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Abstract: With the increasing concern for the environment, energy-efficient scheduling of the 
manufacturing industry is becoming urgent and popular. In turning processes, both spindle speed 
and processing time affect the final energy consumption and thus the spindle speed and scheduling 
scheme need to be optimized simultaneously. Since the turning workshop can be regarded as the 
flexible flow shop, this paper formulates a mixed integer nonlinear programming model for the 
energy-efficient scheduling of the flexible flow shop. Accordingly, a new decoding method is 
developed for the optimization of both spindle speed and scheduling scheme simultaneously, and 
an estimation of the distribution algorithm adopting the new decoding method is proposed to 
solve large-size problems. The parameters of this algorithm are determined by statistics from a 
simplified practical case. Validation results of the proposed method show that the makespan is 
shortened to a large extent, and the consumed energy is significantly saved. These results 
demonstrate the effectiveness of the proposed mathematical model and algorithm. 
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1. Introduction 

With the increasing attention on global warming and climate change, energy-efficient 
scheduling is becoming an important objective in the process of production [1]. Since about one-half 
of energy consumption is industrial [2], the reduction of the energy consumption in the 
manufacturing process is a global concern. Two methods are often used to reduce energy 
consumption: developing power-efficient machines [3,4] and designing energy-saving 
manufacturing system frameworks [5,6]. After long-term endeavors, the first method has 
maintained a good momentum on the single equipment with manufacturing process improvement, 
material savings, and waste reduction [7–9]. As for the second method, energy-saving through 
optimization the manufacturing system faces great challenges due to changeable market demand, 
diversified product structure, and flexible processing routes [10–12], as well as insufficient accurate 
data of energy consumption [13,14], so researchers still struggle to break down these technical and 
theoretical barriers. 

With respect to the energy-efficient scheduling, the well-known machine turn-on and turn-off 
scheduling framework has been proposed by Mouzon et al. [15] and further explored by Mouzon 
and Yildirim [16]. Then Dai et al. [17] applied this framework to the flexible flow shop scheduling 
problem, and Tang et al. [18] adopted it to solve an energy-efficient dynamic scheduling. Since some 
machines and appliances cannot be switched off during the manufacturing process in some 
workshops [19], a new method of speed scaling framework has been developed by Fang et al. [20]. 
Under this framework, Fang et al. [20] researched a flow shop scheduling problem with a restriction 
on peak power consumption, and Liu and Huang [21] studied a batch-processing machine 
scheduling problem and a hybrid flow shop problem. 
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The turning workshop typically involves two processes, i.e., rough turning and fine turning, 
and each process usually can be completed at any one of parallel lathes, and thus the ordinary 
turning workshop can be regarded as the flexible flow shop. Salvador [22] originally has proposed 
the flexible flow shop scheduling problem (FFSP) in oil industry, and this problem is also known as 
hybrid flow shop scheduling problem (HFSP) [23]. For traditional optimization of the flexible flow 
shop scheduling, Linn and Zhang [24] pointed out that HFSP is a non-deterministic polynomial (NP) 
problem after they reviewed computational complexities, scheduling objectives, and solving 
methods. Aiming at solving the NP problem, Kis and Pesch [25] put forward a method to determine 
the lower bounds, and they also developed a new branch and bound method which is faster than the 
method of Azizoglu et al. [26]. However, for large-scale scheduling problems, these optimal 
methods are inefficient due to high demand for computational time and storage space. Therefore, a 
lot of heuristics and meta-heuristics were put forward, such as the NEH algorithm [27], Palmer 
algorithm [28], CDS algorithm [29], and genetic algorithm [30]. More new methods were developed, 
including artificial immune algorithm [31], particle swarm optimization algorithm (PSO) [32], 
water-flow algorithm [33], quantum-inspired immune algorithm [34], iterated greedy algorithm [35], 
and intelligent hybrid meta-heuristic [36]. 

To our best knowledge, most researchers study process parameters and scheduling schemes in 
turning processing separately except for the work of Lin et al. [37], who proposed a two-stage 
optimization method to successively find out the optimum process parameters and scheduling 
scheme for the single-machine scheduling in a turning shop. Obviously, more mathematic models 
and more methods targeting at the synchronous optimization are necessary to be developed. 
Aiming at this target, this paper approaches the energy-efficient scheduling of the flexible flow 
shop in the following ways. First, a mixed integer nonlinear programming model of the 
energy-efficient scheduling is established and this model can be solved with a GAMS/Dicopt solver. 
Second, a new decoding method is proposed and integrated into the estimation of distribution 
algorithm (EDA) to solve the problem, which is an effective and promising algorithm based on the 
statistical learning theory. Thirdly, the model and EDA are verified in a real case.  

The paper is organized as follows. In Section 2, research problem and energy consumption of 
lathes in the turning process are analyzed in detail. In Section 3, the mixed integer programming 
nonlinear model of the research problem is put forward. Section 4 presents a new decoding method 
and adopts an estimation of distribution algorithm to solve the energy-efficient scheduling. The 
verification of the model and algorithm is reported in Section 5, and conclusions are arrived in 
Section 6. 

2. Problem Statement 

2.1. Motivating Example 

A simplified case of a real turning processing is used as the motivating example for the current 
research. This case involves two types of processes: rough turning and fine turning. Eleven C630 
lathes are employed, five of which are applied for the rough turning and six for the fine turning. 
Each lathe has 12 levels of spindle speed for processing jobs. The transport times among these 
lathes derive from a statistical survey on the spot. The detailed layout of the turning workshop is 
shown in Figure 1. According to the production plan, there are 60 rolls of 12 types to be processed. 
The materials of these rolls may be Cr12MoV, 4Cr5MoSiV1, GCr15, 45# steel, 3Cr2W8V, or 40Cr. 
There is a great difference among these rolls in diameter ranging from 66 mm to 550 mm, and in the 
length varying from 1520 mm to 1846 mm. All the relative data of this real case are provided in 
Appendix A.  
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Figure 1. Layout of the roll turning shop. 

Since environment-friendly and energy saving manufacturing is an urgent requirement, it is 
highly necessary to both adjust the parameters of rough turning and fine turning like spindle speed 
and optimize the processing scheme so as to reduce energy consumption effectively. 

2.2. Problem Description 

Since the fine turning begins only after the rough turning completes, and there is usually more 
than one lathe for each turning process, this workshop can be regarded as a two-stage flexible flow 
shop. Meanwhile, energy saving is a new focus in this workshop. 

Thus, the problem under consideration can be regarded as a flexible flow shop scheduling 
problem with two objectives: production efficiency and energy saving. Makespan noted as Cmax, is 
chosen as the production index evaluator. The energy consumption is evaluated by the total energy 
consumption noted as TEC. 

Utilizing the three-field notation proposed by Graham et al. [38], we express the above 
problem as ( )| | maxmFF r C TEC+ , where FF represents the flexible flow shop, m the number of 
stages, r unrelated parallel machine, || no special constraints, and maxC TEC+  the optimization 
goals.  

For the convenience of mathematical modeling of this problem, the turning operations and 
energy consumption are analyzed in the following. 

2.3. Analysis of Turning Operations 

A turning operation (Oik) can be defined as: job i is handled on lathe k, and it generally needs to 
pass five steps which are job-loading, lathe starting, job cutting, lathe stopping, and job-unloading. 
Because a turning operation of Oik contains five sub-operations, the total processing time is the 
summation of them. Therefore, the total processing time of Oik can be achieved with Equation (1).  

z l S c D u
ikl ik kl ikl kl ilT t t t t t= + + + +  (1)

where, l
ikt  is the loading time of job i onto machine k, S

klt  the time for speeding up the spindle of 
lathe k to l level, c

iklt  the cutting time of job i is processed on the lathe k at the speed level l, D
klt  the 

time for stopping lathe, and u
ikt  the unloading time of job i from machine k. 

When job i and machine k are known, l
ikt , S

klt , D
klt  and u

ikt  can be seen as parameters, and the 
total processing time of any turning operation can be expressed by Equation (2) according to 
Equation (10) in Section 2.4. 

0

60z
z

l S D uik
ikl ik kl kl ilc

ik ik i kl

V
T t t t t

ap f d n
= + + + +

π× × × ×
 (2)

where, z
ikV  is the total removed volume from the semi-product of job i by lathe k, ikap  the depth of 

cutting, ikf  the feed rate, 0
id  the semi-product diameter of job i, and c

kln  the spindle speed of 
level l of the lathe k. 

2.4. Analysis of Energy Consumption 

Lathes are responsible for energy consumption of the turning process [39]. If job loading and 
unloading are accomplished automatically, their power consumption is fixed. If they are done 
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manually, the power consumption is not needed. Therefore, alterable energy consumption mainly 
results from the power consumption of other three operational steps: lathe starting, job cutting, and 
lathe stopping. s

klE  is the power consumed by speeding up the spindle of lathe k to the designated 
speed level l and that by running without loads before turning jobs. c

iklE  is the power consumption 
by the lathe k handling the job i at the speed level l, and it is the total of the power for running the 
lathe and that for material removal, which is expressed with Equation (3) [40] and Equations (4)–(10) 
[41], respectively. D

klE  is the power consumption of lathe k for braking or stopping the spindle of 
speed level l after completing jobs. 

·
0( )ikl

c c c
ikikl kl iklE P K v t= +  (3)

where 0
ikP  is the power for lathe k of spindle speed level l running without load, c

iklK  the energy 

coefficient of lathe k of spindle speed level l cutting job i, 
.

ikv  material removal rate of job i on the 
lathe k. 

·

310
ikl ikl

ikl ikl

m c
c m

ik

F v
K v P

×
= =  (4)

where ikl

mP  is the power consumed to remove the extra material of processing job i by the lathe k of 
spindle speed level l, m

iklF  the cutting force of the processing, and c
iklv  the linear cutting velocity of 

the same processing. The definition and evaluation function of m
iklF  is similar to that in Machinery 

Handbook [41], and can be described with Equation (5). 
x mF m mF F

ikl ik ikl

y nm F F
ikF C ap f v K= × × × ×  (5)

Under general cutting conditions, 1mF
x ≈ , 0.75mF

y ≈ , 0mF
n ≈ , and CF is a coefficient related to 

materials and cutting conditions. KF is also a coefficient for cutting force. The cutting force can be 
obtained with Equation (6) since the value of these coefficients can be found in Machinery Handbook. 

0.75
ikl ik

m F F
ikF C ap f K= × × ×  (6)

The additional load-loss energy of ik

aP  will be required in the cutting process [42], and it can be 
calculated by Equation (7). 

ikl k ikl

a m mP b P= ×  (7)

where k

mb  is the additional load-loss coefficient, and its value can be adjusted between 0.10 and 0.20 
according to the state of lathe k [43]. In the cutting process, the linear velocity of c

iklv  can be 
calculated by Equation (8) [37]. 

0

60
i

c
klc

ikl

d n
v

π× ×
=  (8)

If ik

zV  represents the total removed volume from the semi-product of job i on lathe k, the 
cutting time can be calculated by Equation (9), and combined with Equation (8), it conducts 
Equation (10). 

ikl

ikl

z
c ikl

c
ik ik

V
t

ap f v
=

× ×
 (9)

0

60 ikl

i kl

z
c
ikl c

ik ik

V
t

ap f d n
=

π× × × ×
 (10)

Based on the above five Equations (3)–(10), the total power consumption can be calculated by 
Equation (11).  
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 (11)

where the values of kl

sE , kl

DE , and 0
klP  can be obtained by experimental tests. Since the lathe and 

spindle speed level are certain, these values are deterministic and thus can be used as parameters. 

3. Modeling 

From the Equation (11), we can find that the energy consumption for completing a turning 
operation is inversely proportional to the spindle speed. From Equation (2), we can also find that 
the completion time is an inverse function of the spindle speed, so the weighted method is suitable 
for dealing with the two objectives of energy consumption and makespan. Considering this 
multi-objective optimization problem, the complexity of weighted method is lower than that of 
Pareto non-dominated method. In the scheduling optimization, except for spindle speeds, all 
processing parameters are known and certain. Therefore, optimization variables are machine 
allocation, job sequence, and spindle speed. The presented formulation is based on the following 
assumptions. Firstly, all of the n jobs and m machines are available for processing at the initial time. 
Secondly, one machine can process only one job at a time and one job can be processed by only one 
machine at a time. Thirdly, the spindle speed must be selected among several alternative levels. 

Indices 

i Index of jobs, {1, 2 , }i n∈   
j Index of stages, {1,2 , }j S∈   
k Index of machines, {1,2, , M}k ∈   
t Index of event points, {1,2, , }t n∈   
l Index of spindle speed levels, {1, 2, , L}l ∈   

Parameters 

jK  Set of machines in stage j 

ikN  Set of spindle speed levels where job i can be processed on machine k 
Mv Positive constant large enough 

c
kln  Spindle speed of machine k at level l  
z

ikV  Total removed volume for Oik 

ikap  Depth of cutting for Oik 
fik Feed rate for Oik 

0
id  Semi-product diameter for Oik 
F
ikC  Coefficients of cutting force for Oik 
F
ikK  Coefficients of cutting force for Oik 
S
klE  Power consumption for starting machine for Oik 
D
klE  Power consumption for stopping machine for Oik 
0

klP  Power of machine k running without load at speed level l  

'
d

kkT  Transport time between machine k and machine k’ 
m
kb  Additional load loss coefficient of machine k  

a  Weight of energy consumption 
TCE0 Normalizing parameter of energy consumption 
Cmax0 Normalizing parameter of makespan 

Binary Variables 

1, if job is processed at event on the machine
0 otherwiseikt

i t k
x


= 
 ，
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1, if job is processed at speed level on the machine
0 otherwiseikl

i l k
y


= 
 ，

 

Positive variables 
ktS  Start time of the event t at machine k  

ktF  Finish time of the event t at machine k 
maxC  Maximum completion time, i.e., makespan 

TCE  Energy consumption 

3.1. Mathematical Model 

0 0

maxmin (1 )
max

TEC C
Z a a

TEC C
= × + − × ,                                            (12) 

1, ,
ikt

jt k K

x i j
∈

= ∀ ,                                                    (13) 

1, ,
ikl

ik jl N k K

y i j
∈ ∈

= ∀  ,                                                   (14) 

, , ,
ik

ikl ikt j
l N t

y x i j k K
∈

= ∀ ∈  ,                                            (15) 

1
1, , ,

n

ikt j
i

x j k K t
=

≤ ∀ ∈ ,                                                (16) 

' 1
1 ' 1

, ,
n n

ikt i kt
i i

x x k t n+
= =

≥ ∀ <  ,                                             (17) 

0

60
[( ) ], ,

z
l S D uik

kt kt ik kl kl il ikt iklc
i l ik ik i kl

V
F S t t t t x y k t

ap f d n
= + + + + + × × ∀

π× × × × ,          (18) 

' ' ' ' ' '(2 ), , , ' 1, , ' , , 'd v
k t kt kk ikt ik t j jS F T M x x i j S j j k K k K t t≥ + − × − − ∀ < = + ∈ ∈ ,        (19) 

, 1 ,kt k tF S k t n+≤ ∀ < ,                                         (20) 
0

0.25
0

60
{[ (1 ) ] }k

z
s m F F z Dik kl
kl ik ik ik ik kl ikl iklc

i k l tik ik ik kl

V P
TEC E b C f K V E y x

ap f d n
−= + + + + × ×

π  ,         (21) 

,max k SC F k≥ ∀ ,                                                   (22) 

Equation (12) is the objective function to minimize the normalized total energy consumption 
and makespan simultaneously, where a  is the weight of energy consumption obtained by such 
methods as the analytical hierarchy process (AHP), and fuzzy clustering method after investigating 
the preference of management. TCE0 and Cmax0, are applied as two normalizing parameters, and 
they are obtained by a heuristic rule in this paper. Equations (13) and (14) both ensure each job is 
processed once at any stage. Equation (15) ensures that one of the available spindle speeds is 
selected when a job is assigned to a machine. Equation (16) controls that, at most, one job is 
processed in an event point. Equation (17) controls that one machine is available at an event point 
only after its previous jobs are completed. Equation (18) ensures the completion time of an event 
point is equal to the sum of the start time and processing time. Equation (19) limits that the starting 
time of each job in any stage is at least equal to the total time of the completion time in the previous 
stage and the transport time. Equation (20) controls that the completion time of any event point on a 
machine is at most equal to the start time of the subsequent event point on the same machine. 
Equation (21) ensures that TCE is the summation of energy consumption of all turning operations. 
Equation (22) controls that the Cmax is greater than or equal to the completion times of the last event 
point on all machines. 

3.2. Heuristic Rule for Normalizing Parameters 

As pointed out above, normalizing parameters TCE0 and Cmax0 are obtained by the heuristic 
rule, which can be described as follows. 
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• Step 1: The theoretical linear cutting velocity *
ikv  is calculated with Equation (23), the 

theoretical spindle speed is obtained with Equation (8), and then the real level of spindle speed 
noted as l* is determined according to machine operating instructions.  

• Step 2: The total processing time of one turning operation ( *
Z

iklT ) is calculated by Equation (2), 
the average processing time ( iT ) of job i in all stages is calculated with Equation (24), and then 
the scheduling scheme is obtained by the following three-step circulation.  

• Step 2.1: Set j = 1 and sequence jobs by the ascending order of iT , denote the sequence as 

tπ  and set 
1 ,1 0cTπ = .  

• Step 2.2: Assign the first free machine noted as *k  to process jobs in stage j, and calculate 
the completion time of jobs ,t

c
jTπ  according to Equation (25). Then, calculate the consumed 

energy for cutting each job in stage j with Equation (11), and calculate the total energy 
consumption of stage j by *

j

z z
j ikl

k K i

C C
∈

=   .Terminate this circulation when stage j is the 

last stage or go on to step 2.3. 
• Step 2.3: Reorder jobs and update tπ  in the ascending order of ,t

c
jTπ , then set j = j + 1 and 

return to step 2.2. 

• Step 3: TEC0 can be obtained by z
j

j

C , and 0maxC  can be determined by max c
i

i
T . Detailed 

explanations are described with Equations (23)–(25) 

*
v v v

v
ik z x y

ik ik

C
v

T ap f
=  (23)

*( / ) /
j

z
i ikl j

j k K

T T m S
∈

=   (24)

1

1

, 1 , , * *

, , 1 , * *

, , * *

max{ , } , 1, 1,

max{ ,0} , 1, 1

max{0, } , 1, 1

t t t

t t t

t t

c c z
j j k l

c c z
j j k l

c z
j k l

T T T t j

T T T t j

T T t j

−

−

π − π π

π π − π

π π

 + ∀ > >
= + ∀ = >
 + ∀ > =

 (25)

In Equation (23), *
ikv  is the theoretical linear cutting speed of job i on the machine k, ikap  is the 

depth of cutting, ikf  is the feed rate, vC  is the durability coefficient of cutting tool, T is the 
durability of cutting tool, and vz , vx , vy are coefficients whose values are set according to the 
processed materials and conditions. In Equations (24) and (25), *

z

ikl
T  is the total processing time of 

job i processed on machine k at spindle speed level l, S is the number of stages, mj is the number of 
parallel machines in stage j, and Kj is the set of machines. 

The above model of ( ) | | maxmFF r TCE C+  can be solved accurately by the GAMS/Dicopt 
solver for small-scale problems, but the solver will fail for large-size problems due to limited 
computer memory and a long running time. Therefore, it is necessary to develop efficient intelligent 
algorithms to assign parallel machines, select optimal spindle speeds, and sequence jobs 
simultaneously.  

4. EDA Algorithm  

The estimation of distribution algorithm (EDA) is a population evolutionary algorithm based 
on probabilistic model [44–46], which guides the population evolution utilizing the probability of 
the dominant individuals. This algorithm employs the statistical probability to describe the 
distribution of solutions, and generates new populations by sampling probability. A large number of 
research groups have paid efforts to improve the performance of EDA algorithm [47–49]. The 
algorithm has been successfully applied to solve flow shop scheduling problems [50–52] and flexible 
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flow shop scheduling problems, and it has obtained promising scheduling results. For its 
advantages, EDA is used to solve the energy-efficient scheduling problems in flexible flow shops in 
this paper. A novel decoding method is developed to optimize machine allocation, speed selection, 
and job sequence. 

As for the process of EDA, the initialized population is randomly generated first, and the 
dominant individuals are selected according to their fitness. Then, the probability model is 
constructed from the dominant individuals to generate new ones. After the new population is 
generated, the termination criterion works to determine whether to stop this algorithm or not. This 
process is depicted in Figure 2. 

 
Figure 2. Flowchart of EDA. 

4.1. Encoding, Decoding, and Dominant Individuals 

The frequently utilized encoding method for solving FFSP is the arrangement-based encoding 
approach, in which only job sequence in the first stage is encoded and the jobs in the next stages are 
sorted according to dispatching rules like FCFS and SPT. Suppose that there are four jobs with an 
examplified code of [1 3 4 2], the first job is firstly processed and the third job is processed secondly. 
This encoding approach is simple to understand and complement, and thus is applied in this paper.  

In regard to the population initialization, we adopt the random initialization method to ensure 
the population diversity. The computational complexity of this initialization method is ( )sizeO P n , 
where Psize is the population size and n the number of jobs.  

On the ground of job sequence of the first stage, machine allocation, spindle speed, and job 
sequence at other stages are determined by decoding. In order to generate a feasible scheduling 
scheme, a dispatching rule is embedded in decoding to specify the job with the earliest completion 
time to be first processed, and any individual in the population can be decoded with Steps 1–3. 

• Step 1: Choose an individual from the population, obtain its job sequence in the first stage, and 
set t = 1, * 0TEC = , 

1 ,1 0cTπ =  and , 0
t

m
kTπ = . 

• Step2: Determine the processing machine and the spindle speed of all the jobs in current stage. 

• Step 2.1: Calculate the processing time (
t

z
klTπ ) and energy consumption ( , ,t k lEπ ) of the 

current job ( tπ ) at all alternative speed levels on all available machines by Equations (2) 
and (11), respectively. 

• Step 2.2: Calculate the completion time ( , ,t

o
k lTπ ) of the job at all alternative speed levels on 

all available machines by Equation (26). Set , , , ,max
t t

o
k l k lC Tπ π=  and *

, , , ,t tk l k lTEC TEC Eπ π= + . 
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,

max{ , } , 1, 1, ,

max{ ,0} , 1, 1, ,

max{0, } , 1, 1, ,

t t tk k

t t t

t t

c d m z
j k kl j t k

o c d z
k l j kl j t kk k

m z
k kl j t k

T T T T t j k K l N

T T T T t j k K l N

T T t j k K l N

−

−

π − π π π

π π − π π

π π π

 + + ∀ > > ∈ ∈
= + + ∀ = > ∈ ∈
 + ∀ > = ∈ ∈

 (26)

• Step 2.3: Calculate the weighted target value using Equation (12), select the machine and 
the speed level with the smallest weighted target value for the job, and mark the index of 
the machine and corresponding speed level with *k and *l . 

• Step 2.4: Set , * , , *, *t t t

m c o
k j k lT T Tπ π π= = , * *

, *, *t k lTEC TEC Eπ= + . If t n= , go to Step 3. Otherwise, 

set t = t + 1 and return to Step 2.1. 
• Step 3: If j S= , the decoding process terminates. Otherwise, determine the job sequence in 

ascending order of the completion times, set j = j + 1, t = 1, , 0
t

m
kTπ = , and return to Step 2. 

Calculate the final weighted target values of this individual using Equation (12). 

Next, several dominant individuals are to be selected from the population so that the 
probability model can be applied. Based on the weighted target values, we sort all individuals in the 
ascending order of the target values, and then select the top η% of individuals.  

4.2. Population Updating Based on Probability Model 

For the convergence, EDA applies an indicator function to extract the sequence characteristics 
of dominant individuals, and then constructs a probability model to guide the further population 
updating. Utilizing indicator functions, the position of a job in a dominant individual is signified 
and then the probability of this job arranged at all positions is statistically calculated. If the 
probability is higher, there is more chance for this job to stay at its previous position, and thus the 
population is updated gradually according to the mechanism of the roulette. The detailed steps of 
population updating based on probability model are as follows. 

• Step 1: Set the indicator function ( (0))l
tiIS to zero, and set all elements in the probability matrix 

(Pr (0))ti  to 1 n .  
• Step 2: At the gth generation, if job i  is on position t  of dominant individual l , set ( ( ))l

tiIS g  
to 1. Repeat this process till all dominant individuals, all jobs and all positions have been 
iterated. Calculate the total value of job i  on position t  and then yield the probability 
(Pr ( 1))ti g +  by using Equation (27). 

Pr ( 1) (1 ) Pr ( ) ( )/ | |, , ,s s l
ti ti ti

l Sp

g a g a IS g Sp g G t i
∈

+ = − × + × ∀ <  (27)

• Step 3: Update the population according to Pr ( 1)ti g +  by the roulette approach. Terminate the 
algorithm if termination criterion is met; otherwise, set g = g + 1 and return to Step 2. 

5. Verification and Discussion 

Computational experiments are conducted to verify the validity of the proposed mathematical 
model, and the effectiveness of the proposed EDA algorithm. All the experiments are performed on 
the computer with an Intel Core i5 processor running at 2.8 GHz and a main memory of 4G Bytes. 
The employed operating system is Windows 7 Professional. Note that the proposed mathematical 
model is programmed in GAMS/Dicopt and the proposed EDA is encoded in the programming 
language of MATLAB R2010a (The MathWorks, Inc., Natick, MA, USA). 

To compare the performance of the proposed mathematical model and EDA, two smaller size 
turning cases are designed. Thus, there are three types of problems: a small-scale problem with four 
rolls, a medium-scale problem with 12 rolls, and a large scale problem with 60 rolls. 

Before experiment, the weight of energy consumption was set to 0.8, which derived from 
Analytic Hierarchy Process (AHP) on the spot. Meanwhile, normalizing parameters of Cmax0 and 
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TEC0 were determined for the three size experiments utilizing the heuristic rule in Section 3.2. Their 
values under small-scale, medium-scale, and large-scale circumstances were (3420 s, 29.07 MJ), 
(18,652 s, 289.17 MJ), and (26,763 s, 1294.1 MJ) respectively.  

5.1. Parameter Calibration of EDA 

EDA has three main parameters, namely population size noted as Psize, the ratio of dominant 
population noted as %η  which is equal to | | / | |sizeSp P , and learning rate noted as as. In this 
research, each factor has three levels: Psize (30, 50, 80), η% (10%, 20%, 30%), and as (10%, 20%, 30%). 
We adopt an orthogonal experiment whose size is L9 (33) to calibrate these parameters, and the 
stopping criterion is the elapsed time of 80 s. The numerical results are obtained through the 
heurisitc rule. Then TEC0 and Cmax0 are used as parameters to calculate weighted goals according to 
Equation (12), where 0.8a= . Finally, the AOV of each experiment is obtained as shown in Table 1, 
where AOV is the average value of the weighted targets for 30 tests. 

Table 1. Orthogonal experiment of EDA. 

Combination 
Level

AOV 
Psize η% as 

1 80 30 0.1 0.9239  
2 30 20 0.3 0.9237  
3 80 10 0.3 0.9229  
4 30 30 0.2 0.9243  
5 50 30 0.3 0.9239  
6 80 20 0.2 0.9239  
7 50 20 0.1 0.9233  
8 50 10 0.2 0.9230  
9 30 10 0.1 0.9232  

Table 1 shows under the third combination of (0, 10%, 0.3), the AOV value is the smallest, and 
thus the third combination is the best. However, when these parameters are invetsigated 
independently in Figure 3, we note that the best population size is 50, the best rate of dominant 
population 10% and the best learning rate 10% or 30%. The above results are not in accordance with 
that in the third combination. Considering the incompleteness of the orthogonal experiment, two 
more tests of the combinations of (50, 10%, 0.1) and (50, 10%, 0.3) are performed, and their AOVs are 
0.9229 and 0.9228. Taking these 11 experiments into account, we draw the conclusion that the 
optimal parameter combination is (50, 10%, 0.3) for the population size, rate of dominant population, 
and the learning rate. 

 

Figure 3. Estimated marginal means of AOG on three parameters. 

The EDA is applied to schedule 12 rolls, and the termination criterion is that the elapsed time 
reached 80 s. These jobs are completed in 14,594 s, and 4058 s is saved compared with 18,652 s which 
is the makespan of the original scheduling by the heuristic rule. The total energy is 280.08 MJ, and 
9.09 MJ is saved compared with the original scheduling. The results of the heuristic rule are 
depicted in Figures 4a, 5a and 6a, and the results of EDA are shown in Figures 4b, 5b, and 6b. 
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(a) (b)

Figure 4. Gantt charts by heuristic rule and DEA. (a) By the heuristic rule; (b) By EDA. 

(a) (b)

Figure 5. Energy consumption by the heuristic rule and EDA. (a) By the heuristic rule; (b) By EDA. 

(a) (b)

Figure 6. TEC by the heuristic rule and EDA. (a) By heuristic rule; (b) By EDA. 

5.2. Experimental Results of the Motivating Example 

Figure 7a,b compare the Gantt charts of 60 rolls by heuristic rule and by EDA. Apparently, the 
derived maximum completion time by EDA is shortened by 6749 s or by 25.22% compared with that 
by heuristic rule. Only tiny idle times remain in the Gantt chart by EDA.  

With respect to the consumed energy, Figure 8b shows that the peak value of energy 
comsumption of 60 rolls by EDA is less than 250 MJ, while that by heuristic rule is nearly 300 MJ. 
The total energy consumed by the proposed EDA and the heuristic rule is 1223.2 MJ and 1294.1 MJ. 
In other words, 70.9 MJ or 5.48% of the total energy is saved by the proposed EDA. Note that, the 
energy consumptions of all lathes are reported in Figures A1 and A2 in Appendix. 

Figure 9 reports the Pareto frontier of the population. We can see the siginificant improvement 
of the Pareto frontier from the first to the final generation, which clearly demonstrates a 
bidirectional and synchronous optimization of the two objectives. Obviously, the optimal solution 
of the proposed mathematical model, in which both the total energy consumption and makespan 
are weighted, lies on the curve of Pareto frontier. 
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(a) 

(b) 

Figure 7. Gantt chart of 60 rolls by the heuristic rule and EDA. (a) By heuristic rule; (b) By EDA. 

(a) (b)

Figure 8. TEC for 60 rolls by heuristic rule. (a) By the heuristic rule; (b) By EDA. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2016              doi:10.20944/preprints201608.0071.v1 

 

  

Peer-reviewed version available at Sustainability 2016, 8, 762; doi:10.3390/su8080762

http://dx.doi.org/10.20944/preprints201608.0071.v1
http://dx.doi.org/10.3390/su8080762


 13 of 20 

 

Figure 9. Pareto optimal solutions. 

Table 2 compares the results obtained by the proposed EDA and that solved by GAMS/Dicopt 
solver for the MINLP model. It shows that, for small-scale problems, Dicopt solver outperforms the 
proposed EDA in both objectives during the acceptable time. For medium scale cases, the Dicopt 
solver takes much more time than the proposed EDA, but it produces a tiny improvement in the 
weighted target. For large-scale cases, the proposed EDA is absolutely superior over the Dicopt 
solver which cannot provide a feasible solution for the limited memory of the computer. 

Table 2. Comparison of results. 

Solving 
Methods 

Small Scale Medium Scale Large Scale 
Cmax 

(h) 
TEC 
(MJ) Z (%) 

Time 
(s) 

Cmax
(h) 

TEC 
(MJ) 

Z 
(%) Time (s) 

Cmax
(h) 

TEC 
(MJ) 

Z 
(%) Time (s) 

MINLP 0.91 23.40  83.54  0.66  4.22  275.33  92.47 4.2 × 103 out of memory >7.2 × 104 
EDA 0.92 23.40  83.71 10.00  4.05  280.08  93.13 80.00  5.56  1223.2  90.57  180.00  

In summary, using the proposed EDA, energy-efficient scheduling can be achieved effectively. 
Moreover, makespan and the total energy consumption can be reduced simultaneously, and hence 
production efficiency improvement and energy saving are realized. 

5.3. Discussion 

The weight used in this paper is determined by AHP after investigating the preferences of 
managers in the real case. In order to clarify the weight range, sensitivity analysis experiments are 
conducted. Experiments show that when the weight is 1, the makespan is 13.41 h and the TEC is 
1218.2. Although this TEC is slightly better than that under other circumstances, the makespan is 
particularly worse. Actually, this result originates from the single-objective optimization of the total 
energy consumption and the ignorance of makespan under this circumstance. Therefore, the weight 
value of 1 is excluded from the weight range and then the weight range is limited by (0, 0.8). Table 3 
shows the results after this adjustment. It demonstrates that the relative difference of total energy 
consumption is 2.03%, and that of makespan is 2.76%. Therefore, a conclusion can be reached that 
the two objectives are not sensitive to the weight when it ranges from 0 to 0.8. 

Table 3. Two objectives under different weights. 

Weights TEC (MJ) Cmax (h)
0.8 1223.2 5.56 
0.6 1228.5 5.54 
0.5 1234.0 5.50 
0.4 1240.6 5.45 
0.2 1243.1 5.43 
0 1248.5 5.41 

Relative difference 2.03% 2.76% 
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Besides, in order to find out the underlying reasons, three different optimization goals and two 
optimization methods are analyzed and compared. Three optimization goals are given: (1) the 
comprehensive goal by weighting the consumed energy and completion time (Obj_C); (2) the single 
target only considering the consumed energy (Obj_e); and (3) the single target only considering 
makespan (Obj_t). The two different optimization methods are given as follows: (1) optimizing the 
scheduling scheme and spindle speed synchronously (Opt_S); and (2) optimizing the scheduling 
scheme after determining the appropriate spindle speed (Opt_o). The following experiments contain 
six combinations of the above optimization goals and methods. For testing the robustness of the 
proposed EDA, it is run 30 times for each combination. The stopping criterion is fixed to a given 
maximum elapsed CPU time of 180 s. To evaluate the different optimization goals and methods, 
firstly Cmax, TCE, and the weighted objective of the best scheduling for each experiment are 
recorded; secondly the objectives are respectively analyzed by the repeated measures in IBM SPSS 
19, in which optimization goals are set as within-subject effects and optimization methods as 
between-subject effects. The results are shown in Tables 4–6.  

Table 4. Descriptive statistics. 

Opt 
Goals 

Opt 
Schemes 

Weighted Objectives Cmax TEC 

Mean (%) Std. 
Deviation Mean (s) Std. 

Deviation Mean (KJ) Std. 
Deviation 

Obj_C 
Opt_S 0.9182 0.0009 20,138.03 114.48 1,088,720.23 595.05 
Opt_o 0.9766 0.0009 24,327.10 115.38 1,127,157.80 808.95 

 Total 0.9474 0.0293 22,232.57 2115.28 1,107,939.02 19,393.75

Obj_e 
Opt_S 1.5976 0.0043 112,651.53 570.03 1,071,912.00 0.00 
Opt_o 1.7903 0.0036 134,722.73 475.01 1,111,200.00 0.00 

 Total 1.6940 0.0972 123,687.13 11,140.88 1,091,556.00 19,809.78

Obj_t 
Opt_S 0.9212 0.0015 20,388.53 172.42 1,090,310.33 617.99 
Opt_o 0.9794 0.0020 24,503.33 236.15 1,129,263.87 1082.78 

 Total 0.9503 0.0294 22,445.93 2084.87 1,109,787.10 19,660.57

Table 5. Multivariate tests of weighted objectives. 

Effect Value F Hypothesis 
df Error df Sig. Partial Eta 

Squared 

Objs 

Pillai’s Trace 1.000 1,050,284.622 2.000 57.000 0.000 1.000 
Wilks’ Lambda 0.000 1,050,284.622 2.000 57.000 0.000 1.000 

Hotelling’s Trace 36,852.092 1,050,284.622 2.000 57.000 0.000 1.000 
Roy’s Largest Root 36,852.092 1,050,284.622 2.000 57.000 0.000 1.000 

Objs * 
methods 

Pillai’s Trace 0.997 8518.901 2.000 57.000 0.000 0.997 
Wilks’ Lambda 0.003 8518.901 2.000 57.000 0.000 0.997 

Hotelling’s Trace 298.909 8518.901 2.000 57.000 0.000 0.997 
Roy’s Largest Root 298.909 8518.901 2.000 57.000 0.000 0.997 

Note: (Objs * methods) means the interactions between optimization goals and optimization methods. 

Table 6. Between-subjects effects on weighted objectives. 

Source Type III Sum 
of Squares 

df Mean Square F Sig. Partial Eta 
Squared 

Intercept 257.993 1 257.993 36,964,741.896 0.000 1.000 
Methods 0.478 1 0.478 68,527.167 0.000 0.999 

Error 0.000 58 6.979 × 10−6   

From Table 4, we note that in the columns of weighted objective and Cmax, Obj_C yield the 
means of 0.9474 and 22,232.57 which are both better than that of Obj_e and Obj_t. In TEC, the mean 
of 1,107,939.02 obtained by Obj_C is lower than that of Obj_t. Therefore, adopting the weighted goal 
to measure energy-efficient scheduling is suitable for optimizing the comprehensive objective and 
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makespan. In TEC, the means of 1,091,556.00 is the lowest; however, the Obj_e is not often used in 
real production due to the long makespan, which is 123,687.13 s, more than four times longer than 
that of Obj_C and Obj_t. The reason is that all the jobs are assigned on the most efficient machine 
while the other machines are idle. Therefore, among the three optimization goals, the weighted 
objective is the best measure method for energy-efficient scheduling. Table 4 also shows that Opt_S 
yields lower means than Opt_o, no matter which of the three optimization goals is adopted. 
Therefore, optimizing the scheduling scheme and spindle speed synchronously not only saves the 
consumed energy but also shortens the makespan. Optimizing the scheduling scheme and turning 
parameters synchronously has a great effect on environment protection and production efficiency. 

Table 5 also shows the multivariate tests of weighted objectives. Since all the differences are 
significant (0.000 < 0.05), the optimization goals can affect the weighted objective significantly. The 
interactions between optimization goals and optimization methods also affect the weighted 
objective significantly. The differences of multivariate tests of Cmax and TEC are also significant, so 
the optimization goals and the interactions can affect Cmax and TEC, too. The data of the 
multivariate tests of Cmax and TEC are not reported here since they are similar to Table 5. 

Table 6 shows the tests of between-subjects effects on weighted objectives. Since the difference 
is significant (0.000 < 0.05), the optimization method can affect the weighted objective significantly. 
The differences of between-subjects effects on Cmax and TEC are significant, so the optimization 
methods can also affect Cmax and TEC significantly. 

All in all, we find that different optimization goals and methods affect the Cmax and TEC 
significantly, so both environmental and production benefits can be enhanced simultaneously by 
optimizing the spindle speed and scheduling scheme, which is the first realization in this regard.  

6. Conclusions 

Reducing the energy consumption is increasingly believed to be an effective environment 
protection measure in manufacturing industry. The optimization of the energy-efficiency 
scheduling in flexible flow shops with parallel machines can contribute to energy consumption 
redution and production efficiency improvement synchronously. In this paper, the following 
achievements have been obtained towards the energy-efficient scheduling in turning shops:  

(1) A mixed integer nonlinear programming model is established by optimizing the spindle speed 
and scheduling scheme simultaneously, and subsequently, small-scale and medium-scale 
problems are solved by the GAMS/Dicopt; 

(2) For large-scale problems, an effective EDA algorithm is proposed in which a dispatching rule is 
embedded in decoding to specify the job with the earliest completion time to be first processed, 
and the population is updated utilizing the probability of the dominant individuals; 

(3) The experiment results show that: (1) the proposed algorithm can reduce the energy 
consumption to a certain extent and shorten the makespan to a large degree; and (2) there is a 
positive correlation between the energy consumption and makespan. 

In future research, other turning parameters such as cutting depth and feed rate will also be 
taken into consideration so as to further improve the energy efficiency. More types of production 
shops, such as no-wait or no-idle flow shops, as well as other constraints such as due date will be 
studied. 
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Appendix A 

Table A1. Parameters of machine. 

Level Speed (rpm) Es (J) ED (J) Ts (s) TD (s) P0 (w) 
1 31.5 16.9 8 0.02 0.01 855 
2 45 47.3 43 0.05 0.05 950 
3 63 212 203 0.2 0.19 1060 
4 90 1017 419 1 0.4 1010 
5 125 1569 453 1.73 0.5 910 
6 180 2122 463 2.38 0.52 890 
7 250 3179 527 3.49 0.58 910 
8 355 4065 547 4.45 0.59 920 
9 500 4800 576 4.92 0.61 975 

10 710 6003 696 5.61 0.65 1070 
11 1000 7811 813 6.9 0.72 1115 
12 1400 9809 837 8.67 0.74 1130 

Note: Speeds of machine are from Machinery Handbook, and the other parameters are the 
experimental data. Additional load-loss energy coefficient (bm) is determined by the vibration noise, 
and the values of lathes R1, R2, F1, and F2 are 0.1; those of lathes R3, R4, F3, and F4 are 0.13; and the 
rest are 0.15. 

Table A2. Transport time (s). 

Time F1 F2 F3 F4 F5 F6
R1 5 6 7 8 9 10 
R2 6 5 6 7 8 9 
R3 7 6 5 6 7 8 
R4 8 7 6 5 6 7 
R5 9 8 7 6 5 6 

Table A3. Parameters of rolls. 

Type Material Number D (mm) Length
(mm) d0 (mm) tl (min) tu (min) 

1 Cr12MoV 8 66 1550 72 0.65 0.43 
2 Cr12MoV 8 76 1620 83 0.72 0.48 
3 Cr12MoV 6 85 1750 92 1.05 0.70 
4 4Cr5MoSiV1 6 140 1526 150 1.15 0.77 
5 4Cr5MoSiV1 6 236 1758 248 1.42 0.95 
6 4Cr5MoSiV1 6 246 1846 260 1.50 1.00 
7 GCr15 4 202 1550 213 1.32 0.88 
8 GCr15 4 336 1620 350 1.85 1.23 
9 45# steel 2 425 1720 442 2.08 1.39 
10 45# steel 2 550 1720 570 2.35 1.57 
11 3Cr2W8V 4 360 1660 375 1.94 1.29 
12 40Cr 4 430 1520 446 2.02 1.35 

Table A4. Parameters of rough turning. 

Type ap (mm) f (mm/r) v* (m/min) Optional Level 
1 2.75 0.3 140.3  9,10 
2 3.25 0.3 136.8  9 
3 3.25 0.3 136.8  9 
4 4.7 0.4 95.4  6,7 
5 5.6 0.5 85.9  4,5 
6 6.6 0.5 83.8  4,5 
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7 5.1 0.5 106.5  5,6 
8 6.5 0.6 96.4  4 
9 7.9 0.7 88.7  3 
10 9.4 0.8 81.9  2 
11 7 0.6 95.3  3,4 
12 7.5 0.6 94.3  3 

Note: ap and f are determined by the specific technological specification of the machine; v* is a linear 
cutting velocity obtained by Equation (23). 

Table A5. Parameters of fine turning. 

Type ap (mm) f (mm/r) v* (m/min) Optional Level 
1 0.25  0.1 250.4  11,12 
2 0.25  0.1 250.4  11 
3 0.25  0.1 250.4  11 
4 0.30  0.15 224.6  9 
5 0.40  0.15 215.1  7,8 
6 0.40  0.15 215.1  7,8 
7 0.40  0.15 215.1  8 
8 0.50  0.2 196.4  6 
9 0.60  0.2 191.1  5,6 
10 0.60  0.25 182.8  4,5 
11 0.50  0.2 196.4  6 
12 0.50  0.2 196.4  5,6 

 

Figure A1. Total energy consumption of each machine by heuristic rule. 
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Figure A2. Total energy consumption of each machine by EDA. 
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