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Abstract: Land Surface Temperature (LST) is routinely retrieved from remote sensing instruments 
using semi-empirical relationships between top of atmosphere (TOA) radiances and LST, using 
ancillary data such as total column water vapor or emissivity. These algorithms are calibrated using 
a set of forward radiative transfer simulations that return the TOA radiances given the LST and the 
thermodynamic profiles. The simulations are done in order to cover a wide range of surface and 
atmospheric conditions and viewing geometries. This work analyses calibration strategies, 
considering some of the most critical factors that need to be taken into account when building a 
calibration dataset, covering the full dynamic range of relevant variables. A sensitivity analysis of 
split-windows and single channel algorithms revealed that selecting a set of atmospheric profiles 
that spans the full range of surface temperatures and total column water vapor combinations that 
are physically possible seems beneficial for the quality of the regression model. However, the 
calibration is extremely sensitive to the low-level structure of the atmosphere indicating that the 
presence of atmospheric boundary layer features such as temperature inversions or strong vertical 
gradients of thermodynamic properties may affect LST retrievals in a non-trivial way. 
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mono-window; database; radiative transfer 

 

1. Introduction 

Land surface temperature (LST) is an important parameter in the physics of the Earth surface. 
LST controls the surface emitted long-wave radiation and is thereby essential to quantify sensible 
and latent heat fluxes between Earth surface and atmosphere. These interactions are crucial for a 
variety of applications related to land surface processes, such as climate and drought monitoring 
[1,2], hydrological cycle [3–5], model assessment [6–9], data assimilation [10–12], among others. LST 
has been retrieved in remote sensing platforms using a variety of algorithms that rely on sensor 
channels in the so-called atmospheric window region of the infrared spectrum [13]. Within this band, 
surface emitted radiances reach the sensor with relatively little absorption by the atmosphere. 
Moreover, in the thermal infrared atmospheric window (TIR), surface emissivity can be determined 
with relatively less uncertainty than in other regions in the infrared, such as in the middle infrared, 
making it ideal to retrieve surface properties [14]. Previous studies proposed the use of channels in 
the middle infrared for LST estimation [13,15,16], however, these are far less common than algorithms 
based on the thermal infrared observations, and therefore will not be considered here. 

The choice of LST algorithm, which is often a semi-empirical function of top-of-atmosphere 
(TOA) brightness temperatures in TIR, is intrinsically linked to the characteristics of the sensor being 
used. As such, LST algorithms may rely on a single channel (the mono-window algorithms, MW), 
when measurements are available in only one TIR band [15,17–19], or in a combination of TIR 
channels using the so-called the generalized split-windows (GSW) approach [13,20,21]. In general, 
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this type of algorithms are based on a linear regression between the measured quantities at the top 
of the atmosphere and LST, using ancillary data such as spectral emissivity, total column water vapor 
(TCWV), zenith viewing angle (ZVA), land cover and also day / night flags. Usually these parameters 
are divided into classes and for each combination a set of model coefficients is estimated [13,20]. The 
whole procedure therefore requires setting up a comprehensive calibration database which is usually 
ad hoc generated. To the best of our knowledge, no study has been devoted to the process of building 
a calibration database. This paper focus on the factors that need to be taken into account when 
building a calibration database for such regressions, providing a general methodology that can be 
applied when developing an algorithm for infrared LST estimates. 

In order to make the model coefficients robust enough to deal with any combination of input 
parameters it is necessary to calibrate the model for a wide range of atmospheric and surface 
conditions as well as viewing geometries. A good calibration of the model coefficients can only be 
achieved if the calibration database is designed carefully, covering the range of variations that are 
expected to affect the problem [21]. Usually, the models are calibrated using criteria that are 
considered reasonable, covering a wide range of atmospheric and surface conditions [20,22], but here 
we propose an objective approach to prepare a calibration database that minimizes the overall model 
error statistics and their variations among the range of input parameters. 

2. Methodology 

2.1 The problem  

Considering the Earth surface as a lambertian emitter-reflector, a cloud-free atmosphere under 
local thermodynamic equilibrium and negligible atmospheric scattering, the monochromatic top of 
atmosphere radiance ܮ௜, in a given channel i, and measured by a sensor onboard a satellite observing 
the Earth’s surface under zenith angle θ is expressed by (e.g. [13]): 

௜(θ)ܮ  = )ܤ ௕ܶ௜) = ߳௜ܤ௜൫ ௦ܶ௙௖൯߬௜(ߠ) + ↑௔௧௠,௜ܮ (ߠ) + (1 − ߳௜)ܮ௔௧௠,௜↓ ߬௜(ߠ), (1)

where ߳௜  is the surface emissivity on channel i, ܤ௜( ௦ܶ௙௖) is the equivalent black-body radiance at 
temperature ௦ܶ௙௖  (or LST), ߬௜  is the transmissivity, ܮ௔௧௠,௜↑  is the upward atmosphere-emitted 
radiance, and ܮ௔௧௠,௜↓  is the downward atmosphere-emitted radiance. LST is often estimated from 
linearized inversions of eq. (1), applied to one or more channels in the TIR, as mentioned above. There 
are a few formulations of these inversions in the literature [23] which mostly depend on how the 
Taylor expansion of the radiative transfer equation is made in order to derive a formulation that is 
suitable to a particular application. In this work the sensitivity to the used model is not fully 
addressed, although some of the results could be slightly different if different LST algorithms were 
used. However, it is important to assess the differences of using a GSW model or a MW model, as 
they serve two different purposes: the first is widely used in state of the art retrieval schemes in 
sensors with two or more channels in the thermal atmospheric window, while the second is left for 
sensors with only one channel in that band. Here, only one formulation for each case is considered – 
one GSW and one MW algorithm – which will serve as testbeds for the calibration datasets under 
analysis. The GSW formulation used for operational LST estimates both from the Moderate 
Resolution Imaging Spectroradiometer (MODIS; [21]) and from the Spinning Enhanced Visible and 
InfraRed Imager (SEVIRI; [20]): 

ܶܵܮ  = ܥ + ൬ܣଵ + ଶܣ 1 − ߳߳ + ଷܣ Δ߳߳ଶ൰ ூܶோଵ + ூܶோଶ2+ ൬ܤଵ + ଶܤ 1 − ߳߳ + ଷܤ Δ߳߳ଶ൰ ூܶோଵ − ூܶோଶ2 , 
(2) 

where ܣଵ, ,ଶܣ ,ଷܣ ,ଵܤ ,ଶܤ ଷܤ  and ܥ  are the model coefficients, ூܶோଵ  and ூܶோଶ  are the equivalent 
brightness temperatures, ߳ and Δ߳ are the average and the difference of the emissivities in both 
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split-windows channels. For the MW model, the formulation derived by Duguay-Tetzlaff et al. [17] 
to derive LST from Meteosat First Generation is used: 

ܶܵܮ  = ܣ ்಺ೃభఢ಺ೃభ + ܤ ଵఢ಺ೃభ +  (3) ,ܥ

where again ܤ ,ܣ, and ܥ are the regression coefficients. In both cases, the regression coefficients are 
fit for classes of TCWV and ZVA, and they must somehow simulate atmospheric absorption and 
emission, while the effect of surface emissivity is in these cases, explicitly resolved. The atmospheric 
transmissivity is mainly constrained by the radiative optical path. Hence, a good calibration database 
to fit model coefficients in eqs. (2) and (3) needs to ensure that a scene may be observed by a wide 
range of viewing geometries (ZVA) and water vapor contents, which is the most relevant and variable 
absorber/emitter in the TIR window region.  

The weighting functions (given by the vertical derivative of transmissivity) of atmospheric 
window channels peak close to the surface, where the strongest vertical gradients of humidity are. 
However, in the presence of well-developed moist planetary boundary layers their peak will be 
higher above (although always relatively close to the ground), which means the temperature and 
humidity vertical structure at the lower levels in the profiles represented in the calibration database 
might play a role in the database robustness, especially considering the occurrence of temperature 
inversions close to the surface. This effect may be taken into account not only by introducing a large 
variety of atmospheric profiles at different locations and observation times, but also by artificially 
varying the difference between the surface skin temperature and the near-surface air temperature 
ܶܵܮ) − ௔ܶ௜௥), which in turn has a significant role in the control of the thermal structure of the lower 
atmosphere, through the turbulent sensible heat flux (e.g., [24,25]). This difference varies across the 
diurnal cycle, among surface types and for different large scale atmospheric conditions, and may be 
either positive or negative. Particular attention should be paid to its distribution within calibration 
databases and to the impact on algorithm performance. 

The difference between TOA brightness temperatures in the split-window channels is aimed at 
capturing differential absorption within those bands which is associated to atmospheric water vapor 
content. In the case of a GSW algorithm, eq (3), the difference between the spectral emissivities of the 
window channels are also taken into account. This difference is related to surface type and moisture 
in the sense that moister surfaces show less spectral variations in emissivity [26]. 

2.2 Radiative transfer simulations 

The development of LST algorithms, such as those represented by eqs. (2) and (3) (see e.g., 
[20,21,23]) is usually based on a set of radiative transfer simulations performed for a calibration 
database (for algorithm fit) and a validation one (for algorithm test), both representing a wide range 
of clear sky conditions. The databases must be independent and, while the former should encapsulate 
the widest possible atmospheric conditions for the area of interest together with broad distributions 
of surface emissivity and sensor viewing geometry that are needed for robust parameter estimation, 
the latter should contain the largest possible set of profiles/surface conditions to allow a 
comprehensive characterization of LST algorithm uncertainty. By LST algorithm uncertainty, we 
mean deviations of LST retrievals from the “true value” that are not associated to uncertainties in the 
input data, but solely to the retrieval method. The characterization of the individual sources of 
uncertainty (such as the algorithm uncertainty studied here or the uncertainty due to emissivity or to 
the sensor noise, for example) has been recognized as crucial for the uncertainty validation of 
remotely sensed surface temperature products [27]. It is worth emphasizing that the comparison of 
LST estimates obtained using actual remote sensing observations against ground-based observations 
is part of a product validation exercise. In that case, which is often limited to a relatively small number 
of available sites, the deviations will be the result of both algorithm and input errors and their 
contributions to the total error are impossible to disentangle. The radiative transfer simulations aim 
to determine the TOA spectral radiances for each profile in the respective databases, so that the 
forward problem is solved with full knowledge of the surface emission and atmospheric absorption. 
It is important that those simulations are performed with an accurate radiative transfer model. For 
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the example analyzed in this study, the MODTRAN4 code [28] was used, which returns spectral 
radiances with a resolution of 1 cm-1. For the sake of simplicity, MODTRAN4 TOA radiances were 
convoluted with SEVIRI response functions for channels centered at 10.8 µm (IR1 channel) and 12.0 
µm (IR2 channel, only used in the GSW algorithm), and then subject to the inverse Planck function 
to obtain the respective channels brightness temperatures, ூܶோଵ and ூܶோଶ (for more details see, e.g. 
[15]). The calibration of the coefficients is performed using a least-squares technique, aimed to 
provide the best fit for the semi-empirical relationships between the simulated brightness 
temperatures and the set of prescribed LSTs, atmospheric conditions and viewing geometries in the 
calibration database. In the case of eqs. (2) and (3) used in this study, the coefficients are calibrated in 
classes of ZVA and TCWV, as those formulations do not explicitly model their effect on the 
atmospheric correction. Finally, the algorithm uncertainty is characterized using the independent 
validation database, through comparisons of estimated LST obtained with one of the semi-empirical 
models (eq. 2 or 3) and the ܵܮ ்ܶ௥௨௘  value.  The latter corresponds to the ௌܶ௞௜௡  values in the 
databases, which together with the respective atmospheric profiles, surface emissivity and prescribed 
view zenith angle, led to the TOA brightness temperature(s) used in the LST algorithms. The use of 
independent databases for algorithm calibration and validation, relying on accurate radiative transfer 
simulations, is the best way of characterizing the algorithm uncertainty and its performance for a 
wide range of scenarios.  

2.3 Characteristics of Atmospheric Profiles relevant for Radiative Transfer in the TIR Window 

We have opted to select the calibration dataset from a comprehensive collection of clear-sky 
profiles of temperature, water vapor and ozone, as well as ancillary variables such as spectral 
emissivity, land cover, elevation, skin temperature, and surface pressure compiled by Borbas et al. 
[29]. This dataset, hereafter referred to as SeeBor database, includes over 15000 profiles and will be 
used in this work for convenience. We could have made use of other datasets also specifically 
gathered for satellite retrievals under clear sky conditions (e.g., [22]), however our aim is focused on 
the criteria to be taken into account for the subset of calibration data for LST algorithms. 

Figure 1 shows the geographical distribution of profiles contained in the SeeBor database; the 
dots representing the profile locations are colored according to their TCWV. This dataset covers the 
whole globe, including oceans. Regions with more frequent cloud cover are, as expected, somewhat 
less populated. In general, low values of TCWV are found near the poles and high values close to the 
Equator. However there are notable exceptions, especially in some continental regions where it is 
possible to observe both very dry and very moist atmospheres. From this large set of profiles only a 
few will be selected to calibrate an LST retrieval algorithm, while the rest is used for its validation, 
i.e., characterization of algorithm uncertainty as referred above. The task of selecting these calibration 
profiles is tricky and impacts on the model robustness, as will be shown below. 
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Figure 1 - Distribution of the SeeBor (clear sky) profiles, colored by TCWV class. 

The statistical distributions of TCWV and skin temperature are shown in Figure 2a and 2b, 
respectively. Both distributions are highly skewed. The majority of the profiles are on the drier side 
of the TCWV distribution and almost no profiles show values of more than 6 cm since those 
conditions are within the physical limit for an atmosphere with no clouds. Skin temperatures show a 
wide dynamic range, roughly between 210 and 330 K, the distribution being negatively skewed. So 
in principle, it would only be necessary to uniformly span these ranges of values to have a 
comprehensive calibration database. However, some combinations of both parameters are 
unphysical, which in turn leads to less accurate coefficients and a less performant regression model. 
The bivariate distribution shown in Figure 2c reveals that not surprisingly very moist (clear sky) 
atmospheres only occur over the warmer surfaces, while towards lower TCWV values, the skin 
temperature range increases. In other words, the very dry atmospheres can be very warm or very 
cold, whereas the moister atmospheres are only found over warmer surfaces. 

 

Figure 2 - Distributions of a) TCWV and b) Skin temperature on the SeeBor database. c) Bivariate 
distribution of the previous parameters. 

In Figure 3 the distribution of ܶܵܮ − ௔ܶ௜௥ is shown, for each class of TCWV. ௔ܶ௜௥ corresponds to 
the temperature at the first pressure level above the ground. The separation in classes of TCWV 
shows that drier atmospheres support somewhat larger temperature gradients close to the surface. 
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The dynamic range of this parameter needs to be chosen carefully, since it has a large impact on the 
resulting coefficients (see sensitivity tests in section 3). Cases with the largest differences should also 
be accounted for in the linear regression, otherwise the calibration would miss some of the most 
extreme low level temperature profiles and this would degrade the quality of the regression, 
especially when the algorithm needs to deal with such profiles in practice. For very dry atmospheres, 
the distribution is nearly normal with maximum absolute differences of about 20 K. In the case of 
moister atmospheres, the distributions become positively skewed with maximum positive 
differences of about 25 K for only a few cases but almost no values below -10 K. In general, most cases 
lie between -15K and 15K. 

 

Figure 3 - Distributions of the difference between the skin temperature and the temperature at the 
first level above the surface on SeeBor, by class of TCWV. Histograms are normalized by the number 
of cases in each TCWV class. 

The diversity of land surfaces and the radiative properties of their materials need to be taken 
into account through an appropriate range of surface emissivities. This quantity adds an extra level 
of complexity to the calibration database. Depending on the algorithm that is chosen, only one value 
is used in the case of a single-channel algorithm, or the values on two bands need to be specified in 
the case of a GSW model. Some GSWs, such as that considered here (eq. 2) rely on the average value 
of the emissivity in the two channels and also the difference between them. Therefore it was decided 
to prescribe a range of emissivity values for the channel around 10.8 µm and then prescribe a range 
of differences of the emissivities in both channels, ߳߂ = ߳ூோଶ − ߳ூோଵ. The range of spectral emissivities 
at 10.8 µm and 12.0 µm, close to typical central wavelengths of split-window channels (e.g., MODIS, 
SEVIRI), available in the SeeBor database are shown in Figure 4. There are quite a few cases with very 
high emissivities which correspond to SeeBor profiles over water bodies and ice. In general, cases 
over land have higher emissivities in the 12.0 µm compared to the 10.8 µm. The larger spectral 
variations are found over deserts and semi-arid surfaces. 

The viewing angle also affects the calibration and the appropriate range to be considered will 
depend on each sensor. In this work the analysis will be for a sensor on board a geostationary 
platform, or for a large swath polar orbiting sensor, and therefore we will also consider a wide range 
of view zenith angles. 
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Figure 4 – Distribution of the SeeBor spectral emissivities at 10.8 and 12.0 m, and their difference.  

2.4 A calibration database 

Given the physical constraints of the problem and the range of the input parameters detailed in 
the previous section, the following methodology is proposed to select the subset of calibration 
profiles: 

1) Define classes of ௌܶ௞௜௡ (from 200 K to 330 K in steps of 5 K) and ܸܹܶܥ (from 0 to 6 cm in 
classes of 0.75 mm – values greater than this should be treated with the coefficient 
corresponding to the last ܸܹܶܥ class). 

2) Iterate in the SeeBor clear-sky profile database to fill each class in the ܸܹܶܥ/	 ௌܶ௞௜௡ phase 
space (as in Figure 2c) with one case each. When a new profile is selected, it is ensured that 
its great-circle distance to the already selected profiles is greater than an initial distance of 15 
degrees, which guarantees a wide geographical coverage. After a sufficiently large number 
of tries (in this case 30000), the distance criterion is relaxed in steps of -1 degree, until the 
whole ܸܹܶܥ/	 ௌܶ௞௜௡	 phase space is filled. 

3) For each of the previously selected profiles, assign a new ௌܶ௞௜௡ based on the ranges of ௌܶ௞௜௡ −௔ܶ௜௥ observed in Figure 3. The choice of the range of perturbations to apply is key to the 
performance of the chosen model and may depend on the region of interest. In the case of 
this work, a range of ±15K around ௔ܶ௜௥ in steps of 5K showed an overall good performance. 
As will be seen, large biases arise when non-physical cases are included or if the somewhat 
more extreme cases are not taken into account. 

4) Each of these conditions may be sensed from angles ranging from 0 (nadir view) to 70° in 
steps of 2.5°. It is important to discretize the viewing geometry in this way because this is an 
intrinsically non-linear problem. The upper limit of the ܼܸܣ might be adapted for the sensor 
under analysis. Previous calibration exercises show that above this viewing angle limit the 
retrieval errors are generally too high, especially for moister atmospheres [15]. 

5) For the emissivity, a range of possible values are attributed to each of the cases above: values 
of ߳ଵ଴.଼ from 0.93 to 1.0 in steps of 0.01 and then, in the case of a GSW model, it is appropriate 
to prescribe departures from this value for ߳ଵଶ.଴: -0.015 to 0.035 in steps of 0.01 (excluding 
cases where ߳ଵଶ.଴ ൐ 1.0), as suggested by Figure 4. 

Figure 5 shows the statistical and geographical properties of the database gathered following 
those steps, which total 116 profiles. By combining these profiles with the prescribed viewing 
geometries and surface / low-level conditions proposed in steps 3 to 5, the total number of cases used 
in the calibration is 906192. This number is around ten times larger than the number of simulations 
made for the validation dataset, which contains the remaining profiles in the SeeBor database, 
simulated with five random angles (within the ZVA range of each sensor) per profile. Note that the 
TCWV distribution (Fig. 5a) is close to that of the whole SeeBor data set (Fig. 2a), although moister 
profiles are relatively over-represented, so that a robust fit of LST algorithms can be achieved for 
these cases. Nevertheless, low humidity profiles still dominate within the distribution, to ensure a 
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proper coverage of the ܸܹܶܥ/	 ௌܶ௞௜௡  phase space (Fig. 5c) and its large dynamic range of ௌܶ௞௜௡ 
towards low TCWV values (as seen in Fig. 2c). 

The way the database is built also leads to a larger frequency of profiles gathered over land, 
since some of the most extreme conditions are only found there. The presence of some marine profiles 
is not problematic because algorithms also need to cover cases where the LST retrieval is made over 
small islands or coastal regions. Validation of LST products over large water bodies is also a common 
practice (e.g. [30]). 

 
Figure 5 – Main properties of the proposed calibration database: a) TCWV distribution, b) ௌܶ௞௜௡ 
distribution, c) Bivariate TCWV/ ௌܶ௞௜௡ distribution and d) geographical distribution.   

3. Results 

Figure 6 shows the error statistics of the GSW algorithm adjusted using the proposed calibration 
database; the algorithm error (i.e., LSTGSW – LSTTrue) statistics are evaluated for the independent 
validation database. Globally, this reveals a bias of around -0.09 K and a Root Mean Square Error 
(RMSE) of 0.776 K, The scatterplot shows larger dispersions towards larger LSTs which is mainly 
caused by the greater water vapor content of such atmospheres. Especially when combined with large 
viewing angles, this kind of profiles is responsible for the largest retrieval errors. This is confirmed 
by the diagram on the center of Figure 6 which shows the RMSE per class of VZA and TCWV: larger 
RMSE values of above 3 K appear for classes with larger optical path (larger ZVA and larger TCWV). 
On the other hand, nearly all classes below 3 cm and below 50 degrees show RMSEs of 0.5 K or lower. 
The distribution of the bias over the TCWV/ZVA diagram shows that this statistic does not change 
much across the different classes with only a few classes with positive and negative biases of 
magnitudes around 0.2 K, towards higher values of TCWV. 
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Figure 6 - Error statistics for the proposed calibration database using the GSW model. On the left a 
scatterplot with all the cases in the database, and the global bias and RMSE are indicated. The red line 
represents the best linear fit. On the center, the RMSE is calculated for boxes of TCWV and VZA and 
on the right the same is done for the bias. 

In Figure 7 the same statistics are analyzed in the case of the MW model. Although this model 
shows nearly the same overall bias (0.086 K), its RMSE is almost three times larger (of about 2.20K). 
The way the RMSE is distributed along the classes of TCWV and ZVA is much less linear than in the 
case of the GSW model and presents a stronger dependency on TCWV even for low ZVAs. Moreover 
there are more classes with retrieval errors that are close to the limit acceptable for LST algorithms 
(e.g., LSA-SAF LST products consider 4K to be their threshold accuracy requirement; [20]). The bias 
also has a more complex structure among the TCWV/ZVA classes, some of them reaching more than 
1K, both positive and negative showing that the overall bias results from the cancellation of values 
between different classes. The differences between Figure 6 and Figure 7 and particular the steeper 
increase in RMSE with TCWV in the MW, emphasize the importance of using GSW-type schemes 
whenever possible. 

 
Figure 7 - Same as Figure 6 but for the MW model. 

In order to study the sensitivity of the proposed database to some of the choices that were made, 
a set of experiments was performed. The baseline calibration dataset, which is based on a choice of 
profiles that is adequate to fill the TCWV/LST diagram is referred to as WTS_-15_15 (TCWV is 
sometimes represented as W in the literature and TS stands for ௌܶ௞௜௡). A different criterion could have 
been adopted to choose a few calibration profiles from the more than 15000 profiles in the SeeBor 
database, such as ensuring a flat distribution of TCWV. This criterion was adopted, together the wide 
geographical distribution criterion of WTS_-15_15, for experiments FLAT14_-15_15 and FLAT10_-
15_15. The difference between these two is that for the first, 14 profiles per TCWV class were chosen 
(112 profiles vs. 116 in WTS_-15_15) and for the latter only 10 (leading to a total of 80 profiles). The 
goal was to test the relevance of the number of profiles and of the respective joint LST /TCWV 
distribution for the robustness of the regression coefficients. The statistical and geographical 
distributions of these databases are illustrated in Figures 8 and 9. Large parts of the TCWV/LST 
diagram are not covered such as the most extreme LST classes. In the intermediate TCWV classes, a 
large number of the cases fall in the same LST range, as these combinations are globally more frequent 
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for clear sky conditions, and therefore also more frequent in the SeeBor database. Note that a few of 
the profiles are common to FLAT14_-15_15 and to FLAT10_-15_15; this is because the algorithm is 
initiated with the same random seed, which generated the same random number sequence for all the 
experiments. The geographical distributions show that relatively fewer profiles over land are 
selected, which might be explained by the fact that the inclusion of more extreme situations was not 
a requirement. 

Table 1 – Description of the calibration database sensitivity experiments 

Database Selection of profiles 
Number 

of 
profiles 

Prescribed ࢀࡿࡸ −  range (K) ࢘࢏ࢇࢀ

Baseline:  
WTS_-15_15 

Full coverage of the LST/TCWV phase 
space 

116 -15 to +15 

FLAT14_-15_15 
Flat distribution of TCWV with 14 

profiles per TCWV class 
112 -15 to +15 

FLAT10_-15_15 
Flat distribution of TCWV with 10 

profiles per TCWV class 
80 -15 to +15 

WTS_-10_10 
Full coverage of the LST/TCWV phase 

space 
116 -10 to +10 

WTS_-10_15 
Full coverage of the LST/TCWV phase 

space 
116 -10 to +15 

WTS_-10_20 
Full coverage of the LST/TCWV phase 

space 
116 -10 to +20 

WTS_-15_20 
Full coverage of the LST/TCWV phase 

space 
116 -15 to +20 

WTS_-20_15 
Full coverage of the LST/TCWV phase 

space 
116 -20 to +15 

WTS_-20_20 
Full coverage of the LST/TCWV phase 

space 
116 -20 to +20 

WTS_-20_25 
Full coverage of the LST/TCWV phase 

space 
116 -20 to +25 

WTS_-25_25 
Full coverage of the LST/TCWV phase 

space 
116 -25 to +25 

 
Another factor that largely influences the robustness of the coefficients is the ܶܵܮ − ௔ܶ௜௥ 

difference. Therefore, we tested a few variants of the WTS_-15_15 database varying the lower and 
upper limits of the prescribed ܶܵܮ − ௔ܶ௜௥ difference, always using steps of 5 K. These experiments 
are referred to as WTS_-10_10, WTS_-10_15, WTS_-10_20, WTS_-15_20, WTS_-20_15, WTS_-20_20, 
WTS_-20_25 and WTS_-25_25 (the numbers in the experiment name refer to the lower and upper 
limits of ܶܵܮ − ௔ܶ௜௥). All these choices of calibration databases were tested in both the GSW and the 
MW formulations and the same validation database was used to assess their statistical properties. 
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Figure 8 - Same as Figure 5 but for the FLAT14_-15_15 experiment. 

The results of the sensitivity experiments are summarized in Table 1: the GSW and MW 
algorithms were adjusted using the different calibration databases described above and assessed 
using a common and independent validation database. In Table 1, values of the overall bias and 
RMSE are indicated, as well as their variability among the TCWV/ZVA classes (via the standard 
deviation of the bias and RMSE, respectively, obtained per TCWV/ZVA class). The GSW model 
shows a slightly higher bias and RMSE using the FLAT approach when compared to the WPS. Their 
variabilities are also larger for the FLAT-type databases, which means that there are classes that are 
not so well represented when using this approach.  

The set of experiments summarized in Table 1 also suggest high sensitivity to the lower and 
upper limits of the prescribed ܶܵܮ − ௔ܶ௜௥ difference prescribed in the calibration databases as this 
range is the only condition changing among experiments denoted by “WTS”. The results presented 
in Table 1 suggest that it is hard to tell which combination is the best. In general, widening the ܶܵܮ −௔ܶ௜௥  range of possible values seems to make the overall RMSE worse, although there are a few 
exceptions. Another discernible pattern regards the sign and magnitude of the overall bias: increasing 
the upper limit increases the bias (i.e. it becomes “more positive”); conversely, decreases in the lower 
limit seem to make the bias more negative. Well balanced ranges (absolute value of the lower and the 
upper limits close to each other) seem to lower the variability of the statistics. 
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Figure 9 - Same as Figure 5 but for FLAT10_-15_15. 

Table 2 - Error statistics for the sensitivity experiments. The bias is calculated averaging the difference ீܶܵܮ ௌௐ − ܵܮ ்ܶ௥௨௘ for the validation database. The database with the best statistic is highlighted in 
red. 

Database Bias (K) RMSE (K) Bias stdev (K) 
RMSE stdev 

(K) 
Baseline: WTS_-15_15 -0.09 0.78 0.14 0.67 

FLAT14_-15_15 -0.12 0.81 0.38 0.70 
FLAT10_-15_15 -0.11 0.82 0.32 0.72 

WTS_-10_10 0.05 0.74 0.26 0.64 
WTS_-10_15 0.07 0.76 0.34 0.69 
WTS_-10_20 0.09 0.81 0.41 0.73 
WTS_-15_20 -0.02 0.76 0.21 0.67 
WTS_-20_15 -0.11 0.79 0.14 0.68 
WTS_-20_20 -0.12 0.78 0.14 0.68 
WTS_-20_25 -0.11 0.78 0.15 0.68 
WTS_-25_25 -0.25 0.87 0.22 0.73 

 
In the case of the MW model, the experiments show even less linear results. In fact, the case with 

more favorable error statistics is arguably FLAT10_-15_15, with a lower absolute value of the bias 
and bias variability, an overall RMSE that is comparable to that of the baseline experiment and with 
less variability among classes. For the MW model, the experiment with the smallest RMSE is WTS_-
10_10 (of about 1.97 K); however it has also the worst absolute value of the bias: 0.55K. Like in the 
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case of the GSW model, there is also a tendency to get worse RMSE values towards wider ranges of ܶܵܮ − ௔ܶ௜௥ difference. 

Table 3 – Same as Table 2 but for the MW model. 

Database Bias (K) RMSE (K) Bias stdev (K) 
RMSE 

stdev (K) 
Baseline: WTS_-15_15 0.09 2.02 0.71 1.63 

FLAT14_-15_15 0.11 2.08 0.73 1.42 
FLAT10_-15_15 -0.04 2.05 0.69 1.38 

WTS_-10_10 0.55 1.97 0.70 1.35 
WTS_-10_15 0.76 2.19 0.92 1.54 
WTS_-10_20 0.89 2.39 1.09 1.72 
WTS_-15_20 0.43 2.28 0.83 1.69 
WTS_-20_15 -0.13 2.23 0.71 1.67 
WTS_-20_20 0.04 2.34 0.76 1.68 
WTS_-20_25 0.16 2.46 0.83 1.89 
WTS_-25_25 -0.28 2.67 0.89 2.07 

 
These results suggest that the configuration of an appropriate calibration database may vary 

with the algorithm to be used and area coverage, as the distribution of the variables analyzed above 
(most notably ܶܵܮ − ௔ܶ௜௥) over the area of interest may support the exclusion of more extreme cases 
and non-relevant. The choice of profiles from a SeeBor-like database is non-trivial but basing the 
choice on fully covering the bivariate TCWV/LST distribution over the respective region of interest 
seems to show some advantages. It is worth noticing that covering the most frequent classes in the 
TCWV/LST diagram leads, as expected, to better overall statistics, as those will be the most frequent 
in the validation database (and also in real applications). In Figure 10 the overall statistics are 
analyzed for the FLAT14_-15_15 calibration database, which despite having a comparable number of 
profiles to WTS_-15_15 and much more than FLAT10_-15_15, shows overall worse performance than 
those cases. The analysis of the bias (Figure 10c) as a function of TCWV  clearly shows that some 
classes are affected by large negative biases (between 2 and 3 cm, and around 5 cm) while between 3 
and 4 cm the bias is positive; the ZVA dependency seems less important in the analyzed case. This 
shows that even with a flat distribution of TCWV, the performance of the model will depend on the 
TCWV, suggesting that combined distributions of variables relevant to the problem need to be taken 
into account. In practice this would translate in a roughly latitude dependent bias (following the 
latitude dependence of TCWV), which is something that should be avoided in global datasets. 

 
Figure 10 - Same as Figure 7 but using the FLAT14_-15_15 calibration database. 

In order to explore the effect of the prescribed ܶܵܮ − ௔ܶ௜௥ differences in the representation of the 
most extreme cases, boxplots of the error distribution (as given by ܵܮ ெܶௐ − ܵܮ ்ܶ௥௨௘) were calculated 
by classes of ܶܵܮ − ௔ܶ௜௥ in the validation database, and also as a function of the TCWV class, for two 
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of the proposed experiments: MW calibrated using WTS_-15_15 and WTS_-25_25, respectively, as 
shown in Figures 11 and 12. There are some classes with only few cases, reflecting the fact that largely 
negative differences rarely occur and they do so in very dry atmospheres. Large positive differences 
are more frequent and may occur in all types of atmospheres. The comparison of the error 
distributions shown in Figures 11 and 12 indicates that only a few classes seem to be statistically 
affected by the temperature difference range that is applied. In drier atmospheres (TCWV < 3cm) the 
effect is in fact negligible, since under this conditions the TOA brightness temperatures will be highly 
dominated by the surface emitted signal (i.e., by LST and surface emissivity). In most cases, the only 
noticeable effect is the increase in the range of the error when the temperature  difference increases, 
even in those classes that are “covered” by both calibration databases (e.g. −15ܭ ൑ ܶܵܮ − ௔ܶ௜௥ ൏  ܭ10
and 5ܭ ൑ ܶܵܮ − ௔ܶ௜௥ ൏  This is what causes the overall loss of performance of the database with .(ܭ10
the wider temperature ranges, since those classes are more populated than those with more extreme 
temperature differences. It is also worth noticing that extending the temperature difference range 
does not necessarily lead to a better representation of the extreme cases. When ܶܵܮ − ௔ܶ௜௥ is positive 
and large, it likely means the surface sensible heat flux may generate a convective boundary layer, 
which is often topped by a temperature inversion [31]. It is well known that large LST retrieval errors 
occur under very moist atmospheres (e.g., [20]). If on top of such conditions we have that the 
development of a convective boundary layer, the height of largest thermal and moisture gradients 
may be shifted upwards and therefore the peak of thermal weighting function of (split-)window 
channels may also be shifted upwards [32–34]. In these cases, TOA brightness temperatures 
measured by the sensor will be sensitive to LST together with air temperature a few meters above the 
ground, making the LST retrieval process more difficult and non-linear. Although not shown, the 
GSW model seems much less sensitive to these effects, as the boxplot diagrams for the cases 
illustrated in Figures 11 and 12 for the MW algorithm are much closer to each other in the GSW case. 

 

Figure 11 - Boxplot diagrams of the ܵܮ ெܶௐ − ܵܮ ்ܶ௥௨௘ difference (K) discriminated in classes of ܶܵܮ −௔ܶ௜௥ difference and TCWV, using the WTS_-15_15 database. Below each diagram the number of cases 
is indicated. 

 
Figure 12 - Same as Figure 11 but using WTS_-25_25. 

4. Conclusions 
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The problem of how to design a calibration database for semi-empirical retrieval methods for 
LST is addressed here by identifying the factors that may influence the quality of the calibration (and 
therefore of the retrieval) and then investigating their physical range of variability. Considering the 
equation of radiative transfer between the surface and the TOA within the thermal infrared window, 
particular attention should be put into three main factors, namely: 1) the atmospheric transmissivity 
and its vertical structure, which in turn is conditioned by the water vapor profile, as the main 
absorber/emitter and most variable gas in the wavelengths of interest, together with the viewing 
geometry; 2) the surface emissivity and its spectral variations and finally 3) the low level thermal 
structure of the atmosphere, which may affect the  vertical level at which the sensor is more sensitive 
in the channels of interest. 

Assuming that we would like to design algorithm calibration databases that would lead to good 
fit under all possible conditions, one of the main questions is whether it is possible to improve the 
representation of the most extreme cases without compromising the performance of the overall 
retrieval. In this work it is shown that the answer to this question is not trivial. The selection of a set 
of atmospheric profiles that spans the range of surface temperatures and total column water vapor 
combinations that are physically possible seems beneficial for the quality of the regression model, but 
only modestly. Nevertheless, this ensures that a thorough representation of the possible cases is 
achieved when the model coefficients are trained, thus avoiding biases in certain classes of input 
parameters or retrieval conditions. The effects are amplified when a MW model is used instead of a 
GSW. 

In terms of the representation the thermal structure of the low-levels in the atmosphere the 
situation is slightly more complex. The inclusion of more extreme temperature differences between 
the surface and the near-surface air in the calibration database, rather than restricting them to more 
frequent/moderate cases, degrades the performance of the models especially under moist 
atmospheres, on which atmospheric emission is non-negligible. Also, such atmospheres are often 
characterized by well-developed boundary layers and as such, temperature inversions and strong 
vertical gradients may be present. This makes the adjustment of LST algorithms more difficult in 
these situations, as the averaging kernel functions peak a few meters above the surface, which makes 
it harder to disentangle surface emission (LST and emissivity) from the signal emitted by the lower 
atmosphere. Some currently used schemes address this issue using different coefficients for day and 
night retrievals (which somehow tunes the LST algorithms to different structures of the atmospheric 
boundary layer, but introduce an additional discontinuity in the algorithm coefficients), while other 
schemes use additional information from numerical weather prediction models regarding near 
surface air temperature (which may also bring additional model forecast errors into the retrieval). 

Regardless of the calibration database used, the errors of LST estimations obtained for an 
independent validation database can be used to fully characterize the uncertainty of the LST 
algorithm, which heavily depends on retrieval conditions. The uncertainty budget of LST satellite 
products will then be the result of that of the algorithm together with the propagation of input 
uncertainties. 

This article summarizes the procedure used in the EUMETSAT LSA SAF [35] to calibrate LST 
algorithms for SEVIRI/MSG, AVHRR/Metop and MVIRI onboard Meteosat First Generation (e.g., 
[17]). The current standard methodology within the LSA SAF considers the criteria used for setting 
up the calibration database designated here as WTS_-15_15 to be a good compromise addressing the 
widest possible retrieval conditions, which is a pre-requisite for a global LST product. A similar 
exercise will be soon performed for the Flexible Combined Imager on board Meteosat Third 
Generation [36] to design the follow-on of LSA SAF operational LST products. 
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