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Abstract: Land Surface Temperature (LST) is routinely retrieved from remote sensing 13 
instruments using semi-empirical relationships between top of atmosphere (TOA) radiances and 14 
LST, using ancillary data such as total column water vapor or emissivity. These algorithms are 15 
calibrated using a set of forward radiative transfer simulations that return the TOA radiances given 16 
the LST and the thermodynamic profiles. The simulations are done in order to cover a wide range of 17 
surface and atmospheric conditions and viewing geometries. This work analyses calibration 18 
strategies, considering some of the most critical factors that need to be taken into account when 19 
building a calibration dataset, covering the full dynamic range of relevant variables. A sensitivity 20 
analysis of split-windows and single channel algorithms revealed that selecting a set of atmospheric 21 
profiles that spans the full range of surface temperatures and total column water vapor 22 
combinations that are physically possible seems beneficial for the quality of the regression model. 23 
However, the calibration is extremely sensitive to the low-level structure of the atmosphere 24 
indicating that the presence of atmospheric boundary layer features such as temperature inversions 25 
or strong vertical gradients of thermodynamic properties may affect LST retrievals in a non-trivial 26 
way. This article describes the criteria established in the EUMETSAT Land Surface Analysis – 27 
Satellite Application Facility to calibrate its LST algorithms applied both for current and forthcoming 28 
sensors. 29 

Keywords: Land Surface Temperature; Thermal Infrared; Calibration; Generalized Split-Window; 30 
Mono-Window; Database; Radiative Transfer  31 

 32 
 33 

1. Introduction 34 
Land surface temperature (LST) is an important parameter in the physics of the Earth surface. 35 

LST controls the surface emitted long-wave radiation and is thereby essential to quantify sensible 36 
and latent heat fluxes between Earth surface and atmosphere. These interactions are crucial for a 37 
variety of applications related to land surface processes, such as climate and drought monitoring 38 
[1,2], hydrological cycle [3–5], model assessment [6–9], data assimilation [10–12], among others. LST 39 
has been retrieved in remote sensing platforms using a variety of algorithms that rely on sensor 40 
channels in the so-called atmospheric window region of the infrared spectrum [13]. Within this 41 
band, surface emitted radiances reach the sensor with relatively little absorption by the atmosphere. 42 
Moreover, in the thermal infrared atmospheric window (TIR), surface emissivity can be determined 43 
with relatively less uncertainty than in other regions in the infrared, such as in the middle infrared, 44 
making it ideal to retrieve surface properties [14]. Previous studies proposed the use of channels in 45 
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the middle infrared for LST estimation [13,15,16], however, these are far less common than 46 
algorithms based on the thermal infrared observations, and therefore will not be considered here. 47 

The choice of LST algorithm, which is often a semi-empirical function of top-of-atmosphere 48 
(TOA) brightness temperatures in TIR, is intrinsically linked to the characteristics of the sensor being 49 
used. As such, LST algorithms may rely on a single channel (the mono-window algorithms, MW), 50 
when measurements are available in only one TIR band [15,17–19], or in a combination of TIR 51 
channels using the so-called generalized split-windows (GSW) approach [13,20,21]. In general, this 52 
type of algorithms are based on a linear regression between the measured quantities at the top of the 53 
atmosphere and LST, using ancillary data such as spectral emissivity, total column water vapor 54 
(TCWV), zenith viewing angle (ZVA), land cover and also day / night flags. Usually these 55 
parameters are divided into classes and for each combination a set of model coefficients is estimated 56 
[13,20]. The whole procedure therefore requires setting up a comprehensive calibration database 57 
which is usually ad hoc generated, with a high risk of leaving out unforeseen situations that lead to 58 
systematic biases in operational retrievals. To the best of our knowledge, no study has been devoted 59 
to the process of building a calibration database. This paper focus on the factors that need to be taken 60 
into account when building a calibration database for such regressions, providing a general 61 
methodology that can be applied when developing an algorithm for infrared LST estimates and 62 
providing a systematic discussion of the impact of all the choices that are made when building a 63 
calibration database. 64 

In order to make the model coefficients robust enough to deal with any combination of input 65 
parameters it is necessary to calibrate the model for a wide range of atmospheric and surface 66 
conditions as well as viewing geometries. A good calibration of the model coefficients can only be 67 
achieved if the calibration database is designed carefully, covering the range of variations that are 68 
expected to affect the problem [21]. Usually, the models are calibrated using criteria that are 69 
considered reasonable, covering a wide range of atmospheric and surface conditions [20,22], but 70 
here we propose an objective approach to prepare a calibration database that minimizes the overall 71 
model error statistics and their variations among the range of input parameters. 72 

This article summarizes the procedure used in the EUMETSAT LSA SAF [23] to calibrate LST 73 
algorithms for the Spinning Enhanced Visible and InfraRed Imager (SEVIRI, e.g. [20]) onboard the 74 
Meteosat Second Generation (MSG), the Advanced Very-High Resolution Radiometer (AVHRR) on 75 
Metop and the Meteosat Visible and InfraRed Imager (MVIRI) onboard Meteosat First Generation 76 
(MFG; e.g., [17]). The current standard methodology within the LSA SAF uses a criteria for setting 77 
up the calibration database with a good compromise addressing the widest possible retrieval 78 
conditions (which is a pre-requisite for a global LST product) but a sensitivity analysis was required 79 
to ensure that the most robust possible model coefficients are in use. A similar exercise will be soon 80 
performed for the Flexible Combined Imager (FCI) on board Meteosat Third Generation (MTG; [24]) 81 
to design the follow-on of LSA SAF operational LST products. 82 

2. Methodology 83 

2.1 The problem  84 
Considering the Earth surface as a lambertian emitter-reflector, a cloud-free atmosphere under 85 

local thermodynamic equilibrium and negligible atmospheric scattering, the monochromatic top of 86 
atmosphere radiance 𝐿𝑖 , in a given channel i, and measured by a sensor onboard a satellite 87 
observing the Earth’s surface under zenith angle θ is expressed by (e.g. [13]): 88 

 𝐿𝑖(θ) = 𝐵(𝑇𝑏𝑖) = 𝜖𝑖𝐵𝑖�𝑇𝑠𝑠𝑠�𝜏𝑖(𝜃) + 𝐿𝑎𝑎𝑎,𝑖
↑ (𝜃) + (1 − 𝜖𝑖)𝐿𝑎𝑎𝑎,𝑖

↓ 𝜏𝑖(𝜃), (1) 

where 𝜖𝑖 is the surface emissivity on channel i, 𝐵𝑖(𝑇𝑠𝑠𝑠) is the equivalent black-body radiance at 89 
temperature 𝑇𝑠𝑠𝑠  (or LST), 𝜏𝑖  is the transmissivity, 𝐿𝑎𝑎𝑎,𝑖

↑  is the upward atmosphere-emitted 90 
radiance, and 𝐿𝑎𝑎𝑎,𝑖

↓  is the downward atmosphere-emitted radiance. LST is often estimated from 91 
linearized inversions of eq. (1), applied to one or more channels in the TIR, as mentioned above. 92 
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There are a few formulations of these inversions in the literature [25] which mostly depend on how 93 
the Taylor expansion of the radiative transfer equation is made in order to derive a formulation that 94 
is suitable to a particular application. In this work the sensitivity to the used model is not fully 95 
addressed, although some of the results could be slightly different if different LST algorithms were 96 
used. However, it is important to assess the differences of using a GSW model or a MW model, as 97 
they serve two different purposes: the first is widely used in state of the art retrieval schemes in 98 
sensors with two or more channels in the thermal atmospheric window, while the second is left for 99 
sensors with only one channel in that band. Here, only one formulation for each case is considered – 100 
one GSW and one MW algorithm – which will serve as testbeds for the calibration datasets under 101 
analysis. The GSW formulation used for operational LST estimates both from the Moderate 102 
Resolution Imaging Spectroradiometer (MODIS; [21]) and from SEVIRI ([20]): 103 

 𝐿𝐿𝑇 = 𝐶 + �𝐴1 + 𝐴2
1− 𝜖
𝜖

+ 𝐴3
Δ𝜖
𝜖2
�
𝑇𝐼𝐼1 + 𝑇𝐼𝐼2

2

+ �𝐵1 + 𝐵2
1− 𝜖
𝜖

+ 𝐵3
Δ𝜖
𝜖2
�
𝑇𝐼𝐼1 − 𝑇𝐼𝐼2

2
, 

(2) 

where 𝐴1,𝐴2,𝐴3,𝐵1 ,𝐵2,𝐵3  and 𝐶  are the model coefficients, 𝑇𝐼𝐼1  and 𝑇𝐼𝐼2  are the equivalent 104 
brightness temperatures, 𝜖 and Δ𝜖 are the average and the difference of the emissivities in both 105 
split-windows channels. For the MW model, the formulation derived by Duguay-Tetzlaff et al. [17] 106 
to derive LST from Meteosat First Generation is used: 107 

 𝐿𝐿𝑇 = 𝐴 𝑇𝐼𝐼1
𝜖𝐼𝐼1

+ 𝐵 1
𝜖𝐼𝐼1

+ 𝐶, (3) 

where again 𝐴, 𝐵, and 𝐶 are the regression coefficients. In both cases, the regression coefficients are 108 
fit for classes of TCWV and ZVA, and they must somehow simulate atmospheric absorption and 109 
emission, while the effect of surface emissivity is in these cases, explicitly resolved. The atmospheric 110 
transmissivity is mainly constrained by the radiative optical path. Hence, a good calibration 111 
database to fit model coefficients in eqs. (2) and (3) needs to ensure that a scene may be observed by 112 
a wide range of viewing geometries (ZVA) and water vapor contents, which is the most relevant and 113 
variable absorber/emitter in the TIR window region.  114 

The weighting functions (given by the vertical derivative of transmissivity) of atmospheric 115 
window channels peak close to the surface, where the strongest vertical gradients of humidity are. 116 
However, in the presence of well-developed moist planetary boundary layers their peak will be 117 
higher above (although always relatively close to the ground), which means the temperature and 118 
humidity vertical structure at the lower levels in the profiles represented in the calibration database 119 
might play a role in the database robustness, especially considering the occurrence of temperature 120 
inversions close to the surface. This effect may be taken into account not only by introducing a large 121 
variety of atmospheric profiles at different locations and observation times, but also by artificially 122 
varying the difference between the surface skin temperature and the near-surface air temperature 123 
(𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎), which in turn has a significant role in the control of the thermal structure of the lower 124 
atmosphere, through the turbulent sensible heat flux (e.g., [26,27]). This difference varies across the 125 
diurnal cycle, among surface types and for different large scale atmospheric conditions, and may be 126 
either positive or negative. Particular attention should be paid to its distribution within calibration 127 
databases and to the impact on algorithm performance. 128 

The difference between TOA brightness temperatures in the split-window channels is aimed at 129 
capturing differential absorption within those bands which is associated to atmospheric water vapor 130 
content. In the case of a GSW algorithm, eq (3), the difference between the spectral emissivities of the 131 
window channels are also taken into account. This difference is related to surface type and moisture 132 
in the sense that moister surfaces show less spectral variations in emissivity [28]. 133 

2.2 Radiative transfer simulations 134 
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The development of LST algorithms, such as those represented by eqs. (2) and (3) (see e.g., 135 
[20,21,25]) is usually based on a set of radiative transfer simulations performed for a calibration 136 
database (for algorithm fit) and a validation one (for algorithm test), both representing a wide range 137 
of clear sky conditions. The databases must be independent and, while the former should 138 
encapsulate the widest possible atmospheric conditions for the area of interest together with broad 139 
distributions of surface emissivity and sensor viewing geometry that are needed for robust 140 
parameter estimation, the latter should contain the largest possible set of profiles/surface conditions 141 
to allow a comprehensive characterization of LST algorithm uncertainty. By LST algorithm 142 
uncertainty, we mean deviations of LST retrievals from the “true value” that are not associated to 143 
uncertainties in the input data, but solely to the retrieval method. The characterization of the 144 
individual sources of uncertainty (such as the algorithm uncertainty studied here or the uncertainty 145 
due to emissivity or to the sensor noise, for example) has been recognized as crucial for the 146 
uncertainty validation of remotely sensed surface temperature products [29]. It is worth 147 
emphasizing that the comparison of LST estimates obtained using actual remote sensing 148 
observations against ground-based observations is part of a product validation exercise. In that case, 149 
which is often limited to a relatively small number of available sites, the deviations will be the result 150 
of both algorithm and input errors and their contributions to the total error are impossible to 151 
disentangle. The radiative transfer simulations aim to determine the TOA spectral radiances for each 152 
profile in the respective databases, so that the forward problem is solved with full knowledge of the 153 
surface emission and atmospheric absorption. It is important that those simulations are performed 154 
with an accurate radiative transfer model. For the example analyzed in this study, the MODTRAN4 155 
code [30] was used, which returns spectral radiances with a resolution of 1 cm-1. For the sake of 156 
simplicity, MODTRAN4 TOA radiances were convoluted with SEVIRI response functions for 157 
channels centered at 10.8 µm (IR1 channel) and 12.0 µm (IR2 channel, only used in the GSW 158 
algorithm), and then subject to the inverse Planck function to obtain the respective channels 159 
brightness temperatures, 𝑇𝐼𝐼1  and 𝑇𝐼𝐼2  (for more details see, e.g. [15]). The calibration of the 160 
coefficients is performed using a least-squares technique, aimed to provide the best fit for the 161 
semi-empirical relationships between the simulated brightness temperatures and the set of 162 
prescribed LSTs, atmospheric conditions and viewing geometries in the calibration database. In the 163 
case of eqs. (2) and (3) used in this study, the coefficients are calibrated in classes of ZVA and TCWV, 164 
as those formulations do not explicitly model their effect on the atmospheric correction. Finally, the 165 
algorithm uncertainty is characterized using the independent validation database, through 166 
comparisons of estimated LST obtained with one of the semi-empirical models (eq. 2 or 3) and the 167 
𝐿𝐿𝑇𝑇𝑎𝑇𝑇  value.  The latter corresponds to the 𝑇𝑆𝑆𝑖𝑆 values in the databases, which together with the 168 
respective atmospheric profiles, surface emissivity and prescribed view zenith angle, led to the TOA 169 
brightness temperature(s) used in the LST algorithms. The use of independent databases for 170 
algorithm calibration and validation, relying on accurate radiative transfer simulations, is the best 171 
way of characterizing the algorithm uncertainty and its performance for a wide range of scenarios.  172 

2.3 Characteristics of Atmospheric Profiles relevant for Radiative Transfer in the TIR Window 173 
We have opted to select the calibration dataset from a comprehensive collection of clear-sky 174 

profiles of temperature, water vapor and ozone, as well as ancillary variables such as spectral 175 
emissivity, land cover, elevation, skin temperature, and surface pressure compiled by Borbas et al. 176 
[31]. This dataset, hereafter referred to as SeeBor database, includes over 15000 profiles and will be 177 
used in this work for convenience. We could have made use of other datasets also specifically 178 
gathered for satellite retrievals under clear sky conditions (e.g., [22]), however our aim is focused on 179 
the criteria to be taken into account for the subset of calibration data for LST algorithms. 180 

Figure 1 shows the geographical distribution of profiles contained in the SeeBor database; the 181 
dots representing the profile locations are colored according to their TCWV. This dataset covers the 182 
whole globe, including oceans. Regions with more frequent cloud cover are, as expected, somewhat 183 
less populated. In general, low values of TCWV are found near the poles and high values close to the 184 
Equator. However there are notable exceptions, especially in some continental regions where it is 185 
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possible to observe both very dry and very moist atmospheres. From this large set of profiles only a 186 
few will be selected to calibrate an LST retrieval algorithm, while the rest is used for its validation, 187 
i.e., characterization of algorithm uncertainty as referred above. The task of selecting these 188 
calibration profiles is tricky and impacts on the model robustness, as will be shown below. 189 

 190 
Figure 1 - Distribution of the SeeBor (clear sky) profiles, colored by TCWV class (in cm). 191 

The statistical distributions of TCWV and skin temperature are shown in Figure 2a and 2b, 192 
respectively. Both distributions are highly skewed. The majority of the profiles are on the drier side 193 
of the TCWV distribution and almost no profiles show values of more than 6 cm since those 194 
conditions are within the physical limit for an atmosphere with no clouds. Skin temperatures show a 195 
wide dynamic range, roughly between 210 and 330 K, the distribution being negatively skewed. So 196 
in principle, it would only be necessary to uniformly span these ranges of values to have a 197 
comprehensive calibration database. However, some combinations of both parameters are 198 
unphysical, which in turn leads to less accurate coefficients and a less performant regression model. 199 
The bivariate distribution shown in Figure 2c reveals that not surprisingly very moist (clear sky) 200 
atmospheres only occur over the warmer surfaces, while towards lower TCWV values, the skin 201 
temperature range increases. In other words, the very dry atmospheres can be very warm or very 202 
cold, whereas the moister atmospheres are only found over warmer surfaces. 203 

 204 

Figure 2 - Distributions of a) TCWV and b) Skin temperature on the SeeBor database. c) Bivariate 205 
distribution of the previous parameters. 206 
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In Figure 3 the distribution of 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 is shown, for each class of TCWV. 𝑇𝑎𝑖𝑎  corresponds 207 
to the temperature at the first pressure level above the ground. The separation in classes of TCWV 208 
shows that drier atmospheres support somewhat larger temperature gradients close to the surface. 209 
The dynamic range of this parameter needs to be chosen carefully, since it has a large impact on the 210 
resulting coefficients (see sensitivity tests in section 3). Cases with the largest differences should also 211 
be accounted for in the linear regression, otherwise the calibration would miss some of the most 212 
extreme low level temperature profiles and this would degrade the quality of the regression, 213 
especially when the algorithm needs to deal with such profiles in practice. For very dry 214 
atmospheres, the distribution is nearly normal with maximum absolute differences of about 20 K. In 215 
the case of moister atmospheres, the distributions become positively skewed with maximum 216 
positive differences of about 25 K for only a few cases but almost no values below -10 K. In general, 217 
most cases lie between -15K and 15K. 218 

 219 

Figure 3 - Distributions of the difference between the skin temperature and the temperature at the 220 
first level above the surface on SeeBor, by class of TCWV. Histograms are normalized by the number 221 
of cases in each TCWV class. 222 

The diversity of land surfaces and the radiative properties of their materials need to be taken 223 
into account through an appropriate range of surface emissivities. This quantity adds an extra level 224 
of complexity to the calibration database. Depending on the algorithm that is chosen, only one value 225 
is used in the case of a single-channel algorithm, or the values on two bands need to be specified in 226 
the case of a GSW model. Some GSWs, such as that considered here (eq. 2) rely on the average value 227 
of the emissivity in the two channels and also the difference between them. Therefore it was decided 228 
to prescribe a range of emissivity values for the channel around 10.8 µm and then prescribe a range 229 
of differences of the emissivities in both channels, 𝛥𝜖 = 𝜖𝐼𝐼2 − 𝜖𝐼𝐼1. The range of spectral emissivities 230 
at 10.8 µm and 12.0 µm, close to typical central wavelengths of split-window channels (e.g., MODIS, 231 
SEVIRI), available in the SeeBor database are shown in Figure 4. There are quite a few cases with 232 
very high emissivities which correspond to SeeBor profiles over water bodies and ice. In general, 233 
cases over land have higher emissivities in the 12.0 µm compared to the 10.8 µm. The larger spectral 234 
variations are found over deserts and semi-arid surfaces. 235 

The viewing angle also affects the calibration and the appropriate range to be considered will 236 
depend on each sensor. In this work the analysis will be for a sensor on board a geostationary 237 
platform, or for a large swath polar orbiting sensor, and therefore we will also consider a wide range 238 
of view zenith angles. 239 
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 240 
Figure 4 – Distribution of the SeeBor spectral emissivities at 10.8 and 12.0 µm, and their difference. 241 

2.4 A calibration database 242 
Given the physical constraints of the problem and the range of the input parameters detailed in 243 

the previous section, the following methodology is proposed to select the subset of calibration 244 
profiles: 245 

1) Define classes of 𝑇𝑆𝑆𝑖𝑆 (from 200 K to 330 K in steps of 5 K) and 𝑇𝐶𝑇𝑇 (from 0 to 6 cm in 246 
classes of 0.75 cm – values greater than this should be treated with the coefficient 247 
corresponding to the last 𝑇𝐶𝑇𝑇 class). 248 

2) Iterate in the SeeBor clear-sky profile database to fill each class in the 𝑇𝐶𝑇𝑇/ 𝑇𝑆𝑆𝑖𝑆 phase 249 
space (as in Figure 2c) with one case each. When a new profile is selected, it is ensured that 250 
its great-circle distance to the already selected profiles is greater than an initial distance of 15 251 
degrees, which guarantees a wide geographical coverage. After a sufficiently large number 252 
of tries (in this case 30000), the distance criterion is relaxed in steps of minus 1 degree, until 253 
the whole 𝑇𝐶𝑇𝑇/ 𝑇𝑆𝑆𝑖𝑆   phase space is filled. 254 

3) For each of the previously selected profiles, assign a new 𝑇𝑆𝑆𝑖𝑆  based on the ranges of 255 
𝑇𝑆𝑆𝑖𝑆 − 𝑇𝑎𝑖𝑎  observed in Figure 3. The choice of the range of perturbations to apply is key to 256 
the performance of the chosen model and may depend on the region of interest. In the case 257 
of this work, a range of ±15K around 𝑇𝑎𝑖𝑎  in steps of 5K showed an overall good 258 
performance. As will be seen, large biases arise when non-physical cases are included or if 259 
the somewhat more extreme cases are not taken into account. 260 

4) Each of these conditions may be sensed from angles ranging from 0 (nadir view) to 70° in 261 
steps of 2.5°. It is important to discretize the viewing geometry in this way because this is an 262 
intrinsically non-linear problem. The upper limit of the 𝑍𝑇𝐴 might be adapted for the 263 
sensor under analysis. Previous calibration exercises show that above this viewing angle 264 
limit the retrieval errors are generally too high, especially for moister atmospheres [15]. 265 

5) For the emissivity, a range of possible values are attributed to each of the cases above: values 266 
of 𝜖10.8  from 0.93 to 1.0 in steps of 0.01 and then, in the case of a GSW model, it is 267 
appropriate to prescribe departures from this value for 𝜖12.0: -0.015 to 0.035 in steps of 0.01 268 
(excluding cases where 𝜖12.0 > 1.0), as suggested by Figure 4. 269 

Figure 5 shows the statistical and geographical properties of the database gathered following 270 
those steps, which total 116 profiles. By combining these profiles with the prescribed viewing 271 
geometries and surface / low-level conditions proposed in steps 3 to 5, the total number of cases used 272 
in the calibration is 906192. This number is around ten times larger than the number of simulations 273 
made for the validation dataset, which contains the remaining profiles in the SeeBor database, 274 
simulated with five random angles (within the ZVA range of each sensor) per profile. Note that the 275 
TCWV distribution (Fig. 5a) is close to that of the whole SeeBor data set (Fig. 2a), although moister 276 
profiles are relatively over-represented, so that a robust fit of LST algorithms can be achieved for 277 
these cases. Nevertheless, low humidity profiles still dominate within the distribution, to ensure a 278 
proper coverage of the 𝑇𝐶𝑇𝑇/ 𝑇𝑆𝑆𝑖𝑆  phase space (Fig. 5c) and its large dynamic range of 𝑇𝑆𝑆𝑖𝑆 279 
towards low TCWV values (as seen in Fig. 2c). 280 
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The way the database is built also leads to a larger frequency of profiles gathered over land, 281 
since some of the most extreme conditions are only found there. The presence of some marine 282 
profiles is not problematic because algorithms also need to cover cases where the LST retrieval is 283 
made over small islands or coastal regions. Validation of LST products over large water bodies is 284 
also a common practice (e.g. [32]). 285 

 286 
Figure 5 – Main properties of the proposed calibration database: a) TCWV distribution, b) 𝑇𝑆𝑆𝑖𝑆 287 
distribution, c) Bivariate TCWV/𝑇𝑆𝑆𝑖𝑆 distribution and d) geographical distribution.   288 

3. Results 289 

3.1 Error statistics of the proposed calibration database 290 

Figure 6 shows the error statistics of the GSW algorithm adjusted using the proposed calibration 291 
database; the algorithm error (i.e., LSTGSW – LSTTrue) statistics are evaluated for the independent 292 
validation database. Globally, this reveals a bias of around -0.09 K and a Root Mean Square Error 293 
(RMSE) of 0.776 K, the scatterplot shows larger dispersions towards larger LSTs which is mainly 294 
caused by the greater water vapor content of such atmospheres. Especially when combined with 295 
large viewing angles, this kind of profiles is responsible for the largest retrieval errors. This is 296 
confirmed by the diagram on the center of Figure 6 which shows the RMSE per class of VZA and 297 
TCWV: larger RMSE values of above 3 K appear for classes with larger optical path (larger ZVA and 298 
larger TCWV). On the other hand, nearly all classes below 3 cm and below 50 degrees show RMSEs 299 
of 0.5 K or lower. The distribution of the bias over the TCWV/ZVA diagram shows that this statistic 300 
does not change much across the different classes with only a few classes with positive and negative 301 
biases of magnitudes around 0.2 K, towards higher values of TCWV. 302 
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 303 
Figure 6 - Error statistics for the proposed calibration database using the GSW model. On the left a 304 
scatterplot with all the cases in the database, and the global bias and RMSE are indicated. The red 305 
line represents the best linear fit. On the center, the RMSE is calculated for boxes of TCWV and VZA 306 
and on the right the same is done for the bias. 307 

In Figure 7 the same statistics are analyzed in the case of the MW model. Although this model 308 
shows nearly the same overall bias (0.086 K), its RMSE is almost three times larger (of about 2.20K). 309 
The way the RMSE is distributed along the classes of TCWV and ZVA is much less linear than in the 310 
case of the GSW model and presents a stronger dependency on TCWV even for low ZVAs. Moreover 311 
there are more classes with retrieval errors that are close to the limit acceptable for LST algorithms 312 
(e.g., LSA-SAF LST products consider 4K to be their threshold accuracy requirement; [20]). The bias 313 
also has a more complex structure among the TCWV/ZVA classes, some of them reaching more than 314 
1K, both positive and negative showing that the overall bias results from the cancellation of values 315 
between different classes. The differences between Figure 6 and Figure 7 and particular the steeper 316 
increase in RMSE with TCWV in the MW, emphasize the importance of using GSW-type schemes 317 
whenever possible. 318 
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 319 

Figure 7 - Same as Figure 6 but for the MW model. 320 

3.2 Sensitivity to the distribution of relevant variables 321 
In order to study the sensitivity of the proposed database to some of the choices that were 322 

made, a set of experiments was performed. The baseline calibration dataset, which is based on a 323 
choice of profiles that is adequate to fill the TCWV/LST diagram is referred to as WTS_-15_15 324 
(TCWV is sometimes represented as W in the literature and TS stands for 𝑇𝑆𝑆𝑖𝑆). A different criterion 325 
could have been adopted to choose a few calibration profiles from the more than 15000 profiles in 326 
the SeeBor database, such as ensuring a flat distribution of TCWV. This criterion was adopted, 327 
together the wide geographical distribution criterion of WTS_-15_15, for experiments 328 
FLAT14_-15_15 and FLAT10_-15_15. The difference between these two is that for the first, 14 profiles 329 
per TCWV class were chosen (112 profiles vs. 116 in WTS_-15_15) and for the latter only 10 (leading 330 
to a total of 80 profiles). The goal was to test the relevance of the number of profiles and of the 331 
respective joint LST /TCWV distribution for the robustness of the regression coefficients. The 332 
statistical and geographical distributions of these databases are illustrated in Figures 8 and 9. Large 333 
parts of the TCWV/LST diagram are not covered such as the most extreme LST classes. In the 334 
intermediate TCWV classes, a large number of the cases fall in the same LST range, as these 335 
combinations are globally more frequent for clear sky conditions, and therefore also more frequent 336 
in the SeeBor database. Note that a few of the profiles are common to FLAT14_-15_15 and to 337 
FLAT10_-15_15; this is because the algorithm is initiated with the same random seed, which 338 
generated the same random number sequence for all the experiments. The geographical 339 
distributions show that relatively fewer profiles over land are selected, which might be explained by 340 
the fact that the inclusion of more extreme situations was not a requirement. 341 
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Table 1 – Description of the calibration database sensitivity experiments 342 

Database Selection of profiles 
Number 

of 
profiles 

Prescribed 
𝑳𝑳𝑳− 𝑳𝒂𝒂𝒂 range (K) 

Baseline:  
WTS_-15_15 

Full coverage of the LST/TCWV phase 
space 

116 -15 to +15 

FLAT14_-15_15 
Flat distribution of TCWV with 14 

profiles per TCWV class 
112 -15 to +15 

FLAT10_-15_15 
Flat distribution of TCWV with 10 

profiles per TCWV class 
80 -15 to +15 

WTS_-10_10 
Full coverage of the LST/TCWV phase 

space 
116 -10 to +10 

WTS_-10_15 
Full coverage of the LST/TCWV phase 

space 
116 -10 to +15 

WTS_-10_20 
Full coverage of the LST/TCWV phase 

space 
116 -10 to +20 

WTS_-15_20 
Full coverage of the LST/TCWV phase 

space 
116 -15 to +20 

WTS_-20_15 
Full coverage of the LST/TCWV phase 

space 
116 -20 to +15 

WTS_-20_20 
Full coverage of the LST/TCWV phase 

space 
116 -20 to +20 

WTS_-20_25 
Full coverage of the LST/TCWV phase 

space 
116 -20 to +25 

WTS_-25_25 
Full coverage of the LST/TCWV phase 

space 
116 -25 to +25 

 343 
Another factor that largely influences the robustness of the coefficients is the 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 344 

difference. Therefore, we tested a few variants of the WTS_-15_15 database varying the lower and 345 
upper limits of the prescribed 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 difference, always using steps of 5 K. These experiments 346 
are referred to as WTS_-10_10, WTS_-10_15, WTS_-10_20, WTS_-15_20, WTS_-20_15, WTS_-20_20, 347 
WTS_-20_25 and WTS_-25_25 (the numbers in the experiment name refer to the lower and upper 348 
limits of 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎). All these choices of calibration databases were tested in both the GSW and the 349 
MW formulations and the same validation database was used to assess their statistical properties. 350 
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 351 

Figure 8 - Same as Figure 5 but for the FLAT14_-15_15 experiment. 352 

The results of the sensitivity experiments are summarized in Table 1: the GSW and MW 353 
algorithms were adjusted using the different calibration databases described above and assessed 354 
using a common and independent validation database. In Table 1, values of the overall bias and 355 
RMSE are indicated, as well as their variability among the TCWV/ZVA classes (via the standard 356 
deviation of the bias and RMSE, respectively, obtained per TCWV/ZVA class). The GSW model 357 
shows a slightly higher bias and RMSE using the FLAT approach when compared to the WPS. Their 358 
variabilities are also larger for the FLAT-type databases, which means that there are classes that are 359 
not so well represented when using this approach.  360 

The set of experiments summarized in Table 1 also suggest high sensitivity to the lower and 361 
upper limits of the prescribed 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 difference prescribed in the calibration databases as this 362 
range is the only condition changing among experiments denoted by “WTS”. The results presented 363 
in Table 1 suggest that it is hard to tell which combination is the best. In general, widening the 364 
𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 range of possible values seems to make the overall RMSE worse, although there are a few 365 
exceptions. Another discernible pattern regards the sign and magnitude of the overall bias: 366 
increasing the upper limit increases the bias (i.e. it becomes “more positive”); conversely, decreases 367 
in the lower limit seem to make the bias more negative. Well balanced ranges (absolute value of the 368 
lower and the upper limits close to each other) seem to lower the variability of the statistics. 369 
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 370 

Figure 9 - Same as Figure 5 but for FLAT10_-15_15. 371 

Table 2 - Error statistics for the sensitivity experiments. The bias is calculated averaging the 372 
difference 𝐿𝐿𝑇𝐺𝑆𝐺 − 𝐿𝐿𝑇𝑇𝑎𝑇𝑇  for the validation database. The database with the best statistic is 373 
highlighted in red. 374 

Database Bias (K) RMSE (K) Bias stdev (K) 
RMSE stdev 

(K) 
Baseline: WTS_-15_15 -0.09 0.78 0.14 0.67 

FLAT14_-15_15 -0.12 0.81 0.38 0.70 
FLAT10_-15_15 -0.11 0.82 0.32 0.72 

WTS_-10_10 0.05 0.74 0.26 0.64 
WTS_-10_15 0.07 0.76 0.34 0.69 
WTS_-10_20 0.09 0.81 0.41 0.73 
WTS_-15_20 -0.02 0.76 0.21 0.67 
WTS_-20_15 -0.11 0.79 0.14 0.68 
WTS_-20_20 -0.12 0.78 0.14 0.68 
WTS_-20_25 -0.11 0.78 0.15 0.68 
WTS_-25_25 -0.25 0.87 0.22 0.73 

 375 
In the case of the MW model, the experiments show even less linear results. In fact, the case 376 

with more favorable error statistics is arguably FLAT10_-15_15, with a lower absolute value of the 377 
bias and bias variability, an overall RMSE that is comparable to that of the baseline experiment and 378 
with less variability among classes. For the MW model, the experiment with the smallest RMSE is 379 
WTS_-10_10 (of about 1.97 K); however it has also the worst absolute value of the bias: 0.55K. Like in 380 
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the case of the GSW model, there is also a tendency to get worse RMSE values towards wider ranges 381 
of 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 difference. 382 

Table 3 – Same as Table 2 but for the MW model. 383 

Database Bias (K) RMSE (K) Bias stdev (K) 
RMSE 

stdev (K) 
Baseline: WTS_-15_15 0.09 2.02 0.71 1.63 

FLAT14_-15_15 0.11 2.08 0.73 1.42 
FLAT10_-15_15 -0.04 2.05 0.69 1.38 

WTS_-10_10 0.55 1.97 0.70 1.35 
WTS_-10_15 0.76 2.19 0.92 1.54 
WTS_-10_20 0.89 2.39 1.09 1.72 
WTS_-15_20 0.43 2.28 0.83 1.69 
WTS_-20_15 -0.13 2.23 0.71 1.67 
WTS_-20_20 0.04 2.34 0.76 1.68 
WTS_-20_25 0.16 2.46 0.83 1.89 
WTS_-25_25 -0.28 2.67 0.89 2.07 

 384 
These results suggest that the configuration of an appropriate calibration database may vary 385 

with the algorithm to be used and area coverage, as the distribution of the variables analyzed above 386 
(most notably 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎) over the area of interest may support the exclusion of more extreme cases 387 
and non-relevant. The choice of profiles from a SeeBor-like database is non-trivial but basing the 388 
choice on fully covering the bivariate TCWV/LST distribution over the respective region of interest 389 
seems to show some advantages. It is worth noticing that covering the most frequent classes in the 390 
TCWV/LST diagram leads, as expected, to better overall statistics, as those will be the most frequent 391 
in the validation database (and also in real applications). In Figure 10 the overall statistics are 392 
analyzed for the FLAT14_-15_15 calibration database, which despite having a comparable number of 393 
profiles to WTS_-15_15 and much more than FLAT10_-15_15, shows overall worse performance than 394 
those cases. The analysis of the bias (Figure 10c) as a function of TCWV clearly shows that some 395 
classes are affected by large negative biases (between 2 and 3 cm, and around 5 cm) while between 3 396 
and 4 cm the bias is positive; the ZVA dependency seems less important in the analyzed case. This 397 
shows that even with a flat distribution of TCWV, the performance of the model will depend on the 398 
TCWV, suggesting that combined distributions of variables relevant to the problem need to be taken 399 
into account. In practice this would translate in a roughly latitude dependent bias (following the 400 
latitude dependence of TCWV), which is something that should be avoided in global datasets. 401 
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 402 

Figure 10 - Same as Figure 7 but using the FLAT14_-15_15 calibration database. 403 

In order to explore the effect of the prescribed 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎  differences in the representation of 404 
the most extreme cases, boxplots of the error distribution (as given by 𝐿𝐿𝑇𝑀𝐺 − 𝐿𝐿𝑇𝑇𝑎𝑇𝑇 ) were 405 
calculated by classes of 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 in the validation database, and also as a function of the TCWV 406 
class, for two of the proposed experiments: MW calibrated using WTS_-15_15 and WTS_-25_25, 407 
respectively, as shown in Figures 11 and 12. There were some classes with only few cases, reflecting 408 
the fact that largely negative differences rarely occur and they do so in very dry atmospheres, 409 
therefore we merged them into a single class −25𝐾 ≤ 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 < 10𝐾  to increase the figure 410 
readability. Large positive differences are more frequent and may occur in all types of atmospheres. 411 
The comparison of the error distributions shown in Figures 11 and 12 indicates that only a few 412 
classes seem to be statistically affected by the temperature difference range that is applied. In drier 413 
atmospheres (TCWV < 3cm) the effect is in fact negligible, since under these conditions the TOA 414 
brightness temperatures will be highly dominated by the surface emitted signal (i.e., by LST and 415 
surface emissivity). In most cases, the only noticeable effect is the increase in the range of the error 416 
when the temperature difference increases, even in those classes that are “covered” by both 417 
calibration databases (e.g., 5𝐾 ≤ 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 < 10𝐾 ). This is what causes the overall loss of 418 
performance of the database with the wider temperature ranges, since those classes are more 419 
populated than those with more extreme temperature differences. It is also worth noticing that 420 
extending the temperature difference range does not necessarily lead to a better representation of the 421 
extreme cases. When 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎  is positive and large, it likely means the surface sensible heat flux 422 
may generate a convective boundary layer, which is often topped by a temperature inversion [33]. It 423 
is well known that large LST retrieval errors occur under very moist atmospheres (e.g., [20]). If on 424 
top of such conditions we have that the development of a convective boundary layer, the height of 425 
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largest thermal and moisture gradients may be shifted upwards and therefore the peak of thermal 426 
weighting function of (split-)window channels may also be shifted upwards [34–36], which makes it 427 
harder to disentangle surface emission (LST and emissivity) from the signal emitted by the lower 428 
atmosphere. Some currently used schemes address this issue using different coefficients for day and 429 
night retrievals [e.g., 35], which somehow tunes the LST algorithms to different structures of the 430 
atmospheric boundary layer, but introduce an additional discontinuity in the algorithm coefficients, 431 
while other schemes use additional information from numerical weather prediction models 432 
regarding near surface air temperature (which may also bring additional model forecast errors into 433 
the retrieval). Although not shown, the GSW model seems much less sensitive to these effects, as the 434 
boxplot diagrams for the cases illustrated in Figures 11 and 12 for the MW algorithm are much closer 435 
to each other in the GSW case. In summary, extending the 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 values to include the most 436 
extreme cases may not be beneficial for the overall performance of the retrievals because it can lead 437 
to higher errors in the classes that are more frequent, without significant compensation from the 438 
classes with more extreme situations. 439 

 440 

 441 
Figure 11 - Boxplot diagrams of the 𝐿𝐿𝑇𝑀𝐺 − 𝐿𝐿𝑇𝑇𝑎𝑇𝑇  difference (K) discriminated in classes of 442 
𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎  difference (K) and TCWV, using the WTS_-15_15 database. Below each diagram the 443 
number of cases is indicated. Note that the 𝐿𝐿𝑇 − 𝑇𝑎𝑖𝑎 range in the top left plot is broader than in the 444 
remaining plots. 445 
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 446 

Figure 12 - Same as Figure 11 but using WTS_-25_25. 447 

4. Conclusions 448 
The problem of how to design a calibration database for semi-empirical retrieval methods for 449 

LST is addressed here by identifying the factors that may influence the quality of the calibration (and 450 
therefore of the retrieval) and then investigating their physical range of variability. Considering the 451 
equation of radiative transfer between the surface and the TOA within the thermal infrared window, 452 
particular attention should be put into three main factors, namely: 1) the atmospheric transmissivity 453 
and its vertical structure, which in turn is conditioned by the water vapor profile, as the main 454 
absorber/emitter and most variable gas in the wavelengths of interest, together with the viewing 455 
geometry; 2) the surface emissivity and its spectral variations and finally 3) the low level thermal 456 
structure of the atmosphere, which may affect the vertical level at which the sensor is more sensitive 457 
in the channels of interest. 458 

Assuming that we would like to design algorithm calibration databases that would lead to good 459 
fit under all possible conditions, one of the main questions is whether it is possible to improve the 460 
representation of the most extreme cases without compromising the performance of the overall 461 
retrieval. In this work it is shown that the answer to this question is not trivial. The selection of a set 462 
of atmospheric profiles that spans the range of surface temperatures and total column water vapor 463 
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combinations that are physically possible seems beneficial for the quality of the regression model, 464 
but only modestly. Nevertheless, this ensures that a thorough representation of the possible cases is 465 
achieved when the model coefficients are trained, thus avoiding biases in certain classes of input 466 
parameters or retrieval conditions. The effects are amplified when a MW model is used instead of a 467 
GSW. 468 

In terms of the representation the thermal structure of the low-levels in the atmosphere the 469 
situation is slightly more complex. The inclusion of more extreme temperature differences between 470 
the surface and the near-surface air in the calibration database, rather than restricting them to more 471 
frequent/moderate cases, degrades the performance of the models especially under moist 472 
atmospheres, on which atmospheric emission is non-negligible. Also, such atmospheres are often 473 
characterized by well-developed boundary layers and as such, temperature inversions and strong 474 
vertical gradients may be present, complicating the atmospheric correction problem. Fully 475 
addressing this issue is left for future work. 476 

Regardless of the calibration database used, the errors of LST estimations obtained for an 477 
independent validation database can be used to fully characterize the uncertainty of the LST 478 
algorithm, which heavily depends on retrieval conditions. The uncertainty budget of LST satellite 479 
products will then be the result of that of the algorithm together with the propagation of input 480 
uncertainties. 481 

This article summarizes the procedure currently in practice within the EUMETSAT LSA SAF to 482 
calibrate the retrieval algorithms for a variety of LST products. The previously used methodology 483 
[20] gathered experience from a number of studies [e.g. 16,21,38,39] but missed an objective criterion 484 
to physically constrain the selection of profiles used for calibration which leads to an algorithm with 485 
lower uncertainty. The methodology designated here as WTS_-15_15 is a good compromise 486 
addressing the widest possible retrieval conditions, which is a pre-requisite for a global LST product. 487 
Future LST products, especially with inputs from the Flexible Combined Imager on board Meteosat 488 
Third Generation [24] will benefit from the knowledge provided by this study. It is possible though, 489 
that for different applications (e.g., regional LST products) a different choice of calibration database 490 
is more adequate. As such, LST developers should consider the joint distributions of the relevant 491 
variables, as detailed above, for their area of interest and to perform similar sensitivity analyses to 492 
their algorithms. 493 
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