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Abstract: The systematic sampling is used as a method to get the quantitative results from the tissues
and the radiological images. Systematic sampling on real line (R) is a very attractive method within
which the biomedical imaging is consulted by the practitioners. For the systematic sampling on
R, the measurement function (MF) is occurred by slicing the three dimensional object equidistant
systematically. If the parameter q of MF is estimated to be small enough for mean square error, we
can make the important remarks for the design-based stereology. This study is an extension of [17],
and an exact calculation method is proposed to calculate the constant λ(q, N) of confidence interval
in the systematic sampling. In the results, synthetic data can support the results of real data. The
currently used covariogram model in variance approximation proposed by [28,29] is tested for the
different measurement functions to see the performance on the variance estimation of systematically
sampled R. The exact value of constant λ(q, N) is examined for the different measurement functions
as well.

Keywords: biomedical imaging; covariogram; design-based stereology; estimation of volume;
systematic sampling

1. Introduction

The systematic sampling, often used in the area of biomedical imaging, is a design-based
approach for estimating a parameter Q of the geometrical quantities, such as volume, area, surface
area, length. In systematic sampling principle, geometrical objects are sampled with probes, such
as lines, regular grid, or designed patterns. The probes superimposed on the geometrical objects
are tools for us to get the quantitative values of geometrical objects. If we have an equidistant
systematically sampling on geometrical objects, we will have the estimated values for each replication
of sampling of these objects. The estimated values obtained from each replication of this sampling
on geometrical objects produce a fluctuation [14,17,18,24,32]. So, this fluctuation is modelled by
Fourier transformation F1, which was considered by [28,29]. Since we have the estimated values
for parameter Q, the variance estimation is needed. For the systematic sampling on R, also
called as Cavalieri sampling, previous studies shed some light on the variance estimation for the
systematic sampling on real line, [9,16,19,20,25–27,30]. Main source in these studies is of inspiration
in Matheron’s theory. Matheron proposed his covariogram model g(h) intuitively. In this study,
we aim to focus on testing the performance of this covariogram model for the different measurement
functions in the regular and irregular forms. It is important to test the capability of fitting performance
of his covariogram model, because the sampling directions (axises) which are axial, coronal or sagittal
produce the different measurement functions, as implied by [17]. There is no study addressing the
performance evaluation of the covariogram model for the different measurement functions. In this
context, the papers [2–5,14,15,18,20,21,23,24,31,36–39] used the Matheron’s covariogram model for
the different measurement functions.

After having the estimated value for the parameter Q, said as Q̂, we should focus on the
confidence interval for Q̂. [17] proposes two approaches for the coefficient of confidence interval. The
first one is based on the statistical theory. In this study, the second proposition of [17] is examined.
Main motivation is to find a calculation method for the constant λ(q, N) which is used to construct
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confidence interval for Q̂. In this sense, we will give the exact calculation method for λ(q, N), so we
have more accurate information for the confidence interval. We also test the exact values of λ(q, N)

for the different measurement functions.
The organization of the paper is the following form. Section 2 introduces the materials in the

systematic sampling on R and describes the exact calculation method for constant λ(q, N) as well.
A simulation study and real data examples are given at Section 3. A section 4 is considered for the
discussions on results.

2. Materials and Methods

The estimation for volume Q, the empirical true variance, the true variance, the variance
approximation, and the confidence interval for systematic sampling on R with variance
approximation formula are introduced briefly.

2.1. Estimations for Volume Q and Variance of Q̂

2.1.1. Estimation for Volume Q

Suppose that we have three dimensional geometrical object. This object is a fixed, bounded,
nonvoid with piecewise smooth boundary of finite surface area of Q, except fractals. The volume
value of the object is parameter Q. Let parameter Q be estimated. To get the estimation value for the
parameter Q, Cavalieri planes called as the measurement function f are used. The function f has to
represent the shape of the geometrical object. The mathematical expression for the volume estimation
with Cavalieri planes is given in the following form,

Q̂ = T
n−1

∑
j=0

f ((u + j)T). (1)

T is a constant distance among the slices obtained from three-dimensional object. u is an uniform
random variable in the interval [0, T).

The problem is about predicting Var(Q̂) = E(Q̂ − Q)2 = E(Q̂2) − Q2. Since the uniform
distribution defined at [0, T) is used, E(Q̂2) = 1/T

∫ T
0 Q̂(u)2du. In following subsections, we will

introduce some important formulas for the variance estimation and its counterparts [6,9,12,16].

2.1.2. Variance of Q̂

The behavior of the variance of the Cavalieri estimator is strongly connected to analytical
properties of the measurement function f . An aspect coming from Matheron’s transitive theory is
given in [9] for these properties. The variance of Cavalieri sampling changes with a fractional power
of T [16,17]. The fact that there is a fractional power for T is not pointed out by [26,27]. In this sense,
[16] is an extension of [26]. For this reason, we want to test the performance of covariogram model in
Eq. (12) and the variance extension term in Eq. (20) for the different measurement functions.

For the practical purpose, since the true MF is not known, we do not get the true variance of
systematic sampling on R. For this reason, the variance approximation known as a variance extension
(VarE(Q̂)) term is given. It is in the two forms coming from Fourier transformation basically given in
[9] and the properties of measurement functions proposed by [16].

Firstly, we will introduce the empirical true variance for Q̂. Secondly, the true variance for Q̂ is
defined in Eq. (5). It includes the covariogram function. After the covariogram function is defined,
the measurement functions will be introduced.

The empirical true variance of systematic sampling on R is calculated by the formula given
below,
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Var(Q̂) =
1
m

m

∑
r=1

(Q̂r −Q)2, (2)

where m is the number of resampling for the systematic sampling on R. Q̂r is an estimated value at
a uniformly random starting point u for the volume. Q is the true value for the area under the MF
[6,8,36].

The empirical true variance of systematic sampling on R is also

CE2(Q̂) = Var(Q̂/Q), (3)

which is in the context of coefficient of error square.
The empirical true coefficient of error is calculated by

CE(Q̂) =
√

Var(Q̂)/Q2. (4)

In the simulation section, Eq. (4) is used to test the performance of variance approximation
formula in Eq. (20). The true variance is calculated by a formula in Eq. (5). A calculation of the true
variance by means of Eq. (5) is intractable (see [9] for more details). The true variance comprises
of three components which are the variance extension term, Zitterbewegung and the higher-order
terms, respectively. These terms were gotten in García-Fiñana & Cruz-Orive [16] (see section 6 for
detailed expressions).

Var(Q̂) = T
∞

∑
k=−∞

g(kT)−
∫ ∞

−∞
g(h)dh, (5)

where

g(h) =
∫
R

f (x) · f (x + h)dx, h ∈ R (6)

is a covariogram function of the measurement function f . It is proposed by Matheron’s transitive
theory and is known to be convolution of f with its reflection, G(t) = F1g = (F1 f )(F̄1 f ), F1

expresses Fourier transform defined as

G(t) = F1g(h) =
∫ ∞

−∞
g(h)exp(−2πith)dh. (7)

Note that subscript is for the dimension. In this case, we are interested in the one dimensional
systematic sampling, Cavalieri sampling.

Suppose that we have measurement functions in Eqs. (8)-(11). These functions are used for the
simulation. They can represent the biological objects. They are given with following forms and the
function f has positive values for each values of variable x, namely f : R→ R+.

f (x) = (1− x2)q, x ∈ [−1, 1], q ∈ [0, 1], (8)

f (x) = ((1− cos(x))(1− x2))q, x ∈ [−1, 1], q ∈ [0, 1], (9)

where q is a parameter of smoothness constant.

f (x) = exp(−sin(−x3)), x ∈ [−38π/100, 53π/100], (10)

and
f (x) = (5/112)(−54x4 − 25x3 + 48x2 + 25x + 6), x ∈ [−1, 1]. (11)

They represent the area measured on the each slices of three dimensional biological objects. The
measurement functions in Eqs. (8) and (11) are used by [16,22], respectively.
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(b) MF of Eq. (11)

Since the covariogram functions of measurement functions in Eqs. (8)-(11) can not be calculable
to get the integral values, a model for the covariogram functions should be proposed. In this sense,
the covariogram functions can be modelled by a polynomial with the fractional power,

g(h) = b0 + bj|h|j + b2h2, j = 2q + 1, q ∈ [0, 1]. (12)

Eq. (12) is defined to be a covariogram model [6,9,16,28,29].

2.1.3. Approximate Variance of Q̂

By using Eq. (5) and the properties of G(t), we finally get

Var(Q̂(u)) = T−1
∫ T

0
Q̂(u)2du−Q2 =

∞

∑
k=−∞

G(k/T)− G(0) = 2
∞

∑
k=1

G(k/T) (13)

(Detailed expressions are given in [9,16,28,29]).
The Fourier transformations of parts h0 and h2 in the covariogram model in Eq. (12) are zero.

Thus, the variance extension term of systematic sampling on R is obtained by using the formula given
in Eq. (9.1) and Eq. (9.2) in the study of Cruz-Orive [9] as follow,

F1|h|j = b(j, 1)$−(j+1), (j > −1, non-even) (14)

which is the Fourier transformation of |h|j for the one dimensional systematic sampling. b(j, 1) =

π−j−1/2 Γ( j+1
2 )

Γ(− j
2 )

.

By using Eq. (12), Eq. (13), and Eq. (14), Eq. (15) is obtained.

VarE(Q̂) = 2bjb(j, 1)T j+1ζ(j + 1) (15)

VarE(Q̂) = α(q)(3g(0)− 4g(T) + g(2T))

VarE(Q̂) = α(q)(3C0 − 4C1 + C2)T2
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where

α(q) =
2π−(2q+3/2)Γ(q + 1)ζ(2q + 2)

(22q+1 − 4)Γ(− 2q+1
2 )

, q ∈ R, (16)

ĝ(kT) = TCk, (17)

and ζ is Zeta function in [1]. ĝ(kT) is an unbiased point estimators of g(kT), k = 0, 1, 2, ....
Eq. (16) is gotten according to Fourier transformation basically given in [9]. However, Eq. (18) is

obtained according to generalized version of the refined Euler-MacLaurin, proposed by [16].

α(q) =
Γ(2q + 2)ζ(2q + 2)cos(qπ)

(2π)2q+2(1− 22q−1)
, q ∈ [0, 1], (18)

VarE(Q̂) =
2π−(2q+3/2)Γ(q + 1)ζ(2q + 2)

(22q+1 − 4)Γ(− 2q+1
2 )

(3C0 − 4C1 + C2)T2. (19)

Note that Eq. (16) and Eq. (18) give same results, because the connection between the generalized
version of the refined Euler-MacLaurin summation formula and the Matheron’s transitive theory is
expressed by [16].

We calculate the estimated coefficient of error for the systematic sampling on R by means of Eq.
(20) given below,

v̂arE(Q̂)/Q2 = α(q)(3C0 − 4C1 + C2)T2/Q2 (20)

ĉe(Q̂) =
√

α(q)(3C0 − 4C1 + C2)(
n

∑
i=1

fi)
−1

where

Ck =
n−k

∑
i=1

fi · fi+k, k = 0, 1, ..., n− 1. (21)

This is defined to be a coefficient of error of Matheron’s covariogram model. Eq. (6) and Eq. (21) have
in fact inheritance. n ≥ 2k + 1 observations are required due to Eq. (21) [9–11,15,16,28,29].

The estimation values of parameter q from (1− x2)q, ((1− cos(x))(1− x2))q, exp(−sin(−x3))

and (5/112)(−54x4 − 25x3 + 48x2 + 25x + 6) measurement functions will be obtained at the
simulation section. [2–5,14,15,18,20,21,23,24,31,36–39] used currently the covariogram model for the
different measurement functions. We aim to show the performance of the covariogram model in Eq.
(12) for the different measurement functions. In other words, the capability of covariogram model for
fitting performance on the covariogram functions is tested, so the information gained by this model
is displayed by the simulation results. By using this model and the variance extension term in Eq.
(15), the estimation formula of parameter q is given into following subsection.

2.1.4. Estimation Formula of Parameter q

The estimation formula of smoothness constant q is proposed by [16]. In this subsection, we will
get it via the variance extension term in Eq. (15) in the framework of Fourier transformation. The
formula we got for q is the same with the formula in [16].

The covariogram model g can be declared by integer k values. If h = iT is near zero, Eq. (7) has
more information. By using Eqs. (12) and (15), respectively,

g(iT) = b0 + b2q+1(|iT|)2q+1 + b2(iT)2, i = 0, k, 2k,
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VarE(Q̂) = 2b2q+1b(2q + 1, 1)T2q+2ζ(2q + 2) (22)

VarE(Q̂) = 2π−(2q+3/2) Γ(q + 1)

Γ(− 2q+1
2 )

ζ(2q + 2)

T · 3g(0)− 4g(kT) + g(2kT)
k2q+1(22q+1 − 4)

can be obtained. By using Eq. (19) and Eq. (22),

1
k2q+1 · [3g(0)− 4g(kT) + g(2kT)] = [3g(0)− 4g(T) + g(2T)] (23)

is obtained and then

q =
1

2log(k)
· log

(
3g(0)− 4g(kT) + g(2kT)
3g(0)− 4g(T) + g(2T)

)
− 1

2
,

where, k = 2, 3, ....
can be obtained. By using Eq. (17),

q̂ =
1

2log(k)
· log

(
3C0 − 4Ck + C2k
3C0 − 4C1 + C2

)
− 1

2
, k = 2, 3, .... (24)

The estimator q̂ is gotten when the MF is obtained by planimetry. The planimetry is also called as an
automatic pixel counting given in the section for real data.

2.2. Confidence Interval in Systematic Sampling on R

We will give an exact calculation of λ(q, N) in a generalized version of the refined
Euler-MacLaurin summation formula with a fractional power of measurement functions. A brief
introduction, and some tools will be given in the next subsection to get the formula of λ(q, N) for
confidence interval of Q̂.

2.2.1. Confidence Interval of Q̂: λ(q, N)

Some definitions expressed in [16] and [17] will be given. A theorem will be proposed for a tool
in the constant λ(q, N).

A bounded interval for the difference (Q̂− Q), which is defined as a generalized version of the
refined Euler-MacLaurin summation formula, is

|Q̂−Q| ≤ Tq+1P∗q+1

N

∑
i=1
|S f (q)(ai)| (25)

where

P∗q+1 = max{∆,β}{|
−2

(2π)q+1

∞

∑
j=1

1
jq+1 cos(2π∆j− π

2
(q + 1) + β) |}, (26)

∆ ∈ [0, 1) and β ∈ [0, 2π] (For detailed expressions, see [17]). The preliminaries were given. Now,
we will use the tools in [16,17]. After some straightforward calculations in the following steps, the
formula of λ(q, N) will be obtained.

By means of Cauchy Schwarz inequality (∑N
i=1 |yi|)2 ≤ N ∑N

i=1 y2
i , where yi = S f (q)(ai),( N

∑
i=1
|S f (q)(ai)|

)2

≤ N
N

∑
i=1

(
S f (q)(ai)

)2. (27)

When Eq. (25) and Eq. (27) are used,
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|Q̂−Q|
Tq+1P∗q+1

≤
N

∑
i=1
|S f (q)(ai)|

|Q̂−Q| ≤ Tq+1P∗q+1

√
N

√√√√ N

∑
i=1

(
S f (q)(ai)

)2 (28)

is obtained.
Eq. (29) given in [16] is

VarE(Q̂) = T2q+2 P2q+2,T(0)
cos(πq)

N

∑
i=1

(
S f (q)(ai)

)2. (29)

When ∑N
i=1
(
S f (q)(ai)

)2 in Eq. (29) is written in the Eq. (28), Eq. (30) is obtained.

|Q̂−Q| ≤ P∗q+1

√
N

√
cos(πq)

P2q+2,T(0)

√
VarE(Q̂),

|Q̂−Q| ≤ λ(q, N)
√

VarE(Q̂), (30)

where

λ(q, N) = P∗q+1

√
N

√
cos(πq)

P2q+2,T(0)
, q ∈ [0, 1]. (31)

λ(q, N) is a function of q and N. In the following steps, we will give a definition for the function Pk,T
in [1]. The function P∗q+1 is required to apply Theorem 2.1 for the exact calculation of λ(q, N).

From Eq. (30), for true parameter Q a bounded interval (or 100% confidence interval) is given as
[17,18] (

Q̂− λ(q, N)
√

VarE(Q̂), Q̂ + λ(q, N)
√

VarE(Q̂)

)
. (32)

We need the following periodic function with period T to get the values of constant λ(q, N)

[1,16],

Pk,T(x) = Pk

( x
T
−
[ x

T

])
=
−2

(2π)k

∞

∑
j=1

cos(2π j(x/T)− (1/2)πk)
jk , (33)

where x ∈ R, k = 2, 3, ....
From Eq. (33), P2q+2,T(0) is obtained,

P2q+2,T(0) =
−2

(2π)2q+2

∞

∑
j=1

cos(2π j(0/T)− (1/2)π(2q + 2))
j2q+2 (34)

P2q+2,T(0) =
2

(2π)2q+2 ζ(2q + 2)cos(πq).

We will give the following theorem to get the values P∗q+1 exactly.

Theorem 2.1. 1. Supposing that we have a right-open side interval [a, b), the maximum value of the
interval is

lim
h→0

(b− h) = lim
h→∞

(b− 1/h).
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2. Supposing that we have a left-open side interval (a, b], the maximum value of the interval is

lim
h→0

(a + h) = lim
h→∞

(a + 1/h).

3. Supposing that we have a left-open side and right-open side interval (a, b), the maximum value of the
interval is

lim
h→0

(a + h) = lim
h→∞

(a + 1/h),

lim
h→0

(b− h) = lim
h→∞

(b− 1/h).

In order to calculate P∗q+1 exactly, ∆ is replaced with 1− h, because we must take the maximum value
of ∆. When h→ 0, we get the result for the function P∗q+1 given in the following form,

P∗q+1 = lim
h→0
| −2
(2π)q+1

∞

∑
j=1

[
1

jq+1 cos(2π(1− h)j− π

2
(q + 1) + 2π)

]
| . (35)

Now we can explain how to get the values of constant λ(q, N) below. In following lines, we will
give the limit values done by Mathematica 7, 8 or 9.

When N and P2q+2,T(0) given in the Eq. (31) are replaced with 2 and the Eq. (34), respectively,
we get an equation,

λ(q, N) = P∗q+1 ·
√

2 ·

√
(2π)2q+2

2ζ(2q + 2)
. (36)

The codes written in Mathematica 7 or higher versions 8 and 9 do not compute the value of
λ(0, 2) and gives infinity. So, for the calculation of q = 0, we use Eq. (37) in order to give the result.

By means of Eq. (36), we get λ(0, 2):

P∗q+1 = lim
h→0
| −2
(2π)

∞

∑
j=1

1
j

cos(2π(1− h)j +
3π

2
) |= 1/2 (37)

λ(0, 2) =
1
2
·

√
(2π)2

ζ(2)
= 2.44949.

By using Eq. (36), for q = 0.1,

λ(0.1, 2) = lim
h→0
| −2
(2π)1.1

∞

∑
j=1

1
j1.1 cos(2π(1− h)j− π

2
(1.1) + 2π) | ·

√
(2π)2.2

ζ(2.2)
(38)

= 2.71243

is gotten. For other q values, similar procedure is proceeded. By using the formula given in Eq. (31),
the values at Table 1 are obtained for N = 2, N = 3 and N = 4 [13].

It is attested that lim
h→∞

(1− 1/h) and lim
h→0

(1− h) give the same values for λ(q, N), which is used

to define the right-open side interval.
Moreover, in order to construct the confidence interval for the data set,

Q̂− λ(q, N) · ĉe(Q̂) · Q̂ ≤ Q ≤ Q̂ + λ(q, N) · ĉe(Q̂) · Q̂ (39)

are used, where λ(q, N) is the confidence interval coefficient. ĉe is an estimated coefficient of error
[17,18].
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2.2.2. Exact and Computational Values of λ(q, N)

We got the values of λ(q, N) for different q values by using the exact calculation. This calculation
was done by the Mathematica 7 or higher versions 8 and 9. One can get the values of λ(q, N) for the
different q values with N = 2, N = 3, and N = 4. When the number of sequence in codes prepared
by [17] is increased, the computational values of λ(q, N) convergence the exact values of λ(q, N) (see
Tables 1 and 2). Because the getting of computational values of λ(q, N) for N = 2 would be unlikely
to be useful, we give up computing some of them. Si: The number of sequence increased by a user,
i : 1, 2, 3, 4.

Table 1. q and its exact λ(q, N)

values for different N values

q λ(q, 2) λ(q, 3) λ(q, 4)
0 2.44949 - -

0.1 2.71243 3.32203 3.83595
0.2 2.93821 3.59855 4.15525
0.3 3.12464 3.82689 4.41891
0.4 3.26925 4.004 4.62342
0.5 3.36968 4.12699 4.76544
0.6 3.42394 4.19345 4.84218
0.7 3.43064 4.20165 4.85165
0.8 3.38906 4.15073 4.79285
0.9 3.29929 4.04079 4.6659
1 3.16228 3.87298 4.47214

Table 2. q and its computational
λ(q, N) values for N = 2

S1 : λ(q, N) S2 : λ(q, N) S3 : λ(q, N) S4 : λ(q, N)

2.402871 2.418465 - -
2.671264 - - -
2.89612 - - 2.926749
3.07818 3.105091 3.111937 3.114245

3.216635 - - 3.258353
3.323898 - - 3.365038
3.397839 3.408876 3.412577 3.414001
3.418973 - - 3.426855
3.383912 - 3.38736 3.387638
3.297052 3.29831 3.298648 3.298765
3.161317 - - -

3. Results

This section will give the simulation results for the estimation of parameter q in variance formula
in Eq. (20). Together with the estimated q̂ with k = 2 for Eqs. (8)-(11), it is planned to see whether
or not the confidence interval includes the true volume value. While constructing the confidence
interval, the approximate variance based on Matheron’s covariogram model (CEMC) and empirical
true variance (ETCE) estimations are used. Real data examples are given to test the performance of
confidence interval.

3.1. Simulation

3.1.1. Plan and Output of Simulation

CEMC, ETCE, PEMCE and PETCE are the abbreviations for the coefficient of error of
Matheron’s covariogram model, the empirical true coefficient of error, the percentage for coefficient
of error of Matheron’s covariogram model and the percentage for empirical true coefficient of error,
respectively. The last two abbreviations are for the confidence interval. PEMCE and PETCE is for
whether the confidence interval includes the true value Q. V̂ar(q̂) and M̂SE(q̂) are the simulated
variance and simulated mean square error of the estimator q̂, respectively. The k in q formula was
taken to be 2, because h = iT must be near zero in order to increase information in Eq. (7). n is the
number of systematic sampling.

In the simulation performed, the number of resampling is 3000 and the number of systematic
sampling on R is 20 for the measurement functions in Eqs. (8)-(11). For practical purpose, n is taken
to be 20.
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3.1.2. Estimations for q and Variance Approximation of Q̂

As implied by p. 319 into [9], it is obvious that the changing of MF affects the variance extension
term given in Eq. (15). Thus, the bandwidth of confidence becomes more accurate. In this sense, the
covariogram model in Eq. (12) can be adopted for the some measurement functions. The simulation
results in Tables 5− 16 show that the covariogram model can be used for the measurement functions
given in Eqs. (8)- (11) even if they are not the true covariogram functions of them. Note that the
integral of function in Eq. (9) is computed by means of the numerical integration with in MATLAB
2013a, but the integral of function in Eq. (8), (10) and (11) are computed by means of the ’int’ function
which is a function for the exact calculation of integral in MATLAB 2013a. The covariogram model
in Eq. (12) is proposed intuitively by [28,29] and it can be a good approximation for the covariogram
functions of f in Eqs. (8) - (11). We want to use it to check the performance of variance estimation
in Eq. (20). By using the covariogram model in Eq. (12), the estimation of q can be said as an open
problem for the measurement functions in Eqs. (8)- (11). It is observed from the simulation results
that the performance of the q formula depends on the covariogram model in Eq. (12) and the variance
extension term Eq. (20). For irregular MF, such as Eqs. (10)-(11), the estimations of q are unstable,
namely, they change according to the number of sampling strongly. It should be noted that for each
number of sampling, the information on equidistant systematically sampling version of f changes.
When we have regular patterns, such as Eqs. (8)-(9), the estimations of q are stable according to the
number of sampling.

It is seen that Eqs. (10) and (11) do not have the parameter q, but we want to estimate it to get
the values of variance estimation precisely for them. The true parameter values of them are accepted
to be q = 0.95, q = 0.9, respectively, because it seems that the estimated values of parameter q are
around these values under Eqs. (12) and (20). In this case, when we look at Tables 14 and 16, since
PEMCE and PETCE have same values, the estimated q values for the measurement functions in Eqs.
(10) and (11) can be reasonable sense. For these two measurement functions, it is important to take a
value for q such that we can choose a right value for the constant λ.

The estimated values for q of the measurement functions in Eq. (8) with q = 0.8 and also
Eq. (9) with q = 0.4 and q = 0.8 would be around the true parameter values. It is seen that the
covariogram model in Eq. (12) does not be representative for these q values of two measurement
functions. However, when it is thought on the performance of variance estimation, the variance
estimation for the systematic sampling of Eq. (8) gives the satisfactorily results; for the variance
estimation on systematic sampling of Eq. (9), it is seen that satisfactory efficient results are produced
by Eqs. (12) and (20). The efficiency for the systematic sampling of MF in Eq. (10) is not as good as
that in Eq. (11) because of Eqs. (12) and (20). As a result, for Eqs. (8), (9) and (11), the Eqs. (12) and
(20) give the values around ETCE. The fluctuation of ETCE is an expected result, because the idea of
systematic sampling in Eq. (1) is used.

3.1.3. Confidence Interval of Q̂: Empirical True and Approximation for Var(Q̂)

The theoretical percentage for the confidence interval was 100. In this sense, the confidence
intervals with approximate variance include the true volume values as a percentage 100; but
according to the empirical true variance, the percentage can not be 100. It is seen that the confidence
intervals with empirical true variance include the true volume values at least a percentage 95
approximately. This is a satisfactory result.

3.1.4. Confidence Interval of Q̂: λ(q, N)

CEMC can be approximate to ETCE for Eqs. (8), (9) and (11), and so the percentage of them,
PEMCE and PETCE, can be thought to have similar values, which shows that our investigation on
the performance of λ(q, N) values is reasonable. In other words, when we look at the performance
of confidence interval as to including the true value, we should focus on PEMCE and PETCE must
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give similar results together. In this point, the trustiness of confidence interval is acceptable, because
PETCE is at least 95 approximately. In all performed simulation, N in λ(q, N) is taken to be 2, which
shows us that the confidence interval keeps itself on optimal sense. This optimality is supported by
PEMCE and PETCE, because they have similar results. In other words, suppose that if N is taken
to be 3, the bandwidths of confidence interval in λ(q, 3) case are larger than that of λ(q, 2). In such a
case, we would have a non useful information for the confidence band of Q̂. The another point we
should focus on is the values in Tables 1 and 2, because the exact values of constant λ provide useful
information for the confidence band. For MF in Eq. (10), since PETCE is 100, the constant λ produces
the reasonable confidence interval, however the accurateness of the constant λ with the empirical true
variance and the approximate variance should be examined. It is an open problem.

As a final comment for simulation section, the covariogram model in Eq. (12) and the variance
extension term in Eq. (20) can be used. However, the proposed measurement functions, such as
Eqs. (8) - (11), should be systematically sampled so that one can get the more precise decision on the
application for the biomedical imaging. As an another solution, Eq. (20) may be reconstructed in the
framework of fractional Fourier transformation proposed by [7,34].

3.2. Real Data

Five different sheep brains which were 12-18 months old were removed from the their skull via
the craniotomy in the laboratory for anatomy. These brains were immersed in formalin (5%) for 10
days. Brains were scanned with standard T2-weighted 0.5 tesla Magnetic Resonance Imaging (MRI)
in the coronal plane with 5 mm slice thickness. The true volume of each brain was obtained by using
the Archimedean principle repeated in 6 times. The arithematic mean of 6 results for each brain was
used as a true value of volume of a brain. After MRI scanned the sheep brains, the area of each
digital images for slices of brains was computed by pixel counting. While doing the pixel counting,
the edges of each digital images were detected by experts in the anatomy area. After that, they were
estimated by the slices in coronal plane. The results are given in Tables 3-4. Tables 3-4 show the
values for the true volume (Q), the estimated volume (Q̂), the estimated smoothness constant (q̂), the
estimated coefficient of error (ĉe), the lower bound of the estimated volume (Q̂lower),the upper bound
of the estimated volume (Q̂upper) and the number of sections (Num. Sec.). The area values of each
slice obtained from the coronal axis are depicted at the Figure 3.
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Figure 3. Area functions for each brain.
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Table 3. 5 Sheep brain volumes from automatic pixel counting (mm2) after determining border of
slices with 5 mm thickness and their confidence intervals for N = 2: arithmetic mean of q̂ values with
k = 2, 3, 4, 5, 6, 7 in Eq. (24)

Brains Q Q̂ q̂ ĉe Q̂lower Q̂upper Num. Sec.

1 85000 87300 .20 .0234 81289.05 93310.95 12
2 94000 90738 .34 .0106 87731.40 93744.60 13
3 83000 84608 .50 .0066 82722.64 86493.36 14
4 88000 88846 .42 .0087 86318.13 91372.87 14
5 100000 99675 .67 .0039 98351.66 100998.34 15

When N in Eq. (31) is replaced with 3, λ(0.3, 3) = 3.82689 and λ(0.34, 3) = 3.90405 are found.
The confidence intervals of brain 2 for q = 0.3 and q = 0.34 are (87055.68,94420.32) and (86981.44,
94494.56), respectively. These confidence intervals include the true volume value of the brain 2.

Table 4. 5 Sheep brain volumes from automatic pixel counting (mm2) after determining border of
slices with 5 mm thickness and their confidence intervals for N = 2: q̂ values with k = 2 in Eq. (24)

Brains Q Q̂ q̂ ĉe Q̂lower Q̂upper Num. Sec.

1 85000 87300 -.06 .0234 82646.98 91953.02 12
2 94000 90738 .18 .0131 87249.31 94226.69 13
3 83000 84608 .41 .0075 82464.84 86751.16 14
4 88000 88846 .28 .0105 85934.10 91756.90 14
5 100000 99675 .63 .0041 98283.46 101066.54 15

In table 4, when q̂ with k = 2 is taken, the confidence interval includes the true volumes of each
non-vivo brains. For brain 2, the true volume value is included by the confidence interval. It is seen
that estimating accurately the parameter q affects the variance estimation and the confidence interval
as well. For this reason, λ(q, N) values for N = 2, 3, 4 in Table 1 are computed. The simulation results
show that N should be 2.

4. Conclusions and Discussions

The studies [9–12,16,19–21,25–27,30] focused on the variance estimation for the systematic
sampling. As implied by [11,15,16], the estimation of q is important to avoid the biasedness of the
variance estimator in systematic sampling on R. Unbiasedness of variance extension term estimator
leads to have the accurate lower and upper bounds of confidence interval for the systematic sampling
on R. In fact, the true variance in Eq. (5) is the combination of three components, so we always
have biased variance estimation, however for the practical purpose, we only interested in variance
extension term. It is observed from the simulation results that the covariogram model in Eq. (12)
and the variance extension term in Eq. (20) give the satisfactory results for the variance estimation if
CEMC and ETCE have approximate values.

A method showing how to calculate constant λ(q, N) is proposed. It is expected that this method
can be used as a new tool in Mathematics when it is needed. A package program written in MATLAB
2013a gives the lower and upper levels of confidence and the quantitative values of stereology when
the data obtained from a single replication is typed. The program can be supplied on a request. The
estimation of q is open problem even if we know the exact form of the measurement functions. In
other perspective of our discussion, the covariogram model can not be so good approximation for the
covariogram functions of measurement functions. However, when we make a comparison between
CEMC and ETCE, CEMC can be regarded as a good approximation to ETCE for each the number of
sampling of the measurement functions in Eqs. (8), (9), (11).
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Variance estimation in Eq. (20) and also the values of PEMCE and PETCE are other criteria to
approve the performance of exact values of the constant λ(q, N), as observed from the simulation
results. A numerical computation for the constant λ(q, N) of confidence interval was done by [17].
The more precise values of the constant λ(q, N) mean the more precise confidence interval. It is
obvious that the proposition of exact calculation has to be preferred, because the computation of
the constant λ(q, N) proposed by [17] is not as good as the results displayed by Tables 1 and 2, as
seen by the conformity between PEMCE and PETCE for exact values of λ(q, N), especially for the
measurement functions in Eqs. (8), (9) and (11).

Since the real data can not be represented by the exactly similar measurement functions, we
should prefer to use different N values. For this reason, we chose the different k values for estimation
of q in real data. Eq. (24) can produce the negative estimated q̂ value for the area function of real
data given in Figure 3. The constant λ(q, N) values for different N values must be given, because
the real data shows that we can need constant λ(q, N) values with different N. In this context, the
edge of digital images has to be found more precisely. Especially, when the edges of images are more
irregular, the precision of getting area values for each image has to be decreased significantly. To do
this, new edge detection methods proposed by [33] can be used.

It is observed that the synthetic data can approve the real data for non-vivo brains if the real data
have an exactly similar form with the synthetic data. Generally, the covariogram model in Eq. (12)
and the variance extension term in Eq. (20) give the satisfactory results for the measurement functions
used in this study. However, the proposed measurement functions should be systematically sampled
while conducting a research on the biomedical imaging to increase the information in the decision
rule for now. To be able to increase the performance of variance approximation, the fractional Fourier
transformation may be applied to get a new variance estimation of the equidistant systematically
sampled on R. Other types of MF may also be used. In this case, we need the computational integral
techniques. The studies done by [35,40] will be light for the computational integration of other MF
types that we will use. For construction of MF via the digital images which have coronal, axial or
sagittal directions, the new edge detection methods proposed by [33] may be applied to get more
precise area values of slices. We will prepare a free statistical software R package with a macro of
Mathematica for all methodologies given here and in future.

Appendix

Table 5. (1− x2)q: q = 0.4

n q̂ V̂ar(q̂) M̂SE(q̂)
5 0.469211 0.000755 0.005545
6 0.449412 0.001009 0.003450
7 0.438921 0.000994 0.002509
8 0.430876 0.000992 0.001945
9 0.426702 0.001029 0.001742

10 0.422139 0.001089 0.001580
11 0.419202 0.001029 0.001398
12 0.417282 0.001049 0.001348
13 0.414414 0.001213 0.001421
14 0.413815 0.001090 0.001281
15 0.411180 0.001210 0.001335
16 0.411575 0.001060 0.001194
17 0.409010 0.001232 0.001314
18 0.409631 0.001119 0.001211
19 0.409595 0.001086 0.001178
20 0.408593 0.001079 0.001153

Table 6. (1− x2)q: q = 0.4

n CEMC ETCE PEMCE PETCE
5 0.031387 0.027150 100.0 98.8
6 0.024935 0.021804 100.0 99.1
7 0.020275 0.017246 100.0 99.1
8 0.016988 0.014385 100.0 99.3
9 0.014433 0.011948 100.0 98.7

10 0.012535 0.010502 100.0 99.1
11 0.011000 0.009178 100.0 99.5
12 0.009751 0.008085 100.0 99.0
13 0.008768 0.007458 100.0 99.0
14 0.007891 0.006564 100.0 99.1
15 0.007211 0.006121 100.0 99.3
16 0.006562 0.005408 100.0 99.3
17 0.006069 0.005181 100.0 99.2
18 0.005580 0.004672 100.0 99.5
19 0.005167 0.004271 100.0 99.4
20 0.004820 0.003961 100.0 99.3

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 August 2016  doi:10.20944/preprints201608.0017.v2

http://dx.doi.org/10.20944/preprints201608.0017.v2


14 of 18

Table 7. (1− x2)q: q = 0.8

n q̂ V̂ar(q̂) M̂SE(q̂)
5 0.798607 0.014187 0.014189
6 0.821274 0.015347 0.015800
7 0.827312 0.016704 0.017450
8 0.838035 0.016471 0.017918
9 0.835330 0.017350 0.018599

10 0.840301 0.017530 0.019154
11 0.840649 0.017641 0.019294
12 0.839555 0.018128 0.019693
13 0.842700 0.017997 0.019821
14 0.837016 0.018080 0.019450
15 0.838411 0.018319 0.019794
16 0.840756 0.018341 0.020002
17 0.837451 0.018479 0.019881
18 0.831963 0.019301 0.020323
19 0.839645 0.019642 0.021214
20 0.835757 0.019321 0.020599

Table 8. (1− x2)q: q = 0.8

n CEMC ETCE PEMCE PETCE
5 0.018256 0.022835 100.0 100.0
6 0.012532 0.016332 100.0 100.0
7 0.009405 0.012425 100.0 100.0
8 0.007190 0.009670 100.0 100.0
9 0.005913 0.007842 100.0 100.0

10 0.004853 0.006570 100.0 100.0
11 0.004053 0.005437 100.0 100.0
12 0.003491 0.004684 100.0 100.0
13 0.003021 0.004037 100.0 100.0
14 0.002674 0.003554 100.0 100.0
15 0.002380 0.003191 100.0 100.0
16 0.002116 0.002814 100.0 100.0
17 0.001885 0.002528 100.0 100.0
18 0.001702 0.002280 100.0 100.0
19 0.001549 0.002043 100.0 100.0
20 0.001429 0.001903 100.0 100.0

Table 9. ((1− cos(x))(1− x2))q: q = 0.4

n q̂ V̂ar(q̂) M̂SE(q̂)
5 −0.059737 0.009231 0.220590
6 0.257864 0.001882 0.022085
7 0.412975 0.000590 0.000758
8 0.483350 0.000779 0.007726
9 0.501458 0.000922 0.011216
10 0.507921 0.001314 0.012961
11 0.507945 0.000837 0.012489
12 0.507897 0.001435 0.013076
13 0.503777 0.000699 0.011469
14 0.501835 0.001445 0.011816
15 0.497033 0.000737 0.010153
16 0.494786 0.001527 0.010511
17 0.489366 0.000710 0.008696
18 0.488828 0.001432 0.009323
19 0.483590 0.000714 0.007702
20 0.481851 0.001531 0.008230

Table 10. ((1− cos(x))(1− x2))q: q = 0.4

n CEMC ETCE PEMCE PETCE
5 0.136986 0.035193 100.0 94.6
6 0.075842 0.056090 100.0 97.4
7 0.048192 0.022847 100.0 98.0
8 0.035892 0.036584 100.0 99.1
9 0.029172 0.017402 100.0 98.3

10 0.024801 0.026910 100.0 99.5
11 0.021386 0.013797 100.0 98.6
12 0.018852 0.020350 100.0 99.4
13 0.016763 0.010922 100.0 98.9
14 0.015121 0.016248 100.0 99.7
15 0.013697 0.009184 100.0 98.5
16 0.012545 0.013334 100.0 99.4
17 0.011526 0.007842 100.0 98.9
18 0.010623 0.011027 100.0 99.7
19 0.009865 0.006687 100.0 98.5
20 0.009211 0.009652 100.0 99.6
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Table 11. ((1− cos(x))(1− x2))q: q = 0.8

n q̂ V̂ar(q̂) M̂SE(q̂)
5 −0.127902 0.025653 0.886655
6 0.259307 0.009587 0.301935
7 0.471353 0.008843 0.116851
8 0.591335 0.008365 0.051906
9 0.667866 0.009158 0.026618
10 0.712836 0.010045 0.017643
11 0.743469 0.010628 0.013824
12 0.769775 0.011272 0.012186
13 0.782195 0.012278 0.012595
14 0.794971 0.013111 0.013137
15 0.802343 0.013406 0.013412
16 0.810423 0.013491 0.013599
17 0.814130 0.013994 0.014194
18 0.822037 0.014498 0.014984
19 0.822426 0.014351 0.014854
20 0.822911 0.015298 0.015823

Table 12. ((1− cos(x))(1− x2))q: q = 0.8

n CEMC ETCE PEMCE PETCE
5 0.179574 0.070757 100.0 95.8
6 0.098853 0.058929 100.0 98.7
7 0.056666 0.040635 100.0 100.0
8 0.037906 0.035454 100.0 100.0
9 0.027210 0.025762 100.0 100.0

10 0.021142 0.023491 100.0 100.0
11 0.016973 0.018652 100.0 100.0
12 0.014014 0.016925 100.0 100.0
13 0.011669 0.013700 100.0 100.0
14 0.010083 0.012682 100.0 100.0
15 0.008732 0.010624 100.0 100.0
16 0.007799 0.010070 100.0 100.0
17 0.006862 0.008591 100.0 100.0
18 0.006093 0.008067 100.0 100.0
19 0.005530 0.007070 100.0 100.0
20 0.005030 0.006753 100.0 100.0

Table 13. exp(−sin(−x3)): q = 0.95

n q̂ V̂ar(q̂) M̂SE(q̂)
5 −0.088096 0.050826 1.128469
6 0.041988 0.031897 0.856384
7 0.189917 0.018652 0.596379
8 0.320166 0.008843 0.405534
9 0.449291 0.007235 0.257945
10 0.549659 0.004972 0.165245
11 0.639576 0.002916 0.099279
12 0.714919 0.001908 0.057171
13 0.776112 0.001817 0.032055
14 0.827798 0.001763 0.016697
15 0.868178 0.001724 0.008419
16 0.899500 0.001604 0.004154
17 0.928089 0.001326 0.001806
18 0.942607 0.001128 0.001183
19 0.959425 0.001025 0.001114
20 0.967014 0.000817 0.001106

Table 14. exp(−sin(−x3)): q = 0.95

n CEMC ETCE PEMCE PETCE
5 0.123899 0.042779 100.0 100.0
6 0.096852 0.020019 100.0 100.0
7 0.068757 0.008892 100.0 100.0
8 0.046235 0.003329 100.0 100.0
9 0.031395 0.001138 100.0 100.0

10 0.022537 0.000614 100.0 100.0
11 0.016419 0.000538 100.0 100.0
12 0.012289 0.000462 100.0 100.0
13 0.009477 0.000366 100.0 100.0
14 0.007494 0.000282 100.0 100.0
15 0.006081 0.000220 100.0 100.0
16 0.005047 0.000184 100.0 100.0
17 0.004236 0.000158 100.0 100.0
18 0.003677 0.000132 100.0 100.0
19 0.003202 0.000117 100.0 100.0
20 0.002850 0.000103 100.0 100.0
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Table 15. (5/112)(−54x4 − 25x3 + 48x2 +

25x + 6) : q = 0.9

n q̂ V̂ar(q̂) M̂SE(q̂)
5 0.119701 0.021089 0.629956
6 0.349198 0.018577 0.321959
7 0.506408 0.017147 0.172062
8 0.607155 0.017009 0.102768
9 0.677396 0.017249 0.066802

10 0.720912 0.016863 0.048935
11 0.765776 0.016458 0.034474
12 0.786878 0.015944 0.028741
13 0.815932 0.015711 0.022778
14 0.838310 0.015351 0.019157
15 0.856894 0.015623 0.017481
16 0.865002 0.016006 0.017231
17 0.883260 0.015086 0.015367
18 0.887106 0.015674 0.015840
19 0.896326 0.015430 0.015444
20 0.904643 0.014824 0.014845

Table 16. (5/112)(−54x4 − 25x3 + 48x2 +

25x + 6) : q = 0.9

n CEMC ETCE PEMCE PETCE
5 0.131979 0.061047 100.0 97.7
6 0.076664 0.044234 100.0 100.0
7 0.047065 0.031891 100.0 100.0
8 0.032165 0.024913 100.0 100.0
9 0.023411 0.019979 100.0 100.0

10 0.018146 0.015962 100.0 100.0
11 0.014053 0.013222 100.0 100.0
12 0.011617 0.011093 100.0 100.0
13 0.009464 0.009315 100.0 100.0
14 0.007890 0.007985 100.0 100.0
15 0.006690 0.006992 100.0 100.0
16 0.005872 0.006274 100.0 100.0
17 0.005015 0.005386 100.0 100.0
18 0.004499 0.004952 100.0 100.0
19 0.003983 0.004410 100.0 100.0
20 0.003544 0.003891 100.0 100.0
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2. Acer N.; Şahin B.; Usanmaz M.; Tatoǧlu H.; Irmak Z. Comparison of Point Counting and Planimetry

Methods for the Assessment of Cerebellar Volume in Human using Magnetic Resonance Imaging: a
stereological study. Surg Radiol Anat 2008, 30, 335 - 339.
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