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Abstract: Systematic sampling on real line (R) when using the different probes is very attractive
method within which the biomedical imaging is consulted by a surgery, etc. This study is an
extension of [16], and an exact calculation method is proposed for the calculation of constant A,
of confidence interval for the systematic sampling. If the smoothness constant g of measurement
function (MF) is estimated to be enough small mean square error, we can make the important
remarks for the design-based stereology. The MF is occurred by slicing the three dimensional object
systematically. The systematic design is used as a method to get the quantitative results from the
tissues and the radiological images. Synthetic data in systematic sampling principle can support
the results of real data. The currently used covariogram model proposed by [28] is tested for the
different measurement functions to see the performance on the variance estimation. The exact value
of constant A, is examined for the different measurement functions as well.

Keywords: biomedical imaging; covariogram; design-based stereology; estimation of volume;
systematic sampling

1. Introduction

The important improvements in non-invasive scanning techniques, such as X-ray, computed
tomography, magnetic resonance known as medical imaging tools, support to explore and apply the
stereological methods. Magnetic resonance imaging is an important tool for the imaging of human
body. The main aim at imaging of human body is to understand deeply the structure, function, life
cycle and diagnosis of a disease, an evaluation of treatment. Making a right decision is an important
step for these reasons given above. A researcher wants to estimate not only the variance of systematic
sampling but also construct the confidence interval of volume parameter Q in order to check whether
a tumor, cerebral hemorrhage, etc have exceeded a specific threshold.

The systematic sampling is used as a design-based approach for estimating a parameter Q of
a geometrical quantities, such as volume, area, surface area, length [13,16,17,23,31]. In systematic
sampling principle, stereological objects are sampled with probes, such as lines, regular grid, or
designed patterns. The probes superimposed on the stereological objects are tools for us to get
the quantitative values of geometrical quantities. The chosen design is an important step to have
unbiased estimates for the geometrical quantities. The regular systematic sampling design is used
at most of time, because it is widely accepted design for estimating the parameter Q. From the
statistics, we know that if we have a sampling on parameter Q, we will have the estimated values
for this parameter for each replication of sampling. It is surprisingly nice that the estimated values of
each replication for the sampling on the geometrical objects produce a fluctuation. This fluctuation
is modelled by Fourier transformation technique proposed by [27,28]. To show the mathematical
discussion of the Matheron’s theory, a brief introduction is expressed by Section 2. Since we have the
estimated values, the variance estimation is needed. For the one-dimensional systematic sampling
(also known as Cavalieri sampling), previous studies have shed some light on the variance estimation
of the one-dimensional systematic sampling, such as [8,15,18,19,24-26,29]. Main source in these
studies is of inspiration in Matheron’s theory. Matheron proposed his covariogram model intuitively.
In this study, we aim to focus on testing the performance of this covariogram model for the different
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measurement functions proposed arbitrary by us. No study has been addressed the performance
evaluation of the covariogram model for the different measurement functions.

As implied by the previous paragraph, we have the estimated values for the parameter Q. The
variance estimation has been tried to accomplish, however the confidence interval for the estimated
values was studied by [16]. [16] proposes two approaches for the coefficient of confidence interval
in the statistical inference. The first one is based on the statistical theory. In this study, the second
proposition of [16] is examined and our aim is to find a calculation method for the constant A; given
in [16]. It is nicely said that an exact calculation method to evaluate the constant A, is considered, so
we will have more accurate information for the confidence intervals. We will test the performance
of the covariogram model for the different measurement functions at same time for our exact values
of the constant A;, because the direction of the sampling axis produces the different measurements
function, depending on the the shape of 3—dimensional objects, such as ellipsoidal, quasi-ellipsoidal,
star-like, etc, as implied by [16].

The true variance, the empirical true variance, the variance approximation, and the confidence
interval for systematic sampling on R with variance approximation formula are introduced briefly,
because some tools will be used to evaluate the exact value of the constant A;. The connection between
measurement function approach done by [15] and Matheron’s transitive theory based on the Fourier
transform is given in [15]. In this study, tools will be used and we introduce briefly the results of these
two approach, finally, a proposition is offered to find A4 exactly.

Since the true measurement function is not known, we do not get the true variance of systematic
sampling on R. The variance approximation known as a variance extension term is given in the two
forms coming from Fourier transformation basically given in [8] and the properties of measurement
functions. Some definitions expressed in [15] and [16] will be given to get the values of constant A, in
the section of confidence interval. As a conclusion, we attempt to give a proposition for the confidence
interval and the suggestions for researchers who work the application field of design-based stereology
and biomedical imaging.

The organization of the paper is the following form. Section 2 introduces the materials in the
systematic sampling and describes the exact calculation method for constant A, as well. A simulation
study and real data examples are given at Section 3. A section 4 is considered for the discussions on
results.

2. Materials and Methods

2.1. Exact and Empirical Variance of Systematic Sampling on R and its Approximation

The object which will be estimated is a volume parameter Q of a fixed, bounded, nonvoid
with piecewise smooth boundary of finite surface area Qg, except fractals. Volume estimation with
Cavalieri planes called the measurement function f is also known as the systematic sampling on R,

n—1
Q=T) f((u+))T). M)
j=0

T is a constant distance among the sections obtained from three-dimensional object. u is an uniform
random variable in the interval [0, T).

The problem is about predicting Var(Q) = E(Q — Q)? = E(Q?) — Q2. Since the uniform
distribution defined at [0, T) is used, E(Q?) = 1/T fOT Q(u)*du.

The empirical true variance of systematic sampling on R is calculated by the formula given
below,

Y (0r— Q)3 @)
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where m is the number of resampling for the systematic sampling on R. Q, is an estimated value at a
random starting point for u for the volume. Q is the exact value for the area under the measurement
function. Q is the estimator of Q [6,7,32].

The empirical true variance of systematic sampling on R is

CE2(Q) = Var(Q/ Q). ®)

The empirical true coefficient of error is calculated by

CE(Q) =/ Var(Q)/ Q2. )

In the simulation section, Eq. (4) is used to test the performance of variance approximation
formula in Eq. (23). The true variance is calculated by a formula given below. A calculation of the
true variance by means of Eq. (5) is intractable (see [8] for more details).

Var(@Q) =T Y. k1)~ [ glwyn, 6)
k=—o0 —®
where
o(h) = /R F(x) - flx +h)dx, h € R ©)

¢(h) is a covariogram function of the measurement function f. It is proposed by Matheron’s transitive
theory and is known to be convolution of f with its reflection, G(t) = F1¢ = (Fi1f)(Fif), Fi
expresses Fourier transform defined as

G(t) = Frg(h) = / i g(h)exp(—2mith)dh. @)

Some measurement functions are used to represent the biological objects very efficiently. They
are given with following forms and the function f has positive values for each values of variable x,
namely f : R — RT, g is a smoothness constant.

fx)=(1-2)1,xe[-11], g€[01], ®)
f(x) = ((1 = cos(x))(1 = x*))%,x € [-1,1], q€[0,1], )
and
f(x) = exp(—sin(—x%)), x € [-387/100,537/100] (10)
f(x) = (5/112)(—54x* — 25x% + 48x% +-25x + 6),x € [—1,1] (11)

They represent the area measured on an each slices of the three dimensional object. The measurement
functions in Egs. (8) and (11) are used by [15,21].

f(x)

o
x

(a) MF of Eq. 8 (b) MF of Eq. (9)
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(a) MF of Eq. (10) (b) MF of Eq. (11)

Since the covariogram function g of measurement functions which represents the biological
objects, etc. can not be calculable to get the integral values, a model for the covariogram function
of them should be proposed. In this sense, ¢ can be modelled by a polynomial with the fractional
power,

g(h) =bo+bj|h) +bh?, j=29+1, g €R. (12)

Eq. (12) is defined to be a covariogram model.

The true variance comprises from three components which are the variance extension term,
Zitterbewegung and the higher-order terms, respectively. These terms were gotten in Garcia-Fifiana
& Cruz-Orive [15] (see section 6 for detailed expressions).

Now since ¢ is the convolution of f with its reflection, G(t) = F1¢ = (F1f)(F1f), so we finally

get
VarQ) = T [ Qudu— ? 13)
~ Y GH/T) - G(0)
k=—o0
= ZiG(k/T)
k=1

where G(0) comes from the properties of covariogram function (Detailed expressions are given in

8-
The variance extension term of systematic sampling on R is obtained by using the formula given
in Eq. (9.1) and Eq. (9.2) in the study of Cruz-Orive [8] as follow,

Fill = b(j,1)0" U™V, (j > —1,non-even) (14)

b =

which is the Fourier transformation of /1/.
By using Eq. (13) and Eq. (14), Eq. (15) can be found.

Varg(Q) = 2bb(j, NTZ(j+1) (15)
Varg(Q) = a(q)(3g(0) —4¢(T) +g(2T))
Varg(Q) = a(q)(3C) —4Ci + C)T?

where
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2 a2 (g 4+ 1) (2 +2)
a(CI) - (22q+1 _ 4)1_‘(_#) 7 q S ]R (16)

§(kT) = TG (17)
Eq. (16) is gotten according to Fourier transformation basically given in [8].

a(q) = F(Z?Z';)zz)qi(zz(qltzz)zfﬂsl()qﬂ) »4€R (18)

2702043/ (g +1)¢(29 + 2)

_ 2
Gy (3Co —4Cy + C)T (19)

Varg(Q) =

Eq. (18) is found according to the refined Euler Mac-Laurin which can be used to approximate
integrals by finite sums. It is given in [15]. Note that Eq. (16) and Eq. (18) give same results.

2.1.1. The Formula of Smoothness Constant g

The formula of smoothness constant g is proposed by [15]. In the subsection, we will get it in the
framework of Fourier transformation. The same formula for g is obtained. The covariogram model g
can be declared by integer k values. If i = iT is near zero, Eq. (7) has more information. By using Eq.

(15),

§(iT) = bo + bogy1 (liT|)*1*! + by (iT)?, i = 0,k, 2k,

Varg(Q) = 2bagi1b(29+1,1)TH27 (29 +2) (20)
Varg(Q) = 271*(2‘7*3/2);((%%11))«2%2)

T-3g(0) —4g(kT) + g(2kT)
k2q+1 (22q+1 _ 4)

can be obtained. By using Eq. (19) and Eq. (20),

kz[}ﬁ -[3g(0) — 4g(kT) + g(2kT)] = [35(0) — 4g(T) + g(2T)] (21)
is obtained and then
ot 38(0) —4g(kT) + g(2KkT)
3g(0) —4g(T) +g(2T)
_ 1 <3g(0) — 4g(kT) +g(2kT)> 1
i 2log (k) 3g(0) — 4g(T) +g(2T) )~ 2’

where, k = 2,3, ....
can be obtained. By using Eq. (17),

1 (3Co—4C;+Ca
1= 2log(k) 3Co — 4Gy + G,

the estimator 4 is gotten when the measurement function is obtained by planimetry.
We calculate the estimated coefficient of error for the systematic sampling on R by means of Eq.
(23) given below,

1
— 5 k=23, (22)
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virg(Q)/Q* = a(q)(3Cy —4Cy + ) T2/ Q? (23)
e(Q) = /u(q)(38Co—4Ci +Ca)(Y i) !
i=1
where
n—k
Ce= )Y fi fir k=0,1,..,n—1. (24)
i=1

This is defined to be a coefficient of error of Matheron’s covariogram model. Eq. (6) and
Eq.(24) have in fact inheritance. n > 2k 4 1 observations are required due to Eq. (24) [8-10,
14,15,28]. The estimation values of smoothness constant from exact (1 — x2)4, ((1 — cos(x))(1 —
x2))9, exp(—sin(—x3)) and (5/112)(—54x* — 25x3 + 48x% + 25x + 6) measurement functions will be
obtained at the simulation section. [2-5,17,19,20,22,23,30,32-35] currently used this model for the
different measurement functions. We aim to show the performance of the covariogram model for
the different measurement functions. In other words, the capability of fitting performance on the
different measurement functions is tested, so the information gained is displayed by the simulation
results. The simulation results for the estimation of the smoothness constant formula is given into
appendix section.

2.2. Confidence Interval in Systematic Sampling on R

The variance of Cavalieri sampling changes with a fractional power of T [15,16]. It is given that
the behavior of the variance of the Cavalieri estimator is strongly connected to analytical properties
of the measurement function f. An aspect coming from Matheron'’s transitive theory is given in [8].
That there is a fractional power for T is not pointed out by [25,26]. [15] is an extension of [25].

We will give an exact calculation of A; found in a generalized version of the refined Euler
Mac-Laurin summation formula with a fractional power of measurement functions to be smoothness
constant g. A brief introduction, and some definitions will be given for the smoothness conditions of
measurement function f to get the formulae of A, for confidence interval.

A bounded interval for the difference (Q — Q) defined a generalized version of the refined Euler
Mac-Laurin summation formula is

N
Q- QI < TPy, Y [SFD(ay)] (25)
i=1
where
P = 2 v L smaj— Flg+1 26
1 = maxa gy {| W}_;FCOS( YAV E(qu )+8) 1} (26)

A €10,1) and B € [0,27] (For detailed expressions, see [16]).

The preliminaries were given. Now, we will use the tools in [16]. After some straightforward
calculation, the formula of A; will be obtained in the following steps.

By means of Cauchy Schwarz inequality (LN ; [x;])2 < NN, x2, where x; = Sf(7) (a;),

N 2 N 5
(Qsﬂ%n) SN Y (5£9)" @)

When Eq. (25) and Eq. (27) are used,
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Q-Q] X )
o~ S S (aj)|
Tq—HPqul 1;
. N 2
Q-Q < TP VN Zl (SFD(ay)) (28)
is obtained.
Eq.(29) given in [15] is
R Pagio7(0) Y 2
—  T2q+2729F2 1) @ (g,
Vare(Q) = T gy & (57 @) (29)
When YN, (Sf@ (ai))z in Eq. (29) is written in the Eq. (28), Eq. (30) is obtained.
I0-Q| < P+1\F cos nq Varg(Q
Pag10,7(0
10— Q| < Agy/Vare(Q), (30)
where
* cos(q)
= P* VN ,g€R 31
gt P 42,7(0) I G

Aq is a function of g and N. In the following steps, we will give a definition for the function P in
[1]. The function P; 1 is required to apply Theorem 2.1.
From Eq. (30), for true parameter Q a bounded interval (or 100% confidence interval) is given as

[15,16]
(0= A/ Vare(@, 0+ 25 Vars(0) )

The equations to get the values of constant )t are given below [1,15],

_ x x -2 & cos(2mj(x/T) — (1/2)7k)
Pr() = (7 = [7]) = o L 7 : (33)

wherex € R, k=2,3, ...
From Eq.(33), P2g+2,7(0) is obtained,

® cos(27j(0/T) — (1/2)7(29 +2))

Pagiar(0) = (27 2q+ ; 22
2
Popiar(0) = e l(2g - 2)cos().

We will give the following theorem to get the values P/ ; exactly.

Theorem 2.1. 1. Supposing that we have a right-open side interval [a,b), the maximum value of the
interval is
lim(b—h) = lim (b —1/h)
h—0

h—oc0
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2. Supposing that we have a left-open side interval (a, b), the maximum value of the interval is

lim(a+h) = 11m (a +1/h)
h—0

3. Supposing that we have the left-open side and right-open side interval (a,b), the maximum value of the
interval is

lim(a+h) = lim (a+1/h)
h—0 h—o0
lim(b — h) = lim (b—1/h)

h—0 h—o0

In order to calculate P’ g+1 exactly, A is replaced with 1 — h. When h — 0, we get the result:

" . 2 1 7T
Piy = h |(2n)q+12 q+1cos(2n(1—h)] E(q+1)+2n)\ (34)

Now we can explain how to get the values of constant A; below.

When N and Py;42,7(0) given in the Eq. (31) are replaced with 2 and the Eq. (34), respectively,
we get an equation,

(27-[)2q+2
V2 TATEE (35)
The codes written in Mathematica 7 or higher versions 8 and 9 do not compute the value of A
and gives infinity. So, for the calculation of g = 0, we use Eq. (36) in order to get the result.
By means of Eq. (35), we get Ag:

p = lim | ; Jij s(27(1—h)j + 3;) |=1/2 (36)
A = % (2(7;); — 2.44949
Forgq =0.1,
R ,
A1 = }1115(1)| (27)01+ ]; j01+ cos(27t(1 — h)j (37)

= 271243

is gotten. For other g values, similar procedure is proceeded. By using the formula given in Eq. (31),
the values at Table 1 are obtained for N =2, N = 3 and N = 4 [12].

It is attested that hlim (1—-1/h) and hlin%) (1 — h) give the same values for A;, which is used to
—00 —
define the right-open side interval.
Moreover, in order to construct the confidence interval,

A

Q—2Ag-ce(Q)-Q<Q<Q+A;-¢(Q)-Q (38)
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Table 1. g and its exact A4 values for different N values

] q \)\q(N:2)\)\q(N:3)\)\q(N:4)‘
0 2.44949 - -
0.1 2.71243 3.32203 3.83595
0.2 2.93821 3.59855 4.15525
0.3 3.12464 3.82689 4.41891
04 3.26925 4.004 4.62342
0.5 3.36968 4.12699 4.76544
0.6 3.42394 4.19345 4.84218
0.7 3.43064 420165 4.85165
0.8 3.38906 4.15073 4.79285
0.9 3.29929 4.04079 4.6659
1 3.16228 3.87298 4.47214

Table 2. g and its computational A4 values for N = 2

[ g [ Ag(Seqr) [ Ag (Seqa) | Ag (Seqs) | Aq (Seqs) |
0 | 2402871 | 2.418465 - -
01 | 2.671264 - - -
02 | 2.89612 5 5 2.926749
03 | 3.07818 | 3.105091 | 3.111937 | 3.114245
04 | 3216635 5 5 3.258353
051 | 3.323898 . . 3.365038
0.6 | 3397839 | 3.408876 | 3.412577 | 3.414001
07 | 3.418973 - . 3.426855
0.8 | 3.383912 5 338736 | 3.387638
09 | 3297052 | 3.29831 | 3.298648 | 3.298765
1 | 3161317 - - -

doi:10.20944/preprints201608.0017.v1
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are used, where A, is the confidence interval coefficient. ce is an estimated coefficient of error [14,16,

17].

We got the values of A, for different g values by using the exact calculation approach calculated
via the Mathematica 7 or higher versions 8 and 9. One can get the values of constant A; for the
different g values with N =2, N =3,and N = 4.

When the number of sequence in codes revised is increased, the computational values
convergence the values calculated by the exact approach (see Table 1 and Table 2). Because the getting
of computational A, values for N = 2 would be unlikely to be useful, we give up computing some of

them. Seq;: The number of sequence increased by an user, i : 1,2, 3, 4.

3. Results

This section will give the simulation results for the estimation of smoothness constant g in

variance formulae in Eq. (23). Together with the estimated g with k = 2, it is planned to see whether
or not the confidence interval includes the true volume value for the approximate variance based
on Matheron’s covariogram model (CEMC) and empirical true variance (ETCE) estimations as well.
Real data examples are given to test the performance of confidence interval.

3.1. Simulation

In the simulation performed, the number of resampling is 3000 and the number of systematic
sampling on R is 20 for the measurement functions in Egs. (8)-(11).
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As implied by p.31 into [8], it is obvious the changing of measurement function affects the
variance extension term given in Eq. (15), which leads to confidence level is more accurate. The
covariogram model in Eq. (12) can be adopted for the general measurement functions. The simulation
results in Tables 5 — 16 show that the model can be used for the measurement functions given in Egs.
(8)- (11) even if they are not the true covariogram function of them. It can be said that the model is
a good approximation for the covariogram functions of the measurement functions. Note that the
integral of function in Eq. (9) is computed by means of the numerical integration with in MATLAB
20134, but the integral of function in Eq. (8), (10) and (11) are computed by means of the "int’ function
which is a function for the exact calculation of integral in MATLAB 2013a. N in A, is taken to be 2.

It is interesting that the covariogram model in Eq. (12) is proposed and it can be a good
approximation for the covariogram function of f in Egs. (8) - (11). We want to use it to be able to
check the performance of covariogram model in Eq. (12). The estimation of g can be said an open
problem for the the measurement functions in Egs. (8)- (11). It is observed from the simulation results
that the performance of the smoothness constant g4 formula depends on the covariogram model in Eq.
(12), proposed by [27,28].

It is seen that Egs. (10) and (11) does not have the smoothness constant 4 parameter, but we want
to estimate it to get the values of variance estimation precisely for the measurement functions without
parameter q. The true parameter values are accepted to be g = 0.95,9 = 0.9, respectively, because the
estimated values of 4 parameter is around those values.

The theoretical percentage was 100. In this sense, the confidence interval includes the true
volume as a percentage 100; but according to the empirical true variance, the percentage can not be
100. We can say that the empirical true variance can include the true volume values (Q) satisfactorily.
Finally, the simulation supports the theory. The fluctuation of ETCE is expected results which occur
when the idea of systematic sampling in Eq. (1) is used. CEMC can be good approximation to ETCE,
and so the percentage of them, PEMCE and PETCE, can be thought to have similar values, which
shows the our investigation on the performance of A; values would be reasonable. In other words,
when we look at the performance of confidence interval as to including the true value, we should
focus on PCEMC and PETCE must give similar results together. In this point, the trustiness of
confidence interval is acceptable, because the PETCE is at least 95 approximately.

The estimated values for the measurement function in Eq. (8) with ¢ = 0.4 and g = 0.8 and
also Eq. (9) with ¢ = 0.4 and g4 = 0.8 would be around the true parameter values. It is seen
that the covariogram model in Eq. (12) could not be representative for the covariogram functions
for these g values of the measurement function in Eq. (8). However, when it is thought on the
performance of variance estimation, the variance estimation for the systematic sampling of Eq. (8)
gives the satisfactorily results. The measurement function in Eq. (9) could not be represented by the
covariogram model in Eq. (12). However, for the variance estimation on systematic sampling of Eq.
(9), it is seen that satisfactory efficient results are produced by the covariogram model in Eq. (12). The
efficiency for the systematic sampling of measurement function in Eq. (10) is not as good as that in
Eq. (11).

As a final comment, this model can be used. However, the proposed measurement functions,
such as Eqgs. (8) - (11), should be systematically sampled so that one can get the more precise
decision on the application for the biomedical imaging. CEMC, ETCE, PCEMC and PETCE are
the abbreviations for the coefficient of error of Matheron’s covariogram model, the empirical true
coefficient of error, the percentage for coefficient of error of Matheron’s covariogram model and the
percentage for empirical true coefficient of error, respectively. W(Q) and MS] E(§) are the simulated
variance and simulated mean square error of the estimator §, respectively. # is the number of
systematic sampling.
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Table 3. 5 Sheep brain volumes from automatic pixel counting (mm?) after determining border of
slices with 5 mm thickness and their confidence intervals for N = 2: arithmetic mean of § values with
k =2,3,4,5,6,7 in Eq. (22)

Brains Q Q q ce Qlower Qupper Num.Sec.
1 85000 87300 .20 .0234 81289.05 93310.95 12
2 94000 90738 .34 .0106 87731.40 93744.60 13
3 83000 84608 .50 .0066 82722.64 86493.36 14
4 88000 88846 .42 .0087 86318.13 91372.87 14
5 100000 99675 .67 .0039 98351.66 100998.34 15

Table 4. 5 Sheep brain volumes from automatic pixel counting (mm?) after determining border of
slices with 5 mm thickness and their confidence intervals for N = 2: § values with k = 2 in Eq. (22)

Brains Q Q q ce Qiower Qupper Num.Sec.
1 85000 87300 -.06 .0234 8264698 91953.02 12
2 94000 90738 .18 .0131 87249.31 94226.69 13
3 83000 84608 .41 .0075 82464.84 86751.16 14
4 88000 88846 .28 .0105 85934.10 91756.90 14
5 100000 99675 .63 .0041 98283.46 101066.54 15

3.2. Real Data

Five different sheep brain which were 12-18 months old were removed from the their skull via the
craniotomy in the laboratory for anatomy. These brains immersed in formalin (5%) for 10 days. Brains
scanned with standard T2-weighted 0.5 tesla MRI in the coronal plane with 5 mm slice thickness. The
real volume of each brain was obtained by using the Archimedean principle repeated in 6 times. The
mean of 6 results for each brain was used as an exact volume of a brain. They were estimated by the
slices in coronal plane. The results are given in Tables 3-4. The area values of each slice obtained from
the coronal axis are depicted at the figure 3.

2200

2000

1800

1600 [

1400 -

1200

Area function

1000 [

800

600 / —e— 1. sheep
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Figure 3. Area functions for each brain.

When N in Eq. (31) is replaced with 3, A;—03 = 3.82689 and A;—g34 = 3.90405 are found.
The confidence intervals of brain 2 for 4 = 0.3 and g = 0.34 are (87055.68,94420.32) and (86981.44,
94494.56), respectively. These confidence intervals include the exact volume of the brain 2.

In table 4, when g with k = 2 is taken, the confidence interval includes the true volumes of each
non-vivo brains. For brain 2, the volume value is included by the confidence interval. It is seen that
estimating accurately the parameter g affects the variance estimation and the confidence interval as
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well. For this reason, A; values for N = 2,3,4 in Table 1 are computed, however, the simulation
results show that N = 2 should be taken. Tables 3-4 show the true volume (Q), the estimated volume
(Q), the estimated smoothness constant (9), the estimated coefficient of error (ce), the lower bound of
the estimated volume (Qjyzer),the upper bound of the estimated volume (Quppg,) and the number of
sections (Num. Sec.).

4. Conclusions and Discussions

In this study, a method showing how to calculate constant A; is proposed. It is expected that
this method can be used as a new tool in Mathematics when it is needed. A program written in
MATLAB 20134 package give the lower and upper levels of confidence and the values of quantitative
values of stereology when the data obtained from a single replication is supplied. The program can
be supplied on a request. The estimation of g is open problem even if we know the exact form of
the measurement functions. In other perspective of our discussion, the covariogram model can not
be so good approximation for the measurement functions. However, when we make a comparison
between CEMC and ETCE, CEMC can be regarded as a good approximation to ETCE for each the
number of sampling.

As implied by [10,14,15], the estimation of g is important to avoid the biasedness of the variance
of systematic sampling on R. Unbiasedness of variance estimate leads to have the accurate lower
and upper bounds of confidence interval for the systematic sampling on R. It is observed from
the simulation results that the covariogram model in Eq. (12) gives the satisfactorily results for the
variance estimation if CEMC and ETCE have an approximate values. Variance estimation based
on covariogram model and the values of PCEMC PETCE are an another criteria to approve the
performance of exact values of the constant A, as observed from the simulation results.

A numerical computation for the constant A, of confidence interval for the systematic sampling
was done by [10]. The more precise values of the constant A; means the more precise confidence
interval. It is obvious that the exact calculation proposition should be preferred, because the
computation of the constant A; proposed by [10] is not as good as the results displayed by Tables 1 and
2. The [8,15,18,19,24-26,29] studies focused on the variance estimation for the systematic sampling.
In this study, we proceed the same steps especially inspired from Matheron’s theory, however the
covariogram model in Eq. (12) can be thought to pass testing on the performance evaluation when
we cross checking with ETCE.

For the real data, since the measurement functions used can not be represented by exactly similar
manner, we should prefer to use different N values. Eq. (22) can produce the negative estimated §
values for the area function of real data given in figure 3. The constant A, values for different N values
must be given, because the real data shows that we can need constant A, values with the different N.
The Mathematica codes which are used to get the A; values can be sent on a request.

It is observed that the synthetic data generated from a class of exact measurement functions can
approve the real data for non-vivo brains when the real data have an exactly similar form with the
synthetic data. Generally, the covariogram model in Eq. (12) gives the satisfactory results for the
measurement functions used in this study. However, the proposed measurement functions should
be systematically sampled while conducting a research on the biomedical imaging to increase the
information in the decision rule.
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Table 5. (1 — x2)7: g = 0.4

q

Var(4)

MSE(9)

0.469211
0.449412
0.438921
0.430876
0.426702
0.422139
0.419202
0.417282
0.414414
0.413815
0.411180
0.411575
0.409010
0.409631
0.409595
0.408593

0.000755
0.001009
0.000994
0.000992
0.001029
0.001089
0.001029
0.001049
0.001213
0.001090
0.001210
0.001060
0.001232
0.001119
0.001086
0.001079

0.005545
0.003450
0.002509
0.001945
0.001742
0.001580
0.001398
0.001348
0.001421
0.001281
0.001335
0.001194
0.001314
0.001211
0.001178
0.001153

Table 6. (1 — x2)9: g = 0.8

q

Var(4)

MSE(§)

0.798607
0.821274
0.827312
0.838035
0.835330
0.840301
0.840649
0.839555
0.842700
0.837016
0.838411
0.840756
0.837451
0.831963
0.839645
0.835757

0.014187
0.015347
0.016704
0.016471
0.017350
0.017530
0.017641
0.018128
0.017997
0.018080
0.018319
0.018341
0.018479
0.019301
0.019642
0.019321

0.014189
0.015800
0.017450
0.017918
0.018599
0.019154
0.019294
0.019693
0.019821
0.019450
0.019794
0.020002
0.019881
0.020323
0.021214
0.020599
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Table 7. (1 — x2)1: g = 0.4

Posted: 2 August 2016

n  CEMC ETCE PEMCE PETCE
5 0.031387 0.027150 100.0 98.8
6 0.024935 0.021804 100.0 99.1
7 0.020275 0.017246 100.0 99.1
8 0.016988 0.014385 100.0 99.3
9 0.014433 0.011948 100.0 98.7
10 0.012535 0.010502 100.0 99.1
11 0.011000 0.009178 100.0 99.5
12 0.009751 0.008085 100.0 99.0
13 0.008768 0.007458 100.0 99.0
14 0.007891 0.006564 100.0 99.1
15 0.007211 0.006121 100.0 99.3
16 0.006562 0.005408 100.0 99.3
17 0.006069 0.005181 100.0 99.2
18 0.005580 0.004672 100.0 99.5
19 0.005167 0.004271 100.0 99.4
20 0.004820 0.003961 100.0 99.3
Table 8. (1 — x2)%: g = 0.8
n  CEMC ETCE PEMCE PETCE
5 0.018256 0.022835 100.0 100.0
6 0.012532 0.016332 100.0 100.0
7 0.009405 0.012425 100.0 100.0
8 0.007190 0.009670 100.0 100.0
9 0.005913 0.007842 100.0 100.0
10 0.004853 0.006570 100.0 100.0
11 0.004053 0.005437 100.0 100.0
12 0.003491 0.004684 100.0 100.0
13 0.003021 0.004037 100.0 100.0
14 0.002674 0.003554 100.0 100.0
15 0.002380 0.003191 100.0 100.0
16 0.002116 0.002814 100.0 100.0
17 0.001885 0.002528 100.0 100.0
18 0.001702 0.002280 100.0 100.0
19 0.001549 0.002043 100.0 100.0
20 0.001429 0.001903 100.0 100.0
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Table 9. ((1 — cos(x))(1 —x?))7: g = 0.4

n 4 Var(q)  MSE()
5 —0.059737 0.009231 0.220590
6 0.257864  0.001882 0.022085
7 0.412975  0.000590 0.000758
8 0.483350 0.000779  0.007726
9 0.501458 0.000922 0.011216
10 0.507921 0.001314 0.012961
11 0.507945  0.000837 0.012489
12 0.507897  0.001435 0.013076
13 0.503777  0.000699 0.011469
14 0.501835 0.001445 0.011816
15 0.497033 0.000737 0.010153
16 0.494786 0.001527 0.010511
17 0.489366  0.000710 0.008696
18  0.488828  0.001432 0.009323
19 0.483590 0.000714 0.007702
20 0.481851 0.001531 0.008230

Table 10. ((1 — cos(x))(1 — x2))9: g = 0.8

g Var(q)  MSE(3)
5 —0.127902 0.025653 0.886655
6 0.259307  0.009587 0.301935
7 0.471353 0.008843 0.116851
8 0.591335 0.008365 0.051906
9 0.667866  0.009158 0.026618
10  0.712836  0.010045 0.017643
11 0.743469 0.010628 0.013824
12 0.769775 0.011272 0.012186
13 0.782195 0.012278 0.012595
14 0.794971 0.013111 0.013137
15 0.802343 0.013406 0.013412
16 0.810423 0.013491 0.013599
17 0.814130 0.013994 0.014194
18 0.822037  0.014498 0.014984
19 0.822426 0.014351 0.014854
20  0.822911 0.015298 0.015823
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Table 11. ((1 — cos(x))(1 — x?))7: g = 0.4

n  CEMC ETCE PEMCE PETCE
5 0.136986 0.035193 100.0 94.6
6 0.075842 0.056090 100.0 974
7 0.048192 0.022847 100.0 98.0
8 0.035892 0.036584 100.0 99.1
9 0.029172 0.017402 100.0 98.3
10 0.024801 0.026910 100.0 99.5
11 0.021386 0.013797 100.0 98.6
12 0.018852 0.020350 100.0 99.4
13 0.016763 0.010922 100.0 98.9
14 0.015121 0.016248 100.0 99.7
15 0.013697 0.009184 100.0 98.5
16 0.012545 0.013334 100.0 99.4
17 0.011526 0.007842 100.0 98.9
18 0.010623 0.011027 100.0 99.7
19 0.009865 0.006687 100.0 98.5
20 0.009211 0.009652 100.0 99.6
Table 12. ((1 — cos(x))(1 — x2))7: g = 0.8
n  CEMC ETCE PEMCE PETCE
5 0.179574 0.070757 100.0 95.8
6 0.098853 0.058929 100.0 98.7
7 0.056666 0.040635 100.0 100.0
8 0.037906 0.035454 100.0 100.0
9 0.027210 0.025762 100.0 100.0
10 0.021142 0.023491 100.0 100.0
11 0.016973 0.018652 100.0 100.0
12 0.014014 0.016925 100.0 100.0
13 0.011669 0.013700 100.0 100.0
14 0.010083 0.012682 100.0 100.0
15 0.008732 0.010624 100.0 100.0
16 0.007799 0.010070 100.0 100.0
17 0.006862 0.008591 100.0 100.0
18 0.006093 0.008067 100.0 100.0
19 0.005530 0.007070 100.0 100.0
20 0.005030 0.006753 100.0 100.0
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Table 13. exp(—sin(—x3)): ¢ = 0.95

n 4 Var(q)  MSE(3)
5 —0.088096 0.050826 1.128469
6 0.041988  0.031897 0.856384
7 0.189917  0.018652 0.596379
8 0.320166 0.008843 0.405534
9 0.449291 0.007235 0.257945
10 0.549659 0.004972 0.165245
11 0.639576  0.002916 0.099279
12 0.714919 0.001908 0.057171
13 0.776112  0.001817 0.032055
14 0.827798 0.001763 0.016697
15 0.868178 0.001724 0.008419
16 0.899500 0.001604 0.004154
17 0.928089  0.001326 0.001806
18  0.942607 0.001128 0.001183
19 0.959425 0.001025 0.001114
20 0.967014 0.000817 0.001106

Table 14. exp(—sin(—x3)): g = 0.95

n  CEMC ETCE PEMCE PETCE
5 0.123899 0.042779 100.0 100.0
6 0.096852 0.020019 100.0 100.0
7 0.068757 0.008892 100.0 100.0
8 0.046235 0.003329 100.0 100.0
9 0.031395 0.001138 100.0 100.0
10 0.022537 0.000614 100.0 100.0
11 0.016419 0.000538 100.0 100.0
12 0.012289 0.000462 100.0 100.0
13 0.009477 0.000366 100.0 100.0
14 0.007494 0.000282 100.0 100.0
15 0.006081 0.000220 100.0 100.0
16 0.005047 0.000184 100.0 100.0
17 0.004236 0.000158 100.0 100.0
18 0.003677 0.000132 100.0 100.0
19 0.003202 0.000117 100.0 100.0
20 0.002850 0.000103 100.0 100.0
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Table 15. (5/112)(—54x* — 25x3 + 48x% + 25x + 6) : ¢ = 0.9

n 4 Var(4)  MSE(§)
5 0.119701 0.021089 0.629956
6 0.349198 0.018577 0.321959
7
8

0.506408 0.017147 0.172062

0.607155 0.017009 0.102768
9 0.677396 0.017249 0.066802
10 0.720912 0.016863 0.048935
11 0.765776 0.016458 0.034474
12 0.786878 0.015944 0.028741
13 0.815932 0.015711 0.022778
14 0.838310 0.015351 0.019157
15 0.856894 0.015623 0.017481
16 0.865002 0.016006 0.017231
17 0.883260 0.015086 0.015367
18 0.887106 0.015674 0.015840
19 0.896326 0.015430 0.015444
20 0904643 0.014824 0.014845

Table 16. (5/112)(—54x* — 25x3 + 48x% + 25x 4+ 6) : g = 0.9

n  CEMC ETCE PEMCE PETCE
5 0.131979 0.061047 100.0 97.7
6 0.076664 0.044234 100.0 100.0
7 0.047065 0.031891 100.0 100.0
8
9

0.032165 0.024913 100.0 100.0

0.023411  0.019979 100.0 100.0
10 0.018146 0.015962 100.0 100.0
11 0.014053 0.013222 100.0 100.0
12 0.011617 0.011093 100.0 100.0
13 0.009464 0.009315 100.0 100.0
14 0.007890 0.007985 100.0 100.0
15 0.006690 0.006992 100.0 100.0
16 0.005872 0.006274 100.0 100.0
17 0.005015 0.005386 100.0 100.0
18 0.004499 0.004952 100.0 100.0
19 0.003983 0.004410 100.0 100.0
20 0.003544 0.003891 100.0 100.0
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