
( ) [ ] 0)(

)(
2

2)()()(
)(

=−







∂
Φ∂


+∞

∞−

+Φ+−
∂

Φ∂

dxxhe
xxh

θ
θ

θθθ
θ
θ                                                    (294) 

We can divide by 
2

2 )(

θ
θ

∂
Φ∂  because it doesn’t depend on x . 

If we derive again with respect to θ , we will have : 
( ) [ ] ( )

1)(
)( )()()(

)(
2

2

2)()()(
)(

==−







∂
Φ∂


+∞

∞−

+Φ+−
∂

Φ∂+∞

∞−

+Φ+−
∂

Φ∂

dxedxxhe
xxhxxh  θθ

θ
θθθ

θ
θ

θ
θ

θ        (295) 

Combining this relation with that of 
)(

1

xλ
 , we can deduce that 1

)(
)(

2

2

=
∂
Φ∂
θ

θλ x  and as 0)( >xλ  

then 0
)(

2

2

>
∂
Φ∂
θ

θ .  
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Fréchet emphasizes at this step, another way to approach the problem. We can select arbitrarily 
)(xh  and )(xl  and then )(θΦ  is determined by: 

[ ]
1

)()()(
)(

=
+∞

∞−

+Φ+−
∂

Φ∂

dxe
xxh θθ

θ
θ

                                                                     (296) 

That could be rewritten : 
+∞

∞−

+
∂

Φ∂Φ−
∂

Φ∂

= dxee
xxh )()(

)(
)(

)(
. 

θ
θθ

θ
θθ                                           (297) 

If we then fixed arbitrarily )(xh  and )(xl  and let s an arbitrary variable, the following function will 
be an explicit positive function given by )(seΨ  : 

)()()(. sxxhs edxe Ψ
+∞

∞−

+ =                                                                             (298) 

Fréchet obtained finally the function )(θΦ  as solution of the equation : 









∂
Φ∂Ψ−

∂
Φ∂=Φ

θ
θ

θ
θθθ )()(

.)(                                                                 (299) 

Fréchet noted that this is the Alexis Clairaut Equation.  

The case cste=
∂
Φ∂

θ
θ )(  would reduce the density to a function that would be independant of θ , and 

so )(θΦ  is given by a singular solution of this Clairaut equation, that is unique and could be 
computed by eliminating the variable s between : 

( )ss Ψ−=Φ .θ  and ( )
s

s

∂
Ψ∂=θ                                                                 (300) 

Or between : 


+∞

∞−

+Φ− = dxee xxhss )()(.)(. θθ  and [ ] 0)()()(. =−
+∞

∞−

+ dxxhe xxhs θ                 (301) 

sdxe xxhs .log)( )()(. θθ +−=Φ 
+∞

∞−

+  where s is given implicitely by [ ] 0)()()(. =−
+∞

∞−

+ dxxhe xxhs θ . 

What is then, when we known the distinguished function, 'H  among functions ),...,( 1 nXXH  
verifying [ ] θθ =HE  and such that Hσ  reaches for each value of θ , an absolute minimum, equal to 

Anσ
1 .  

For the previous equation:   


∞+

∞−






∂
∂

∂
∂

+=

)(

)(

)(log

)(
2

xp

dxxp

xp

xh

θ

θ

θ

θ

θθ                   (302) 

 
We can rewrite the estimator as : 

( ) ( )[ ]nn XhXh
n

XXH ++= ...
1

),...,(' 11
                                                           (303) 

And compute the associated empirical value : 

 ∂
∂+===

i

i

i
in

xp
xh

n
xxHt

θ
θλθ θ )(log

)()(
1

),...,(' 1
 

And if we take t=θ , we have as 0)( >θλ  : 

0
)(log =

∂
∂

i

it

t

xp                                                                              (304) 

When )(xpθ  is a distinguished function, the emperical value t  of θ  corresponding to a sample 

nxx ,...,1
 is a root of previous equation in t .  This equation has a root and only one when X is a 

distinguished variable. Indeed, as we have: 
[ ] )()()(

)(

)(
xxh

exp
+Φ+−

∂
Φ∂

=
θθ

θ
θ

θ                                                                     (305) 
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−

∂
Φ∂=

∂
∂ 

 t
n

xh

t

t

t

xp i
i

i

it

)(
)()(log

2

2
  with 0

)(
2

2

>
∂
Φ∂
t

t                                         (306) 

We can then recover the unique root: 
n

xh
t i

i
=

)(
. 

This function ( ) ( )=≡
i

in Xh
n

XXHT
1

,...,' 1
 can have an arbitrary form, that is a sum of functions of 

each only one of the quantities and it is even the arithmetic average of N values of a same auxiliary 
random variable )(XhY = . The dispersion is given by: 

( ) ( )
2

222

2

)(

1

)(

)(

11

θ
θ

θ
σ

σ

θ

θ
∂
Φ∂

=







∂
∂

==


∞+

∞−

n
xp

dxxp
n

n A

Tn

                                              (307) 

and 
nT  follows the probability density: 

( )

( )
2

2
2.2 )(

   with   
2

1
)(

2

2

θ
θσ

πσ
σ
θ

θ ∂
Φ∂==

−−

A

tn

A

Aentp                                               (308) 

• Clairaut Equation and Legendre Transform 
We have just observed that Fréchet shows that distinguished functions depend on a function )(θΦ , 
solution of the Clairaut equation: 









∂
Φ∂Ψ−

∂
Φ∂=Φ

θ
θ

θ
θθθ )()(

.)(                                                                  (309) 

Or given by the Legendre Transform: 

( )ss Ψ−=Φ .θ  and ( )
s

s

∂
Ψ∂=θ                                                   (310) 

Fréchet also observed that this function )(θΦ  could be rewritten: 

sdxe xxhs .log)( )()(. θθ +−=Φ 
+∞

∞−

+  where s is given implicitely by [ ] 0)()()(. =−
+∞

∞−

+ dxxhe xxhs θ . 

This equation is the fundamental equation of Information Geometry. 
The "Legendre" transform was introduced by Adrien-Marie Legendre in 1787 to solve a 

minimal surface problem Gaspard Monge in 1784. Using a result of Jean Baptiste Meusnier, a 
student of Monge, it solves the problem by a change of variable corresponding to the transform 
which now entitled with his name. Legendre wrote: "I have just arrived by a change of variables that can 
be useful in other occasions." About this transformation, Darboux [60] in his book gives an 
interpretation of Chasles: "This comes after a comment by Mr. Chasles, to substitute its polar reciprocal on 
the surface compared to a paraboloïd." The equation of Clairaut was introduced 40 years earlier in 1734 
by Alexis Clairaut [123]. Solutions "envelope of the Clairaut equation" are equivalent to the Legendre 
transform  with unconditional convexity, but only under differentiability constraint. Indeed, for a 
non-convex function, Legendre transformation is not defined where the Hessian of the function is 
canceled, so that the equation of Clairaut only make the hypothesis of differentiability. The portion 
of the strictly convex function g in Clairaut equation y = px - g (p) to the function f giving the envelope 
solutions by the formula y = f (x) is precisely the Legendre transformation. The approach of Fréchet 
may be reconsidered in a more general context on the basis of the work of Jean-Louis Koszul. 

Appendix B: Balian Gauge Model of Thermodynamics and its compliance with Souriau model 

Supported by TOTAL group, Roger Balian has introduced in a Gauge Theory of 
Thermodynamics [8] and has also developed Information Geometry in Statistical Physics and 
Quantum Physics [3,4,5,6,7,8,9,10,11,12]. Balian has observed that the Entropy S  (we use Balian 
notation, contrary with previous chapter where we use S−  as neg-Entropy) can be regarded as an 
extensive variable ( )nqqSq ,...,10 = , with ),...,1(  niqi = , n independent quantities, usually extensive 
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and conservative, characterizing the system. The n intensive variables 
iγ  are defined as the partial 

derivatives:
i

n

i q

qqS

∂
∂= ),...,( 1

γ                                                                   (311)                  

Balian has introduced a non-vanishing gauge variable
0p , without physical relevance, which 

multiplies all the intensive variables, defining a new set of variables: 
nipp ii ,...,1   ,   .0 =−= γ                                                                   (312) 

The 2n+1-dimensional space is thereby extended into a 2n+2-dimensional thermodynamic space 
T  spanned by the variables ni qp i

i ,...,1,0 with   , = , where the physical system is associated with a 
n+1-dimensional manifold M in T , parameterized for instance by the coordinates nqq ,...,1  and 

0p . A gauge transformation which changes the extra variable 
0p  while keeping the ratios 

ii pp γ−=0/  invariant is not observable, so that a state of the system is represented by any point of a 

one-dimensional ray lying in M , along which the physical variables 
n

nqq γγ ,...,,,..., 1
0 are fixed. 

Then, the relation between contact and canonical transformations is a direct outcome of this gauge 

invariance: the contact structure 
=

−=
n

i

i
i dqdq

1

0 .~ γω  in 2n+1 dimension can be embedded into a 

symplectic structure in 2n+2 dimension, with 1-form: 


=

=
n

i

i
i dqp

0

.ω                                                                                  (313) 

as symplectization, with geometric interpretation in the theory of fibre bundles.  
The n +1-dimensional thermodynamic manifolds M  are characterized by the vanishing of this 

form 0=ω . The 1-form induces then a symplectic structure on T : 


=

∧=
n

i

i
i dqdpd

0

ω                                                                              (314) 

Any thermodynamic manifold M belongs to the set of the so-called Lagrangian manifolds in 
T , which are the integral submanifolds of ωd  with maximum dimension (n +1). Moreover, M  is 
gauge invariant, which is implied by 0=ω . The extensivity of the entropy function ( )nqqS ,...,1  is 

expressed by the Gibbs-Duhem relation 
= ∂

∂=
n

i
i

i

q

S
qS

1

, rewritten with previous relation 0
0

=
=

n

i

i
iqp , 

defining a 2n+1-dimensional extensivity sheet in T , where the thermodynamic manifolds 
M should lie. Considering an infinitesimal canonical transformation, generated by the Hamiltonian 

),...,,,,...,,( 10
10

n
n pppqqqh , 

i
i p

h
q

∂
∂= and 

ii q

h
p

∂
∂= , the Hamilton’s equations are given by Poisson 

bracket:  

{ } 
= ∂

∂
∂
∂−

∂
∂

∂
∂==

n

i iii
i p

g

q

h

p

h

q

g
hgg

0

,                                                                 (315) 

The concavity of the entropy ( )nqqS ,...,1 , as function of the extensive variables,  expresses the 
stability of equilibrium states. This property produces constraints on the physical manifolds M  in 
the 2n+2-dimensional space. It entails the existence of a metric structure in the n-dimensional space 

iq relying on the quadratic form: 


= ∂∂

∂−=−=
n

ji

ji
ji

dqdq
qq

S
Sdds

1,

2
22                                                                (316) 

which defines a distance between two neighboring thermodynamic states.  

As 
= ∂∂

∂=
n

j

j
jii dq

qq

S
d

1

2

γ , then:   
==

=−=
n

i

i
i

n

i
ii dqdp

p
dqdds

001

2 1γ                                (317)           

The factor 
0/1 p  ensures gauge invariance. In a continuous transformation generated by h , the 

metric evolves according to: 
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τ
                                  (318) 

We can observe that this Gauge Theory of Thermodynamics is compatible with Souriau Lie Group 

Thermodynamics, where we have to consider the Souriau vector  
1
















=

nγ

γ
β  , transformed in a new 

vector: 

 
ii pp γ.0−= , β

γ

γ
. 0

0

10

p

p

p

p

n

−=
















−

−
=                                                              (319) 

Appendix C: Casalis-Letac Affine Group Invariance for Natural Exponential Families 

The characterization of the natural exponential families of Rd which are preserved by a group of 
affine transformationsis has been examined by Muriel Casalis in her PhD and her different papers. 
Her method has consisted in translating the invariance property of the family into a property 
concerning the measures which generate it, and to characterize such measures. 

Let E  a vector space of finite size, *E  its dual. x,θ  duality braket with ( ) EEx ×∈ *,θ . μ  

Positive Radon measure on E , Laplace transform is :  

[ ] =∞→
E

x dxeLEL )()(   with   ,0: ,* μθθ θ
μμ                                                  (320) 

Let transformation )(θμk  defined on { }∞<∈=Θ μμ θ LEDu , ofinterior   )( * :  

)(log)( θθ μμ Lk =                                                                              (321) 

natural exponential families are given by:  

( ){ })(),()(,)( )(, μθμμθμ θθ μ Θ∈== − dxedxPF kx                                                  (322) 

with injective function (domian of means):  

( )=
E

dxxPk )(,)(' μμθθμ
                                                                       (323) 

the inverse function:  

( )( ))('Im  with  )(: μμψ μμ Θ=Θ→ kMM FF
                                                    (324) 

and the Covariance operator:   

( ) ( ) FF MmmmkmV ∈== −
  , )()()(

1'''
μμμ ψψ                                                        (325) 

Measure generetad by a family F  is then given by: 

)()(' such that ,),()'()( ,* dxedxREbaFF bxa μμμμ +=×∈∃⇔=                                   (326) 
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Let F  an exponential family of E  generated by μ  and ϕϕϕ vxgx +:  with  )(EGLg ∈ϕ   

automorphisms of E  and Ev ∈ϕ , then the family ( ){ })(,),()( μθμθϕϕ Θ∈= PF  is an exponential 

familly of E  generated by )(μϕ  

Definition:   

An exponential family F  is invariant by a group G  (affine group of E ), if FFG =∈∀ )(,ϕϕ :                     
( ) )()(, μμϕμ FF =∀                                                                            (327) 

(the contrary could be false) 

Then Muriel Casalis has established the following theorem: 

Theorem (Casalis):   

Let )(μFF =  an exponential familly of E  and G  affine group of E , then F  is invariant by      
G  if and only: 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )

)())((,

,'''

''
,',

:such that  ,:,:

)(),(

1

1

2

*

dxedxG

vgabbb

aaga
G

RGbEGa

bxa

t

μμϕϕ

ϕϕϕϕϕ

ϕϕϕϕ
ϕϕ

ϕϕ

ϕϕ

ϕ

+

−

−

=∈∀







−+=

+=
∈∀

→∃→∃

                                               (328) 

When G  is a linear subgroup, b  is a character of G  and a  could be obtained by the help of 
Cohomology of Lie groups. 

If we define action of G  on *E  by: 

*1 ,,. ExGgxgxg t ∈∈= −                                                                         (329) 

It can be verified that:  

( ) )()(. 12121 gagaggga +=                                                                      (330) 

the action a  is an inhomogeneous 1-cocycle:                 

0>∀n , let the set of all functions from nG  to *E ,  ( )*, EGnℑ  called inhomogenesous n-cochains,  

then we can define the operators ( ) ( )*1* ,,: EGEGd nnn +ℑ→ℑ  by: 

( ) ( ) ( ) ( )
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Let ( ) ( ) ( ) ( )1** Im,,, −== nnn dEGBdKerEGZ  , with nZ  inhomogneous n-cocycles , the quotient: 

( ) ( ) ( )*** ,/,, EGBEGZEGH nnn =                                                               (332) 

is the  Cohomology Group  of G  with value in *E . We have:                                                      
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( )
( )xxggx
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−
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                                                                        (333) 

{ }GgxxgExZ ∈∀=∈= ,.;*0                                                                   (334) 
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                                       (335) 

( ) ( ) ( ){ }2
2112121

*1 ,),()(.;, GgggFgFgggFEGFZ ∈∀+=ℑ∈=                                    (336) 

( ){ }xxggFExEGFB −=∈∃ℑ∈= .)(,;, **1                                                       (337) 

When the Cohomology Group ( ) 0, *1 =EGH  then: 

( ) ( )*1*1 ,, EGBEGZ =                                                                           (338) 

( )cgIgaGgEc t
d

1* )(,such that  , −−=∈∀∈∃                                                   (339) 

Then if  )(μFF =  is an exponential familly invariant by G , μ  verifies: 

( ) )()(,
)(,, 1

dxedxgGg
gbxgcxc μμ +− −

=∈∀                                                          (340) 

( ) )()(  with  )()(, ,
0

,)(, dxedxdxeedxegGg xcxcgbxc μμμμ ==∈∀                                   (341) 

For all compact Group, ( ) 0, *1 =EGH  and we can express a : 

)()(  ,        
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− θθ

                                                              (342) 

( )
GA(E)GA

AAAGgg gggg

 of group-subcompact  )(

,', ''
2 =∈∀                                                              (343) 

( )cgIgacgacgcAGg t
d

t
g

11 )()()(,point fixed −− −==+=∈∀∃                                (344) 
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