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Abstract: The philosophy of testing statistical hypothesis is a natural consequence and functional 
extension of mathematical analysis of Probability. Along with the concept of recurrence when 
applied to random sequences and functions, it leads to the analysis of a priori and posterior which 
implies testing statistical hypothesis. Testing statistical hypothesis also involves algebraic, 
functional and dimensional considerations, which are found in the works of Laplace. Aspects of 
mathematical analysis such as universality of solutions, Laws of Large Numbers, Entropy, 
Information, and various functional dependencies are the main factors explained in the five 
properties that lead to implication of testing statistical hypothesis. Various interesting examples 
with modern scientific significance from genetics, astrophysics, and other areas give 
methodological access to answers of different problems and phenomena which are involved in the 
logic of testing statistical hypothesis. 
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1. Introduction 

               Researchers in modern molecular biology use hundreds times more hypothesis tests in one 
project than previously, and as a consequence the question whether to discuss a fallacy of single 
hypothesis testing, or to correct for multiple testing became oblivious in this area, leaving place for 
other methodological discussions and questions, such as how to correct them [40-43]. Hypothesis 
tests are not free of error, however, and for every hypothesis test there is a risk of falsely rejecting a 
hypothesis that is true, i.e. a type I error, and of failing to reject a hypothesis that is false, i.e. a type 
II error.The False Discovery Rate (FDR) is a new statistical procedure to control the number of 
mistakes made when performing multiple hypothesis tests. Large-scale multiple testing has been 
applied in fields such as genomics[, astrophysics [, brain imaging, and spatial epidemiology  [38]. 
             As  a decision theoretical problem testing statistical hypothesis can be part of Bayesian or 
frequentist approach, it can vary from parametrical to semi- or non- parametrical  models, which 
should be mentioned, although this paper is mainly concerned with the first ones.  

There are five main aspects of mathematical analysis of probability in the testing of 
statistical hypothesis (TSH).Testing statistical hypothesis is a method that helps in making 
statistical decisions based on experimental data. The method however works 
basically as an assumption about the population parameter. Although the procedure 
seems to be very simple, one may have the perception that it is difficult hence try to apply it in 
special circumstances, e.g. facing one of 5 types of bivariate exponential distribution, [23-27,32], or 
one of  5 types of bivariate gamma distribution[28-31,18] in the theory of ratios of random variables. 

The 5 properties involve the analysis of a priori and posterior along with the concept of 
recurrence, random sequences and functions [1-7, 10-14]. TSH with familiar concepts of decision 
theory loss and risk functions are a continuation of basic algebraic operations over random 
variables. The basic algebraic operations also use the random variables along with differential and 
integral calculus over them, with further extension to a multi-dimensional model[1-3]. This requires 
application of special mathematical interest in search of generalized and uniform functions and 
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solutions [16, 17]. TSH also can be applied to check for the universality of solutions of different 
problems. 
Just as functional operators are related to different types of LLN, TSH is related to concepts of 
Entropy and Information in different goodness of fit tests [21, 22]. TSH is often presented in 
conjunction to mixed models repeated measures, or regression models, or cluster randomized trails 
There are five steps in hypothesis testing that look like step by step instructions manual [37]:  

1. Making assumptions about the data and fitting model.  

2. Stating the null and alternative hypotheses. Selecting significance level (alpha). 

3. Selecting the sampling distribution and specifying the test statistic. 

4. Computing the test statistic and probability value. 

5. Making a decision and interpreting the results. 
In comparison, there is summary of a step by step procedure aimed at finding the equation of a 
tangent line to a curve at an indicated point:  

1. Find the first derivative of f(x).  

2. Substitute value of x1 point into f '(x) to find the slope at x1.  

3. Substitute value of x1 into f(x) to find the y1 coordinate of the tangent point.  

4. Use the point-slope formula to find the equation for the tangent line.  

y– y1= m (x – x1). 

5. Check the results, possibly by drawing a graph. 

Though seemingly both procedures are not related directly, we can find similarities in series 

expansions, e.g. for derivation of test statistic for Hamiltonian system of one, two, or 3-dimensional 

lattice, such as classical perturbation theory [38]. 

1.1. History of the Laws of Large Numbers [8,9,44] 

Statistical prediction in modern sciences traces its roots in ancient mathematics. To 
introduce this, it would be reasonable to start from the theorems of Probability and Statistics. Such 
theorems support the calculation of probability, estimation of and testing statistical hypotheses 
(TSH) for the next occurrence of the Heads and Tails, or +s and –s. For instance, the theorem of 
Bernoulli for the probability of coin tossing outcomes of Heads and Tails depending on their 
frequencies. Consider Erdos-Renyi law of large numbers for general sequences of independent 
identically distributed (i.i.d.) random variables. As an extension of the Erdos’ result that was 
obtained the same year when Erdos and Selberg found an elementary probabilistical proof of Prime 
Number Theorem. The theorem extended Kac, Salem, and Zygmund result for functions with 
conditions 

 
f(x+1) = f(x), ׬ ଵ଴	(ݔ)݂ ׬ ,0 = ݂ଶ(ݔ)	ଵ଴ ׬ , 1 = (ݔ)݂) −	߮௡(݂))ଶଵ଴ = O( ଵ(௟௢௚௡)ച) for some ߳ > 0,          (1) 

where ߮௡(݂) is the nth partial sum of  the Fourier series of f(x), with n1<n2<…<nk< ⋯ a sequence of 
numbers satisfying nk+1 /nk> c > 1, then for almost all x 
                                                               ݈݅݉ே→∞ ଵே(∑ ݂(݊௞ே௞ୀଵ  (2)           0 = (ݔ
to the Theorem of existence of f(x) and sequence nk such that 
∞→ே݌ݑݏ݈݉݅                                                                ଵே(∑ ݂(݊௞ே௞ୀଵ  (3)           ,∞ = (ݔ
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This result surprisingly  points to a philosophical view of prediction at infinity. The question, if the 
limit in (1) is true for all f(x) was already proved by Raikov for sequences nk =2k. 

And then he further used the gap between the conditions: 
׬                                                        (ݔ)݂) −	߮௡(݂))ଶଵ଴ = O( ଵ(௟௢௚௟௢௚௡)మశച),                      (4) 

And 

׬                                                                   (ݔ)݂) −	߮௡(݂))ଶଵ଴ < ଵ(௟௢௚௟௢௚௟௢௚௡)ച      (5) 

to prove even stronger version 
∞→ே݌ݑݏ݈݉݅                                                                  ଵே(௟௢௚௟௢௚ே)భమషച(∑ ݂(݊௞ே௞ୀଵ  (6)               ,∞ = ((ݔ

And 
∞→ே݌ݑݏ݈݉݅                                                                    ଵே(௟௢௚ே)భమశച (∑ ݂(݊௞ே௞ୀଵ  (7)              0 = ((ݔ

 
This result established the weak sense of prediction for the coin tossing outcomes, or the 

length of the longest heads run that could be used further for the development of method of TSH 
from the axiomatical approach to mathematical theory of probability. 
               The history of application of the law of large numbers (LLN) to statistical analysis started 
possibly some 450 years ago, when Gerolamo Cardano stated without proof that the accuracies of 
empirical statistics tend to improve with the number of trials. John Arbuthnot was the first to 
publish statistical test on fraction of boys and girls born year after year [44], three years before the 
LLN for coin tossing random variable was first proved by Jacob Bernoulli around.  And only after 
more than 120 years Poisson used the name "la loi des grands nombres" ("The law of large 
numbers"). Five other versions of LLN were derived by Chebyshev, Markov, Borel, Kolmogorov, 
and Khinchin. They differ from one another by convergence in probability (weak LLN) , almost 
sure convergence, or with probability 1 (strong LLN, e.g. Kolmogorov LLN), if the i.i.d. random 
variables in the  sequence should have a variance (e.g. Kolmogorov LLN), if the variables can be 
correlated, and the like variations of the LLN. Many of them are proved with the help of Chebyshev 
inequality. 

                                               P(|Ẋ	 − |ߤ ≥ (ߪ݇ ≤  1/k2      (8) 

Borel’s LLN is the extension of Bernoulli’s Theorem that the limiting frequency of the repeating 
event tends to probability of this event with probability 1. This is direct consequence of 
Kolmogorov LLN. Khintchin’s weak LLN is the convergence in probability of sample average to the 
expected value. 

                                                    ݈݅݉௡→∞ܲ(|Ẋ	 − |ߤ >  (9)           0 = (ߝ
It was established so far that statistical analysis leads to the week sense of prediction, which 

we call Principle. The Principle of prediction leads to different statistical analyses [40]. There is no 
surprise why in the further analysis of Laplace's several works on probability, we find that Chapter 
IV of Laplace’s “Philosophical Essay on Probabilities” is called “Concerning hope”.  The Treatise is 
one of the important works on the subject of probability where possibly, a half of the Treatise is 
concerned with statistical methods and applications. In the beginning of Chapter XVII “Concerning 
the various means of approaching certainty”, he describes the principles that are components of the 
Principle of prediction. These principles include induction, analogy and hypotheses, supported by 
numerous comparisons, which he called “principal means for arriving at truth”. In his view 
analysis and natural philosophy of sciences, Newton’s binomial theorem and the principle of 
universal gravity are the consequences of induction. To show that induction should be followed as 
far as anticipated with logic which is strengthened by analogy and hypotheses testing, he brings as 
an example Fermat Conjecture that states that  
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 4 of 13 						2ଶ೙+ 1 is a prime for all n, which was caused by induction and was recognized by Euler that 
for n=32 gives 4,294,967,297, a number divisible by 641 (pp. 177,178). 

In the account of Laplace on the history of the subject, Pascal and Fermat were the first to state 
the principles and the methods of probability (pp. 167,185). 

In light of the above account about induction and Fermat Conjecture, a reasonable 
continuation is the Descartes’ theorem. Descartes was a very close friend of Fermat and one of the 
founders of French Academy. The theorem states, that if there are 3 mutual tangent circles to each 
other, then the 4th circle, which can possibly be circumscribed or inscribed could be constructed. The 
4th circle would be tangent to all 3 circles and the 4th curvature could be calculated from the first 3 
from equation: 

 (k1+ k2 + k3 + k4)2 = 2(k12 + k22 + k32 + k42), ki= ±1/ri,  with ri being radius of the i-th circle (10) 

Euler showed, that the special case, when the ki are perfect squares ofܽ௜ଶ, is equivalent to the 3 
simultaneous equations of Pythagorean triples. 

                             (ܽଵଶ + ܽଶଶ + ܽଷଶ+ܽସଶ)2=2(ܽଵସ + ܽଶସ + ܽଷସ+ܽସସ)   (11)  

                                     2(ܽଵܽଶ)ଶ + 2(ܽଷܽସ)ଶ =	(ܽଵଶ + ܽଶଶ − ܽଷଶ−ܽସଶ)2                  (12) 

                                           2 (ܽଵܽଷ)ଶ + 2(ܽଶܽସ)ଶ =	(ܽସଶ − ܽଶଶ + ܽଷଶ−ܽସଶ)2            (13), 

                                    2(ܽଵܽସ)ଶ + 2(ܽଶܽଷ)ଶ =	(ܽଵଶ − ܽଶଶ − ܽଷଶ+ܽସଶ)2                 (14) 
It is also interesting to notice that Fermat, who was in one Mersenne circle with Descartes, and 

later in exchanged correspondence with Pascal laid foundations of the theory of probability. Fermat 
gave the smallest Pythagorean triple with both the hypotenuse c and the sum of the sides a + b as  
perfect squares such triple has sides  

a =4,565,486,027,761; b =1,061,652,293,520; and c =4,687,298,610,289, 

with a +b = 2,372,1592 and c = 2,165,0172, although there are infinitely many such Pythagorean 
triples.  

It is also interesting to notice that there is a general formula that gives all solutions of Fermat 
cubic  

                                                            ܽଵଷ + ܽଶଷ + ܽଷଷ = ܽସଷ  ,             (15) 

(3x2+5xy-5y2)ଷ+(4x2-4xy+6y2)ଷ ଶݔ5)	+ − ݕݔ5 − ଶ)ଷݕ3 = 	 ଶݔ6) − ݕݔ4 +  (16)									ଶ)ଷݕ4

Farey sequence can be viewed as a natural continuation of Descartes’ circles theorem, after 
more than 120 years, when L.R. Ford presented a very important property of Farey’s series. The 
property indicates that circles of radius 1/b2 drawn above each reduced fraction a/b, and touching 
the number line at this point never overlap despite expectations, although they touch very often. It 
was first studied by C. Haros a year after Gauss’ successful calculation of the orbit of Ceres, and 
thus was introduced 200 years ago with Farey’s paper 

After preliminary discussion about the correspondence of the Principle of prediction with 
different statistical analyses and fundamentals of statistics, including testing statistical hypotheses, 
we have to notice that Laplace in several works on probability, devoted a lot of attention to many 
techniques and results of statistics. He was very much concerned with the calculus of probabilities 
and Central Limit Theorem (CLT), including testing statistical hypotheses. 

1.2.  Axiomatization of probability, random sequences, and recurrence.[5,6,10-14]. 

            In order to answer efficiently this question we have to turn attention to the foundational and 
axiomatical principles of probability that were the subject of the intense discussion, which started 
100 years ago, and with inclusion of new names it drew a lot of attention for the next 20 years. It 
continued to resurface occasionally in different theories for the next 40 years. The main subject of 
the debate was application of mathematical rigor to random sequences. 

Emile Borel was one of the first mathematicians to formally address randomness with his work 
on normal numbers 10 years before Richard von Mises gave the first definition of algorithmic 
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randomness, which was inspired by the LLN and introduced a notion of a random sequence almost 
100 years ago. 

It was based on 2 axioms: 

௜ߝ∀ .1  (element appering in the sequence) ,ଵߝ ଶߝ … .…௜ߝ ௜ߝ ,   has limiting frequency 

depending on ߝ௜ 
     2. For ∀(߬ଵ	, ߬ଶ, … ߬௜...) (possibly infinite subseq of)⊂ ,ଵߝ) ଶߝ …  ௜…. ), with other selectionߝ

method than prior knowledge of the values of elements selected, the limiting frequencies 

should be the same. 
Property 1 is known as the LLN which in measure-theoretic probability theory is a theorem, 
holding for almost all sequences x. 
Property 2 is the requirement that frequency stability be preserved under the operation of 
extracting infinite subsequences. These rules for selection method are called “selection rules”, and 
selection rules that are different from “prior knowledge” are called “proper selection rules” in 
contrast to “improper”.   

1.3. Development of rigorous approach to probability theory [5,6,10-14]. 

             After 18 years of development the logician Alonzo de Church proposed that only 
“effectively calculable” selections should be admitted. He also claimed that the set of admissible 
place selections or sequences should be based on the “computable” or “primitive recursive 
functions” in accordance with Wald's Theorem. With this addition of central notion of “recurrence” 
to the system of axioms of von Mises, the Theory of Algorithms (or Recursive Function Theory or 
Computability Theory) was introduced. “Kolmogorov-Loveland stochasticity” selection rule that 
was introduced some 25 years later was a very valuable addition. J.L. Doob, in his obituary on 
William Feller discussed some very new concept in von Mises’ development of the rigorous 
approach to the probability theory. The concept is related to Frechet’s introduction of measure on 
an abstract space. At that time probability was a subject with no clear knowledge, and no 
understanding between the mathematical and what was real. 
It implies that in the understanding of von Mises, it was not always possible to describe the 
mathematical problem in terms of measurable functions. Rigorous approach of this phenomenon is 
applied in Subchapter 3.1 on scientific applications to multiple hypotheses testing [34, 40-43]. 
Instead one had to turn to the a priori knowledge or an a priori probability which is defined as a 
probability that is derived purely by deductive reasoning. That was another problem in the system 
of axioms of von Mises, which was fixed by introduction of recurrence.  
This is where the concept of testing hypothesis comes next, following Laplace’s applications of his 
tests for binomial probabilities with the possible extension to other models.  
To compensate for not considering a priori knowledge or probability, Laplace considered recurrent 
series of Moivre in his “Philosophical Essay on Probabilities”, which served as an introduction and 
partial explanation to early written “Analytic Theory of Probability”? 

2 Five Properties of mathematical analysis of probability that are leading to testing statistical 
hypothesis. 

2.1.Property I [5,6,10-14].  

Proposition1.Probabilistical analysis leads to the analysis of a priori and posterior, which in their 
turn along with the concept of recurrence, applied to random sequences and functions, imply 
testing statistical hypothesis, as mathematical continuation and application of the analysis of the 
foundational and axiomatical principles of probability to abstract and applied statistical problems 
related to Principle of prediction. We should call it Property I of mathematical analysis of 
probability that is leading to testing statistical hypothesis.  

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 July 2016              doi:10.20944/preprints201607.0069.v1 

 

  

http://dx.doi.org/10.20944/preprints201607.0069.v1


 6 of 13 

2.2.Property II [1-15,19,20,40, 45,47] 

Proposition 2. Natural continuation of algebraic considerations, concerning basical operations of 
summation and multiplication over random variables as functions over events and their 
probabilities along with differential and integral calculus over them with further extension to multi-
dimensional calculus that is called calculus of probabilities is leading to an additional operation of 
testing statistical hypothesis, such as different comparisons tests of mean, variance, goodness of fit, 
etc. As alike functional operation TSH is often presented in conjunction to mixed models repeated 
measures, or regression models, or cluster randomized trails. 

There were certainly other aspects of mathematical concepts considered in Laplace’s’ works 
that imply very familiar concepts of decision theory loss and risk functions. He certainly was not 
interested only in derivation of distribution functions, but also considered random variables, as 
functions, as it clearly seen from the end of Chapter IV and Chapter V “Concerning the analytical 
methods of the calculus of probabilities”. And though most of his examples were based on binomial 
random variables, he was interested in basic algebraic operations over them along with the 
differential and integral calculus on them with further extension to 2-dimensional calculus, then to 
3- dimensional, and finally to as many dimensions as is chosen for the particular model, his main 
objective in the “Analytic Theory of Probability” was Central Limit Theorem ( CLT ) [2],[3]. 

 In as much as he describes operations of summation and multiplication, it can be extended in 
the very natural way to normal random variables with mean ߤ and varianceߪଶ with probability 
density function denoted 

X			~N(ߤ, ,ߤ ,ଶ)         with    f(xߪ = (ଶߪ ଵఙ√ଶగ ݁ି(ೣషഋ)మమ഑మ               (17) 

One of the definitions of Peirce of "normal" as of what would, in the long run, occur under 
certain circumstances [4], clearly implies Principle of prediction and LLN that were already 
discussed above. With standard normal i.i.d. random variables X1, X2… Xi ~		N (0, 1)     that can be 
used for comparisons of sample means and many other tests. Their sum of squares ∑ ௜ܺଶ௜௡௜ୀଵ  = Sn~߯௡ଶ   is distributed as chi-squared distribution with n degrees of freedom that can 
be used for testing statistical hypothesis for sample variance of a normal random variables and for 
goodness of fit test, and in this context it was rediscovered by Karl Pearson. Chi-squared 
distribution also can be used for confidence intervals estimation of Poisson distribution (Garwood 
chi-square) along with normal distribution function. However, Chi-squared distribution, which is 
special case of Gamma distribution function, has special case for 2 degrees of freedom that becomes 
exponential distribution function, which is, following W. Feller v.2 p.9, essential in derivation of 
Poisson process                fn(t) = ݁ିఈ௧(ݐߙ)/n!                                                                  (18) 

and was first discovered by John Michell some 70 years before Poisson with consideration of 
distribution for the random scattering of points in the region without introduction of Poisson 
distribution. Poisson process with ߣ = ݐߙ	   would become Poisson distribution, and it was 
previously obtained by Abraham de Moivre as a limiting case of binomial with ߣ = np.  

Introduction of Stein’s estimators for exponential family of distributions is another connection 
between Poisson process in dimension ≥ 3 and normal or Gaussian distributions[44,46]. 
If X  is from exponential family of distributions with density 
 ఏ݂(x) = exp{ߠx-߮(ߠ)}k(x), x ߳ ℝ, let t(X) = - ௞′(௑)௞(௑)   for any absolutely continuous function g on ℝ, such 

that Eห݃′(ܺ)ห < ∞, then E{(t(X) – ߠ)g(X)} = E{g’(X)} 
 
 For regression model, Y = XC + e, where Y  is a N x 1 vector of N observations on the variable to be 
explained, X is a N x K full-column-rank matrix of N observations on K fixed explanatory variables, 
C is a column vector of regression coefficients, and e is a N x 1 error vector with a multivariate 
normal distribution with mean vector 0 and variance-covariance matrix ߪଶIN, with 2ߪ  unknown.   
The least-squares (LS) estimator for C is ĈLS = (X’X)-1 X'Y, and Stein’s estimator 
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 is    ℂSE= ቂ1 −	௅(௒ି௑஼)′(௒ି௑஼)۱′۱܆′܆ ቃC, where L is a scalar, n= N-K, S2 =(ࢅ − ࢅ)′(࡯ࢄ −  n/(࡯ࢄ
 
               Though 	ℂSE is also baised it dominates ĈLS so as  
 
E[(ℂSE – C)’ X’X(ℂSE – C)] < E[(ĈLS – C)’ X’X(ĈLS – C)], and 0<L<ଶ(௄ିଶ)(௡ାଶ) , K> 2. 

An unbiased estimator of ℂSE is CUB = ℂSE - ĈLS = - L ௡ௌమ
Ĉై౏	’	܆’܆Ĉై౏Ĉ୐ୗ 

 
Z = (X’X)1/2Ĉ୐ୗ and ߤ ∝ N(,ߤ	ߪଶIK) with (݊ܵଶ/ߪଶ) ∝ ߯௡ଶ. 

To test null hypothesis H0 : C = 0 against alternative hypothesis H1 : C ≠ 0 
 
The uniformly most powerful invariant test statistic is F = (ĈLS’ X’XĈLS)/KS2,  
F ∝ ℱK, n an F-distribution with K and n degrees of freedom and noncentrality parameter, 
D = C’X’XC/2ߪଶ 
 And for F-ratio based on ℂSE statistic ॲ = ℂSE’[S2(X’X)-1]-1	ℂSE = F(1 – nL/KF)2.   
Since ॲ is a function of of F, though nonmonotonic, and some authors proposed to use ॲା, it is 
invariant to the same linear and orthogonal transformations, as F is. 
The above analysis was developed during the last 60 years and greatly contributed to the theory of 
multihypotheses testing and FDR analysis, which resurfaced only recently after Chemberlin’s 
discussion and would be discussed in the Chapter on scientific application of TSH. 

 
To summarize the above, statistical analysis with testing statistical hypothesis is direct 

consequence of mathematical formulation of probability theory. 

2.3.Property III 

Proposition 3.Expectation of universality of solution is an important factor for the solution of 
mathematical problems, and it is subject of dream of many mathematicians in the past and present, 
and cannot be avoided so easily. As in a historical example with Gauss’ search for orbit of a newly 
discovered celestial body, in which he used method of least squares, TSH is an important 
component for approximation of mathematical models, such as differential equations. In time  of 
growth of  the theory and applications of linear combinations and ratios of random variables that 
by themselves became very complicated, such as 5 different types of bivariate exponential 
distribution and at list 5 different types of bivariate Gamma distribution, to include 5 types  of 
different methods, the opponents of TSH view the complication of completing calculations correctly 
as an obstacle in consideration of very important concept of uniformity of solution to complicated 
problems.  

Though the theory of universal differential equation is not well developed, it is important 
factor for the solution of mathematical problems, and it is subject of dream of many mathematicians 
in the past and present, and cannot be avoided so easily. Uniform equation or solution can be 
related to Leibniz’s pre-established harmony principle, or to universal differential equation [16-
17,35-36]. It can be related to a system of linear equations with more equations than unknowns, and 
can be related to many numerical methods, stochastic differential equations and differential 
equations for large ensembles of particles such as gases and fluids, stochastic processes and 
multivariate statistical analysis, etc. are the examples. 

            The variety of different methods and types of bivariate exponential and Gamma 
distribution support the number of different hypotheses tests developed. Only for Poisson 
distribution there are at least 20 different procedures for finding confidence intervals. 

     2.3.1 Variety of methods of linear combinations and ratios of random variables. 
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       Five methods of the theory and applications of linear combinations and ratios of random 
variables: 

1. Ratios of normal random variables appear as sampling distributions in single equation 
models, in simultaneous equations models, as posterior distributions for parameters of 
regression models  

2. Weighted sums of uniform random variables 
3. Ratio of linear combinations of chi-squared random variables multivariate linear functional 

relationship model Sums of independent gamma random variables 
4. Linear combinations of inverted gamma random variables for the Behrens-Fisher problem 

and variance components in balanced mixed linear models Beta distributions their linear 
combinations 

5. Linear combinations of the form T = ܽଵݐ௙భ +	ܽଶݐ௙మ, where tf denotes the Student t random 
variable based on f degrees of freedom and weighted sums of the Poisson parameters. 

2.3.2  Five types of the bivariate exponential distribution [32, 24-27]. 

׬ .1 (∞௫ ׬ ,ݔ)݂ ௬∞ݔ݀(ݕ݀(ݕ  = F(x; y)  = 1 − exp(−a1x –a2y− a12max(x, y)).x,y		≥  0.    (19)  for Marshal 

and Olkin model. 
2. F(x,y)=1-exp(-x) –exp(-y) + exp(-x-y-axy);  x,y>0, 0≤ ܽ	 ≤ 1 (20) for Gumbel model. 
3. X = ଵܷଶ + ܷଶଶ  Y = ܷଷଶ + ܷସଶwith with (U1, U3) independent from (U2, U4), but have the same 

joint normal with zero means, variances ½, and corr r(0≤ 	ݎ ≤ 1) for Moran  model. 
4. For Freund model component 1 and component 2 are dependent in that a failure of either 

component changes the parameter of the life distribution of the other component. 
5. Block and Basu considered a bivariate distribution whose marginals are mixtures of 

exponentials and having an absolutely continuous joint distribution. 

 2.3.3 5 types of bivariate gamma distributions. In univariate case the gamma distributions is 
generalization of Erlang distribution, which is the sum of i.i.d. exponentially distributed random 
variables: 

1. McKay’s bivariate gamma distribution given by the joint pdf 
f (x, y) =(ap+q /Ga(p)Ga(q))xp-1(y – x)q-1exp(−ay) ,           (21) 

where Ga(.) denotes Gamma function, for y >x >0, a >0, p >0 and q >0. 
2. Cherian’s bivariate gamma distribution given by the jointpdf 

f(x, y) =(exp(−x − y)/Ga(θ1)Ga(θ2) Ga(θ3))׬ ݔ) − (௫,௬)଴	ఏభିଵ௠௜௡(ݖ ݕ) −  ఏయିଵexp(z)dzݖఏమିଵ(ݖ

forx >0, y >0, θ1 >0, θ2 >0 and θ3 >0.        (22) 
3. Kibble’s bivariate gamma distribution given by the jointpdf 

f(x, y) =  (௫௬)(ഀషభ)/మீ௔(ఈ)(ଵିఘ)ఘ(ഀషభ)/మexp(-௫ା௬ଵିఘ)ܫఈିଵ(ଶඥ௫௬ఘଵିఘ ),                (23), 

where If(.) denoted modified Bessel function of the first kind of order f 
4.  the Beta Stacy distribution is given by the joint pdf 

f(x, y) = ௖௔್೎ீ௔(௕)஻(௣,௤)xp-1(y-x)q-1ybc-p-qexp{-(y/a)c},         (24) 

where B(.,.) is Beta distribution function fory >x >0, a >0, b >0, c >0, p >0 and q >0. 
5.  Becker and Roux’s bivariate gamma distribution  
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f(x, y)= ఉ′ఈೌீ௔(௔)ீ௔(௕)xa-1{ݕ)′ߚ − (ݔ + ݕ′ߚ -}b-1exp{ݔߚ − ߙ) + ߚ − <if y,{ݔ(′ߚ ݔ > 0, 
or ఈᇲఉ್ீ௔(௔)ீ௔(௕)yb-1{ߙᇱ(ݔ − (ݕ + ݔᇱߙ -}a-1exp{ݕߙ − ߙ) + ߚ − <if y,{ݕ(ᇱߙ ݔ > 0, 

forx >0, y >0, a >0, b >0, α >0, β >0, α’ >0 and β’ >0.         (25) 
Based on this, the opponents of TSH view the complication of completing calculations 

correctly as an obstacle in consideration of very important concept of uniformity of solution to 
complicated problems.  

2.3.4. Different approaches to TSH related to different types of multivariate exponential and gamma 

distributions and their linear combinations and ratios.  

1. Method of maximum entropy (MM) 

Differential Entropy is defined as an expectation of information function 

 h[f] = E[-ln(f(x))] =  −(ݔ)݂׬ln(f(x))]	dx over X and Shannon entropy = -∑ ௜௜݌  .௜݌௔݃݋݈
Because of special properties of logarithm function, it can be used for different problems , where a 

strait ahead approach is very difficult to find. 

2. Stein’s method of empirical Bayes or Bayesian entropy. 
3. Fisher information for a covariance matrix. On the equivalence between Stein and De Bruijn 
identities 
4.Trimmed estimators[49]  
5. Estimation of Kullback-Leibler Information for problems within the exponential family, MLE, log 
likelihood ratio, C-alpha test. 

 

2.4. Property IV 

Proposition 4. The properties of Laws of Large Numbers, as was mentioned above are deeply 
related to the functional  extension of calculus of probabilities in the form of testing statistical 
hypothesis, and as such their continuous  extensions in form of stochastic calculus with  week and 
strong solutions of stochastic differential equations also closely related to the TSH. As a example 
can be given for uniform LLN, which can be used for different types of estimators, e.g.  extremum 
estimator , minimal distance  estimator, MLE estimator, etc. Minimal distance  estimator is related 
to many different tests, Cramer-von Mises, Kolmogorov-Smirnov,  Anderson-Darling,  D’Agostino, 
Shapiro-Wilk, and Michael’s tests with their modifications, based on characteristic functions. As 
alike functional operators related to different types of  LLN, TSH is often presented in conjunction 
to mixed models repeated measures, or regression models, or cluster randomized trails that are 
helpfu methods in modern research on missing data and large data [23]. 

2.5. Property V  

Proposition 5. As alike functional operators related to different types of  LLN, MLE, and tests based 
on characteristic functions,TSH can be  often considered in conjunction to  very important 
properties for analysis in Probability and  other fields of scientific research, such as Entropy and 
Information that are also related to such questions as additivity of measures, general solution of 
equations, and therefore, to different questions related to LLN, e.g. sufficient condition for LLN 
over classes of functions to hold uniformly  is finiteness of the Koltchinskii-Pollard entropy integral, 
or more direct relation to TSH, such as Testing Statistical Hypothesis of orders of α − β weighted 
information energy [33]. This relation was already noticed in the works relating Kullback-Leibler 
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entropy or information (KLD) to Newman-Person lemma. Other methods use KLD to choose M 
best hypotheses from the given N hypotheses[48,49], or application of KLD to the concept of 
multiple working hypotheses that was advocated over 120 years ago by Chamberlin[49-53]. 

3. Examples of scientific application.  

3.1 Multiple testing dependence [34, 40-43].  

For the model in matrix form: Y = CS(X) + E the problem of testing m hypotheses of the form: 
 Hoi : ci ∈ 0ߗ vs. H1i : ci ∈	1ߗ has typically been defined in terms of P values or test statistics 
resulting from multiple tests.  
Definition: Population-level multiple testing dependence exists,  
if Pr(y1,y2,…,yN|X) ≠ Pr(y1|X) × Pr(y2|X)×· · ·×Pr(yN|X). 
Correspondingly estimation-level multiple testing dependence exists , 

If Pr(y1,y2,…,yN |	Ĉ, S(X)) ≠ Pr(y1 |	Ĉ, S(X)) ×Pr(y2 |	Ĉ, S(X)) · · ·× Pr(yN |	Ĉ, S(X)), where Ĉ	denotes the estimator of C 

The dependence is equivalent to dependence of the  rows of E, or the rows of residual matrix. 
Proposition Suppose that for each ei in the above model, there is no Borel measurable function g such that ei = 

g (e1, . . . , ei−1, ei+1, . . . , eN) almost surely. Then, there exist matrices DN×r , Gr×K (r ≤ K), and UN×K such that 

Y = CS + DG + U   where the rows of U are jointly independent random vectors so that 

Pr(u1, u2, . . . , uN) = Pr(u1) × Pr(u2)×· · ·×Pr(uN). 

Also, for all i = 1, 2, . . . , N, ui ≠ 0 and ui = hi(ei) for a non-random Borel measurable function hi. 

Corollary Under the assumptions of this Proposition, all population level multiple testing dependence is 

removed when conditioning on both X and a dependence kernel G. Similar result holds for estimation-level 

multiple testing dependence, when conditioning on X and a dependence kernel G, and estimators Ĉ of C and Ď of D. 

Different methods were developed for strongly controlling the family-wise error rate (FWER) or FDR mentioned in 

introduction. Most of these methods, e. g.  finite-sample strong control of several FDR procedures 

 and the conservative point estimation of the FDR require the true null P values calculated from 
multiple hypothesis tests to be independent in order for the procedure to provide strong control. 
There is a following important both historical and methodological  connection between FDR and 
Stein estimators, 
For xi	∝ N(ߤi,1), i = 1, 2, …, N , the introduction of Stein result, concerns with testing N null 
hypotheses                             Benjamini and Hochberg’s original 1995 paper (BH), which was 
published almost 40 years after H0i : xi	∝ N(ߤi,1), with ߤi = 0 H1i :  ߤi ≠ 0  
Ĝ(x) denotes the right-sided CDF of the N x-values with G(x) =1-Φ(x), the right-sided null 
hypothesis CDF, and k is the proportion of true null hypothesis,  
the estimated FDR FDR(x) = kG(x)/Ĝ(x), BH set k equal to its upper bound 1.  
Proposition (BH) The expected proportion of “false discoveries” produced by this rule; that is, the 
rejected null hypotheses that are actually true, is less than FDR control rule chosen at control level q, 
say q =.1,  to compute x0 =minx(FDR(x) ≤  The frequentist philosophy of FDR was followed by (ݍ
Bayesian modeling.  

4. DNA, RNA sequencing, tests of	߯ଵଶ, Poisson, and other assumptions 

 Data from next generation sequencing (NGS) technologies posed new computational and statistical 
challenges because of their massive size, complicated structure (large number of genes), limited  
information, and discreteness. NGS data are more complex than data from previous high 
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throughput technologies such as microarrays that were increasingly utilized for genetic testing of 
individuals with unexplained developmental disorders.  From a statistical perspective, the theory of 
multiple hypotheses testing (Efron et al., 2001), 
 and the use of false discovery rates (FDR) for multiple testing problems (Benjamini and Hochberg, 
1995; Storey, 2003; Efron, 2010), which were motivated by 
microarray data, also apply to NGS data analysis with modifications to acknowledge the data 
specific features (Oshlack et al., 2010) 
Let n gst be the observed count of gene g in the sample s with treatment t, and θ gt is the expected 
value of n gst . The approach is similar to that of microarray analysis, to obtain 
test statistics or posterior distributions, for testing gene-wise differential expression,  
μ g1 −μ g 2  between the two treatment groups. Such approach has its important application in clinical 
trials for the mentioned above cluster randomized trials or mixed models repeated measures 
models that are closely related to such fields as epidemiology and immunology and are discussed 
later. However, the sampling distribution of the test statistic for 
NGS data analysis is difficult to obtain without restrictive distributional assumptions. 
When analyzing microarray data it is quite common to assume the data follow Gaussian 
distribution after normalization and log transformation. As such, for each gene, the test statistic for 
differential expression follows a t-distribution with (2S-2) degrees of freedom (Efron et al.,2001).  
However, in the last 4-5 years many works used FDR and multiple TSH application  
to determine if gene differential expression follows  Poisson distribution and 	߯ଵଶ , or Negative 
Binomial assumptions that are often used to model reads from RNA-seq data. Although a Poisson 
model may be appropriate for technical replicates when variability is lower, with higher variability 
in biological replicates or surrogate replicates, the Poisson model does not control Type-I error and 
underestimates the variability, as overdispersion can be observed. Because multiple tests are being 
performed across the set of genes, q-values are reported that control the false discovery rate using 
the Benjamini–Hochberg procedure [51]. 

Data were gathered from 75 RNA-seq experiments conducted in five different bacteria: E. coli, 
N.gonorrhoeae, S. enterica, S. pyogenes and X. nematophila. Altogether, the RNA-seq experiments 
yielded over two billion sequencing reads corresponding to 189 billion nt[51]. Without application 
of TSH it has been deemed impossible to observe that real data for gene sequencing does not follow 
assumptions of    	߯ଵଶ, Poisson, and other distributions. 

4.1 TSH, multiple TSH, and FDR have their applications also in Cluster randomized trials for 
clinical trials, Theories related to astrophysics such as hypotheses of N-body mass estimations, a 
general relativistic null hypothesis test with event horizon telescope observations of the black-hole 
shadow, ecology, and  Heat transport dynamics[37,46-49]. 

5. Conclusion  

Large-scale multiple testing has been applied in fields such as genomics[34, 40-43], astrophysics [, 
and spatial epidemiology. Although the procedure seems to be very simple, one may have the 
perception that it is difficult hence try to apply it in special circumstances, e.g. facing one of 5 types 
of bivariate exponential distribution, [23-27,32], or one of  5 types of bivariate gamma 
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distribution[28-31,18] in the theory of ratios of random variables, or even in  special cases with 
Gaussian distribution assumptions, such as in RNA-seq.   

There are five main aspects of mathematical analysis of probability in the testing of 
statistical hypothesis (TSH).  

The 5 properties involve the analysis of a priori and posterior along with the concept of 
recurrence, random sequences and functions [1-7, 10-14]. TSH with familiar concepts of decision 
theory loss and risk functions are a continuation of basic algebraic operations over random 
variables. The basic algebraic operations also use the random variables along with differential and 
integral calculus over them, with further extension to a multi-dimensional model[1-3]. This requires 
application of special mathematical interest in search of generalized and uniform functions and 
solutions [16, 17]. TSH also can be applied to check for the universality of solutions of different 
problems. 
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