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Abstract: A model that combines logistic regression model, Markov chain, together with cellular 

automata based modeling is introduced here to simulate future urban growth and development in 

Gilan Province, Iran. The model calibrated based on data, beginning 1989 and ending 2013, and is 

applied in making predictions for the years 2025 and 2037, through 12 urban development criteria. 

The relative operating characteristic (ROC) is validated with a very high rate of urban 

development. The analyze results indicate that the area of urban land is increased by more      

than 1.7 % that is, from 36012.5 ha in 1989 to 59754.8 ha in 2013, and the area of Caspian Hyrcanian 

forestland is reduced by 31628 ha. The simulation results with respect to prediction indicate an 

alarming increase in the rate of urban development in the province by the years 2025 and 2037 that 

is, 0.82 % and 1.3 %, respectively. The development pattern is expected to be uneven and scattered, 

without following any particular direction. The development will occur close to the existing or 

newly-formed urban infrastructure and around major roads and commercial areas. This 
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development trend, if not controlled, will lead to the loss of 25101ha of Hyrcanian forests and if the 

continued, 21774 ha of barren/open lands are expected to be destroyed by the year 2037. These, 

results demonstrate the capacity of the integrated model in establishing comparisons with urban 

plans, and their utility to explain both the volume and constraints of urban growth. It is very 

beneficial to apply the integrated approach in, urban dynamic assessment through land use 

modeling with respect to spatio-temporal representation in, distinct urban development formats.  

Keywords: Land use change; urban sprawl; Logistic regression; Markov chain; Cellular automata; 

Gilan Province 

 

1. Introduction 

Globalization could not have occurred if the world community had not advanced to the point 

where it is. This fact is accompanied with population growth in developing countries in specific 

which leads to land use expansion. Urban sprawl is a term used in describing low-density 

contemporary settlement patterns with slight comprehensive public planning that ends with 

emerging economically inefficient, socially inequitable, environmentally damaging and 

non-aesthetic cities [1]. Increasing awareness on the negative aspects of urban sprawl is a major 

topic of debate [2]. Urban changes should be managed in a manner where the environmental and 

social sustainability for ever-growing urban population of the world is ensured [3] which by 2050 is 

expected to account for 60% of the world population according 10 UN predictions [4]. 

According to the importance of the issue, knowledge-based management of urban growth is focus 

many of the relevant literature on urban planning [5]. Since 1960s, this modeling is used an 

manner [6] in describing the previous, current, and future patterns in urban development [7]. The 

logistic regression-based Cellular Automata (CA) model was first introduced by Wu [8]. This 

combined model, which was applied by [9-11]. By comparison, the logistic regression-based 

is one of the most frequently applied in the past two decades in land use modeling prediction 

many inductive modeling are applied [12–14]; but it should be noted that, this model lacks 

quantification of change and temporal analysis [13-15]. On the contrary, the MC models can predict 

the volume of land use change and identify the structural utility, since MCs only compute the 

probabilities of land use transitions and the amount of change are spatially non-explicit [18]. The 
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spatial CA models overcome this limitation of MC based on predefined site-specific rules which 

mimic land use transitions [19], while the CA models are not able to determine the actual amount of 

change. Since every modeling technique has its unique limitations [11], proposed a hybrid approach 

based on logistic regression and CA transition rules, which resulted in an improved model quality; 

nevertheless, this model is not able to quantify the amount of land use change. Puertas              

and Meza [17] came up with some promising results after integrating the logistic regression, MC 

CA models in simulating urban expansion; but  hybrid model failed to consider a spatial 

auto-regression in determining the driving forces of LUCCs was missing in this. CA-based models 

are simple and allow for dynamic spatial simulation [20,21]. CA, when combined with logistic 

regression models, as done by Wu [8] and Puertas and Meza [17], can predict a complex urban 

reality, thus the potential in being applied in this study. This hybrid framework can form the basic 

structure of this presented model; but, when such models are applied in the context of Gilan 

Province, several due considerations will have to be made. The first important consideration is to 

adopt the CA framework which would suit the realities in the city in a sense that the outputs of the 

model would provide information at an appropriate scale for urban policy making. The second 

consideration is to insert the designated variables in to the logistic regression models. Given the 

availability of data, it is important to identify the methods that can be adopted in quantifying the 

inputs fed into the logistic regression model. The third consideration is to build a link with the 

framework, that is, the CA-based framework, and to implement the model by using inputs from the 

logistic regression model and urban policies in a manner that the model would able to establish 

forward and backward linkages with urban development and control policies. This consideration 

should ultimately be reflected in the simulation of urban development and growth. Therefore, this 

study furthers the work conducted on modeling the urban development and growth of Gilan 

Province Jat et al. [22], which are mostly examples of modeling urban sprawl and are not able to 

model the development of different land uses. How could some recent applications, introduced in 

the empirical literature on urban growth modeling, be adopted in this study? 

Due to its geo-logistic stance, Gilan has experienced a significant growth with respect to urban land 

use area in the recent decades. Annual rural influx expands urban population and promotes the 

urbanization culture. Unsustainable growth of the city has caused many socioeconomic and 
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environmental problems like reshaping the landscape, emissions, heavy traffic jam, deforestation, 

and land use change. All in all, the pleasant climate, picturesque landscape of Hyrcanian forests, 

the Caspian Sea have made this part of country as one of the most densely populated parts. It is 

usually the first attractive choice of tourism for domestic and Middle Eastern tourists with low 

accommodation-cost. This fact can pave the way to forecast sustainable growth in future 

development by applying the necessary administrative-planned measures and avoid uncontrolled 

construction and shapeless growth. Accordingly, this study is run with the objective of presenting a 

dynamic hybrid model based on LR, MC, and CA to forecast the auto-spreading orientation of by 

the years 2025 and 2037. The outputs here can equip the decision makers and relevant authorities 

with future orientations of the restricted urban growth. This article is structure as follows: 

The material and method with all their relevant subdivisions are presented in section 2; the result 

and discussion with all their relevant subdivisions are presented in section 3; the conclusion is 

presented in section 4. 

2. Materials and methods 

2.1. Study area 

Gilan is a tourist province in the north of Iran located over an area of 14042 km2 within the latitudes 

of 360 34' - 380 27' N and the longitudes of 480 53 '- 500 34‘ E covering Eastern third of the Caspian Sea 

coast with MSL of -27 m on the plain to 3897 m on the mountain top, (Figure 1). This area consists of 

two mountainous and plain features. The major urban area covers the plain with 32 % of the total 

area with a gradient less than 5 %.  
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As for the climate, annual precipitation is 1506 mm, 38% of which is confined to the autumn season, 

October in specific. This region has predominant naturally resources, like fertile and productive soil 

types and rich Hyrcanian forests and agricultural lands, covered with 52 cities, 13 of which are in 

coastal line, and 2916 villages [23]. Domestic immigration and tourism are the two important factors 

in significant population growth recorded in the recent decades, that is, any increase from 2081037 

1986 to 2480874 in 2011 [23]. This is followed by urban sprawl and extensive land degradation in 

Gilan. One of the most striking aspects of land degradation here is the loss of great parts of 

Hyrcanian forests and rangeland areas.   

Figure 1. Situation of Gilan Province in Iran 
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2.2. Research procedure  

The urban growth dynamics of the study area are found where techniques are integrated CA, MC 

and logistic regression modeling. This model is designed through the data from multiple time 

scales, obtained from remote sensing and census data. Calibration of the model is based on LULC 

data compiled from 1989 to 2013, while simulations are conducted for the years 2025 and 2037. The 

data and their implementation processes are presented in Figure 2. 

2.3. Land Use/Land Cover (LULC): Change Detection  

To begin with, the changes in different land use are detected in order to quantify variations in the 

city boundaries over the years 1989 - 2013. The land use maps are extracted from Landsat TM, 

ETM+, and OLI satellite images within two 12-year time intervals of 1989, 2001 and 2013. The 

coordinate system of the images is set as Universal Transverse Mercator (UTM), at Zone 39, and 

North WGS 84. The images are geo-referenced by Nearest Neighborhood algorithm, where, using a 

total of 220 training points, are well-distributed throughout the study area. The geo-referenced 

images are corrected radio-metrically and geometrically. In order to enhance the contrast of the 

features and facilitate classification of different land uses, Optimum Index Factor (OIF) is used in 

finding the best color composite. After pre-processing the images, they are classified through the 

Maximum Likelihood supervised classification method. Accordingly, the land use maps of the 

study area are prepared in five land use classes (Table 1), including: built-up areas, agricultural 

lands, water bodies, forest coverage, and open land (rangeland and bare land). At the end, the 

changes in different land use types were detected by cross tabulation matrix in IDRISI Selva 

software.   2.4. The integrated land use change model 

The integrated model of logistic regression, Markov chain, and cellular automata begins with the 

logistic regression of the two dataset of urban and non-urban explanatory factors, which determine 

the potential for change from one class of land use to another, in each cell. Next, using MC and 

reference maps of land use, the third step, is estimated, that is, the proportion of the area that will 

likely change from one land use to another. Subsequently, the location of this estimated area of 

conversion is calculated through the CA. This allows the researchers to assign, the land use class for 

a given year of prediction to each pixel. In order to calibrate and validate the adjustment of the 

model a reference map from 2013 is compared to this estimated area map of land use/cover for the 
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same year. Finally, the calibrated model was used to simulate future land covers for the target years 

2025 and 2037. 

 

2.5. Simulation of future land use change by LR 

In this study, the future land use maps of the target years 2025 and 2037 are simulated once again 

logistic regression. This is done to achieve more accurate estimate of future land use changes. 

According to relevant literature [14, 21] and expert knowledge, a total of 12 independent variables 

are recognized as the factors which determine the urban sprawl, the: distance to and from airport, 

distance to and from central business district (CBD), distance from major roads, distance to the 

nearest cities, distance to the seashore, Digital Elevation Model (DEM), distance to the rivers, slope 

(in percent), forest areas, northing and easting coordination’s and agricultural lands. These 

were separately introduced to the model as the input data as to predict any changes in the extent of 

the built-up areas over the periods of 12 years: 1989 – 2001 and 2001 – 2013. The dependent variable 

in this model is the developed urban areas cells (i.e. conversion of other land use types into the 

built-up areas) as a binary raster map layer, where, the cells with 0 value represent areas without 

land use change while the cells with the value of 1 indicate that the areas underwent the land use 

change over a given time period (e.g. 1989 – 2001). It is worth mentioning that the cell size of all the 

map layers is 30 m and the analysis is run in IDRISI Selva software. The logistic regression was 

estimated for the 12 variables in a manner to making achieving the maximum relative operating 

characteristic (ROC) possible and adjust the odd ratio values. These values represent the dependent 

and independent nature of the variables between two binary data as degree of significance level. 

Regression is one of the well-known statistical approaches applied when the dependent variable is 

dichotomous [25]. This approach model can reveal the correlation between a binary dependent and 

several independent categorical and continuous variables [26]. Systematic sampling and stratified 

random sampling are the two approved approaches applied in logistic regression model; the first 

one is applied to reduce spatial dependency when homogeneous nature of the population is not 

the second is applicable for running regression [16]. Here, the second method is selected and 

to conduct regression [27]. As a basic assumption in LR, where, the probability of a dependent 
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variable taking the value of 1 is based on the logistic curve, the probability value is calculated 

through the following equation: 

																										P = E(Y) = exp	(	 	 ₁ ⋯ )1 exp ( 	 ⋯ )																									(1) 
where p is the probability of forest loss in the cell, E(Y) is the expected value of the binary 

dependent variable	  is a constant value and	  is the coefficient of the independent 

variable Xi 

The logistic function of Eq. (1) is transformed into a linear response as follows: 

																																																	P´ = log P1 − P 																																																																										(2) 
Furthermore, the binary dependent variable value is either 1 or 0 and the standard linear regression 

model is expressed as: 

																																										P´ = ₁	 ₁ ₂ ₂ ӡ ӡ																																																																	(3)							 
where		 ´ is the probability of a grid cell for the occurrence of land use type i. X is the 

related driving factors; β represents the regression coefficients between land use types and 

driving factors. 

2.6. Simulation of future land use change through MC 

In this study, the Markov chain model is applied to simulate the spatio-temporal changes of land 

uses indifferent time future series. A finite set of states as discrete values are after specified in 

Markov Chain. The possibility in making a transition in the states of this specified value in the 

system is recorded in the form of transition matrix. In simple terms, the transition matrix records 

the probability of moving from one state (land use class) to another (land use class) [28].                

In this study the probability of changing each land use class to another is determined by Markov 

transition probability matrices for the periods between 1989 and 2013. In order to verify the 

CA-Markov model for the target years of 2025 and 2037, it is assumed that the target year is 2013; 

accordingly, based on the transition probability matrix of 1989 - 2001, a land use map is simulated 

for the year 2013. The model is validated through the Kappa coefficient by comparing the simulated 

land use map of 2013 with the actual land use map, derived from the satellite image of 2013. MC 
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model is a discrete random process with the cellular lattice where the transition probability matrix 

based on neighborhood effects is applied in a spatial influence logarithm [29]. MC models is lately 

being applied in a big scale in modeling LULC changes in future predictions including both urban 

and non-urban areas [27,28]. this model is key-descriptive and is implemented in a convenient 

manner [17]. This method is developed into an essential prediction approach in geographic research 

and spatio-temporal simulations, due to its features like the of descriptive power, simple trend 

projection of land use and land cover transition [29,30]. A chain is defined as a stochastic process 

having the property where the value of the process at   times t, and Xt, depend only on its value at 

time t-1, Xt-1, not on the sequence of values Xt-2, Xt-3;.……; X0 that the process passed through in 

arriving at Xt-1 [34]. It can be expressed as: 

( = 	 = 	, ₁ = ₁, 			 … . . , = ) 
                           =Ρ(   =J/    =   )                        (4) 

If a Markov sequence of random variant Xn takes the an discrete value a1,………, then: 

                 ( = / =a …., X₁ =a )                        (5) = ( = / 		= 		 a ) 
The Chi-square (X2-test) is run to test the change matrix to justify Markov chain, which is expressed 

as follows: 

																																																					Σ 	 	 Σ 	 	 (Qij − Eij)Eij 																																																					(6) 
where, X² = r = number of row,  c = number of columns, Q = Actual	number	in	cell	ij,                  

Eij =Expected number in cell ij and   (r-1) * (c-1) = the degrees of freedom 

 

2.7. Simulation of future land use change by CA 

Models based on cellular automata (CA) are in extensive use in simulating urban expansion [20]. 

This is due to the fact that they have demonstrated the capacity to represent complex spatial 

processes, such as the representation of a variety of local behaviors together with global patterns 

[14,15]. The (CA) component in the Land use/cover model determines the assignment of land use in 
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each cell. The (CA) component in the Land use/cover model determines the assignment of land use 

in each cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic presentation of the logistic and CA-Markov methods 
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The (CA) component in the Land use/cover model determines the assignment of land use in each 

cell. CA models define a new state of land use for each cell for a particular period and as the 

previously stated function of the cell and cell neighbors it is, in agreement with a group of defined 

transition rules [35]. In this article, model “CA-Markov” is applied in the IDRISI software for 

modeling LULC. In this model, the Markov Chain controls the temporal dynamics (gains and 

losses), while the spatial dynamics is controlled by cellular automata, according to the 

characteristics of a spatial filter and the potential of land use change [36]. 

3. Results and discussion  

3.1. LULC analysis  

The LULC maps of this study area in the two 12 year periods are prepared through Landsat TM, 

ETM+, and OLI satellite images. Five major land uses are determined in the study area as: built-up 

areas, agricultural lands, water bodies, forest coverage, and open land (rangeland and bare land). 

The overall accuracy of the generated maps is estimated through the error matrices. The kappa 

coefficients of 89.23%, 90.84%, and 91.08% confirm the accuracy of the classified maps of each one of 

the periods, respectively. The LULC maps of the study area in different periods under study are 

shown in Figure 3. The LULC map of the province in 2013 shows that the built-up areas are spread 

mainly in the central parts, over an area of 59754.8 ha.  

Table 1. Temporal land use areas in Gilan Province 

 Land use 1989  Land use 2001 Land use 2013  

Class name 

Built - up Area 

ha % Ha % ha % 

36012.5 2.56 54853 3.91 59754.8 4.26 

Forest Coverage 782870 55.76 768541 54.74 751242 53.5 

Barren / Open Land 318986 22.72 281880 20.08 266963 19.01 

Water Bodies 8632.54 0.61 12237.6 0.87 7213.15 0.51 

Agricultural Land 257559 18.34 286548 20.41 318887 22.71 
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The built-up areas are surrounded by fertile agricultural lands, mostly paddy fields covering     

318887 ha and a strip of Hyrcanian forests in the south in an area of 751242 ha. The position of the 

built-up areas reveals the potential loss of fertile agricultural lands and the unique Caspian 

Hyrcanian forest ecosystems in its vicinity. In addition, barren/open lands making 266963 ha as a 

relatively wide strip in the south is narrowing down as the scattered spots in the West and 

Northwest increase. 

Figure 3. LULC maps of Gilan Province in 1989, 2001, and 2013 

3.2. LULC change detection  

After checking the accuracy of the land use maps, they are cross-tabulated to quantify the variations 

in different land use classes over time. The results tabulated in Table 2 in the three periods of             

1989 - 2001, 2001 - 2013, and 1989 - 2013. As observed in this Table, changes in built-up areas follow 
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an upward trend over the study period from 1989 to 2013. The expansion is mainly due to 

conversion of 8644.41 ha of barren lands and 12623.01 ha of agricultural lands to the urban land use 

(Figure 4). In addition, deforestation of 2076.3 ha of Hyrcanian forests is another reason for urban 

sprawl in the province. Conversion of 12637.46 ha of forest coverage and 6744 ha of agricultural 

lands into the 

barren land 

could also be a 

clear indicator 

for extensive 

land 

degradation in the study area.   
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Figure 4. Changes in urban land use in 1989, 2001, and 2013 periods     

3.3. CA-Markov projection model 

The transitional probability matrix of CA-Markov model in Table 3 reveals the probability of 

changing from one land use to another which would make it possible to predict changes in future in 

different land use types in a quantitative sense. Before running the forecast model for the target 

years 2025 and 2037, the model validity is pre-tested for the year 2013 based on the changes over the 

period of 1989 – 2001, the probability of the land use changes predicted by the year 2013.               

According to the obtained results, the greatest land use changes could be observed in the 

conversion of barren lands into urban areas (probability rate = 0.1367) followed by agricultural 

lands      (probability rate = 0.1147). This is well-approved by the results of the change detection 

analysis.  
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Table 2. Change detection results of Gilan Province in two 12 year periods 

As mentioned earlier, the area of barren lands was changed by 52023 ha over the years 1989 to 2013, 

confirming the fact that barren lands were subject to the greatest changes in the given period. By 

comparing the simulated and real land use changes for the year 2013, it can be deduced that this 

developed model is capable to well estimate the future land use changes. The obtained Kappa 

coefficient of 0.89 indicates a good fitness between the actual and the simulated maps. This fitness 

indicates the accuracy of the simulation. Therefore, it was run to simulate changes by the years 2025 

19
89

 

2001 

Class Built - up Area Forest Coverage Barren / Open Land Agricultural  Land Total 

Built - up Area 36012.5 0 0 0 36012.5 

Forest Coverage 1835.46 774539 2407.86 9017.68 787800 

Barren / Open Land 6785.91 2138 313619.1 30395.5 352938.51 

Agricultural Land 10075.2 6193 2959 218145.2 237372.43 

Total 54709.07 782870 318986 257558.4 1414123.5 

20
01

 

2013 

Class Built - up Area Forest  Coverage Barren / Open Land Agricultural   Land Total 

Built - up Area 54853 0 0 0 54853 

Forest Coverage 240.84 741270.7 10229.6 16799.9 768541.04 

Barren / Open Land 1858.5 1180.98 247402.2 31438.3 281880 

Agricultural   Land 2547.81 7788.96 3785 272426.2 286548 

Total 59500.15 750240.6 261416.8 320664.4 1391822 

19
89

 

2013 

Class Built - up Area Forest  Coverage Barren / Open Land Agricultural   Land Total 

Built - up Area 36411.08 0 0 0 36411.08 

Forest Coverage 2076.3 733941 12637.46 25818.17 774472.93 

Barren / Open Land 8644.41 3319 247581.54 61833.8 321378.75 

Agricultural   Land 12623.01 13982 6744 231235.03 264584.04 

Total 59754.8 751242 266963 318887 1396846.8 
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and 2037. According to the probability matrix, the probability of the barren lands to be converted 

into urban areas by the year 2025 is very high. The probability rate is estimated at 0.1235.  

Table 3. Markov transition probability matrixes for 1989 - 2001, 2001 - 2013, and 1989 - 2013 

 

 

 

 

 

 

 

 

 

 

 

 

The agricultural and forest areas with probability rates of 0.0521 and 0.0431 respectively are the 

other two land uses with high potential in being changed into urban areas by 2025. As expected, 

conversion of water bodies into the built-up areas is almost impossible. The probability rate is zero, 

in simple terms; water bodies are the only land use that is likely to remain unchanged in the known 

future. The remarkable point is the high probability for conversion of forests to barren lands 

(probability rate is 0.1289). This indicates accelerated land degradation in the study area, which is 

apparent in the form of loss of forest areas possibly due to mismanagement of Hyrcanian Mixed 

Forests. Likewise, the agricultural and barren lands are highly subject to be converted to urban 

19
89

 –
 2

00
1 

CA - Markov 2013 
Built - up 

Area 

Forest 

Coverage 

Barren / 

Open Land 

Water 

Body 

Agricultural 

Land 

Built - up Area 0.9697 0.0098 0.0084 0.0053 0.0068 

Forest Coverage 0.0548 0.8397 0.0915 0.0003 0.0137 

Barren / Open Land 0.1367 0.0069 0.7349 0.0068 0.1147 

Water Body 0.0000 0.0014 0.0089 0.9858 0.0039 

Agricultural Land 0.0557 0.0239 0.0489 0.0000 0.8715 

 

 
CA - Markov 2025 

Built - up 

Area 

Forest 

Coverage 

Barren / 

Open Land 

Water 

Body 

Agricultural 

Land 

20
01

 –
 2

01
3 

Built - up Area 0.9859 0.0084 0.0031 0.0002 0.0024 

Forest Coverage 0.0431 0.8195 0.1289 0.0002 0.0083 

Barren / Open Land 0.1235 0.0043 0.7456 0.0049 0.1217 

Water Body 0.0000 0.0013 0.0106 0.9872 0.0009 

Agricultural Land 0.0521 0.0102 0.0445 0.0000 0.8932 

 
CA - Markov 2037 

Built - up 

Area 

Forest 

Coverage 

Barren / 

Open Land 

Water 

Body 

Agricultural 

Land 

19
89

 –
 2

01
3 

Built - up Area 0.9881 0.0055 0.0033 0.0002 0.0029 

Forest Coverage 0.0691 0.8164 0.1023 0.0006 0.0116 

Barren / Open Land 0.1449 0.0074 0.7095 0.0059 0.1323 

Water Body 0.0000 0.0007 0.0085 0.9892 0.0016 

Agricultural Land 0.0579 0.0312 0.0504 0.0000 0.8605 
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areas with probability rate of 0.0521 and 0.1235 respectively. This clearly clarifies the need for a 

reform in the current agricultural practices. The transitional probability matrix for the target year 

2037 predicts the same trend of conversion in different land use. Among various land use classes, 

barren lands account for the greatest conversion into the urban areas (0.1449) followed by 

agricultural lands (0.1323). Furthermore, forest areas are highly prone to change into barren lands 

(0.1023). Further details are tabulated in Table 3. The findings in Table 4 reveal that the built-up 

areas will be expanded up to 71263 ha (5.08%) by the end of the first target year 2025. The urban 

land use increasing trend in urban development will continue up to 78073 ha (5.56%) until the 

second target year 2037. The greatest change is expected to occur in the forest coverage area so that 

17951 ha of the Hyrcanian forests will be disappeared by 2025 and 25101 ha by the year 2037. 

Changes in the area of agricultural land will be significant, that is, an increase of 16509 ha (1.18 %) 

by 2025 and 28461 ha (2.03 %) by 2037. It is also likely to loss 9931 ha (0.7 %) and 21774 ha (1.55 %) 

of the barren lands by 2025 and 2037, respectively. The future expansion of urban areas by the 

target years 2025 and 2037 are shown in Figure 5. 

Table 4. Predicted land use changes in Gilan Province, available: 2013 and predicted: 2025 and 2037 

As observed, the urban development would go through its gradual evolution primarily on the 

periphery of the current population centers with an orientation towards surrounding agricultural 

lands and forested areas. Most of the to be established built-up areas will be observed with a central 

concentration surrounded with scattered networks of low-density areas.  

CA - Markov 2013 CA - Markov 2025 CA - Markov 2037 

Class Name ha % Ha % ha % 

Built - up Area 58749 4.18 71263 5.08 78073 5.56 

Forest Coverage 747154 53.21 733291 52.23 726141 51.72 

Barren / Open Land 265397 18.90 257032 18.31 245189 17.46 

Water Bodies 6302 0.45 7078 0.5 7309 0.52 

Agricultural Land 326458 23.25 335396 23.89 347348 24.74 
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Figure 5. Simulated urban expansion based on CA-Markov model by the target years 2025 and 2037 

3.4. CA-logistic regression model 

The logistic regression model is developed by 12 independent variables, determined by literature 

reviews and expertise opinion (Figure 6). This model is implemented separately for each of these 

variables as the input data for the period 1989 to 2013. The dependent variable in this 

implementation is the developed cells, that is, change from no built-up areas to built-up areas 

which is prepared as a binary raster map where the value 1 indicates the changed and zero the 

unchanged areas during the study period. Figure 6 represents the pattern of dependent variable.             

The output of the regression model determines the positive or negative role of any variable on the 

probability of any change regarding land use to be converted to urban. The influence of the 

independent variables in urban growth development in over the study area in the 1989 to and 2013 

period is presented in Table 5. According to this table, agricultural and forest lands, with the 

coefficient values of 17.901376 and 8.363241, respectively have the highest potential to be converted 

into urban areas. 
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Figure 6. Raster layers of independent variables as the continuous and binary values 

The variables of distance to nearest cities (with a coefficient of -0.000498), northing coordinates 

(with a coefficient of -0.000835), easting coordinates (with a coefficient of -0.000068), and slope (with 

a coefficient of -0.000319) have negative impact on development of cities in the province. Here, it is 

assumed that the extent and direction of urban development are dependent on the Northing and 

Easting geographical coordinates. Since the coefficients of the northern and eastern aspects in LR 

model are negative, there exists the possibility that land uses in southern and western sections 

would be converted into the built-up areas. All in all, the intensity of urban development in the 

south is more than the west and this fact is approved by the higher coefficient value of the north 

direction in relation to that of the east (-0.000068). The area map subject to urban sprawl of the 
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study area is based on logistic regression model, (Figure 7), where the faded areas indicate higher 

probabilities for urban expansion. 

Table 5. Influence of the independent variables in urban development in 1989 to 2013 period 

Variables Coefficient Standard error 

X 1 Distance to CBD 0.034231 0.014891 

X 2 Distance to airports 0.001698 0.001291 

X 3 Distance to rivers 0.014287 0.012732 

X 4 Distance to major roads 0.035783 0.023195 

X 5 Distance to sea line 0.000031 0.000012 

X 6 Distance to nearest cities -0.000498 0.000184 

X 7 Forest lands 8.363241 3.984701 

X 8 Agricultural lands 17.901376 11.390572 

X 9 Northing coordination -0.000835 0.000364 

X 10 Easting coordination -0.000068 0.000046 

X 11 DEM -0.001973 0.001394 

X 12 Slope in percent -0.000319 0.000185 

 Intercept -19.13703 10.380974 
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The expanding pattern in future is distinct and clear in this map, indicating that areas near the 

major roads and existing urban clusters have the high potential in becoming converted into urban 

areas in future. The sensitivity analysis is run through ROC method to identify the factors with 

greatest impact on growth and expansion of built-up areas. To do this, the LR model is run for 12 

times in a deductive manner, that is, the next run contains -1 independent variable. Comparing the 

ROC values of the whole model with the individual ROCs obtained in each run the effect of each of 

the independent variables is determined in Table 6, where ROC value of 1 shows an excellent spatial 
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adaption between the simulated and actual urban development maps and ROC value of 0.5 

indicates the existence of a chance of agreement between the projected probability and actual map 

assigned to random locations. The best independent variables are determined by the ROC values 

and the adjusted odds’ ratios for each set of the variables. 

Figure 7. Probable areas of urban sprawl in Gilan Province based on logistic regression model 
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The validity and fitness of the selected collection is confirmed through the adjusted odds’ ratios. As 

observed in Table 6, the ROC of the LR model run by excluding the variable of distance from 

residential areas is 0.7351. It can deduced that distance to the nearest cities will have the greatest 

impact on future urban development, followed by distance to agricultural lands, slope, and 

distance to main roads.  

As observed in Figure 7, the pixels closer to the major roads have a higher potential to become 

converted into urban areas are of low probability of change due to the cells with a high elevation 

(DEM). Moreover, the contribution of other input data like: distance to industrial centers, distance 

to educational centers, and barren/open lands is assessed as being negligible due to their low ROC 

values, (Table 6). In general, the obtained results on capability of Markov chain model and cellular 

automata for simulation of future changes in urban land are in accordance with those of Alsharif 

and Pradhan [26] and Deep and Saklani [37]. 

Table 6. Estimated statistical values for the logistic regression model consisting of 12 independent variables 

 

 

 

 

 

 

 

 

4. Conclusion   

Understanding the dynamics of urban expansion would assist the managers and urban planner to 

draw rational decisions when the control of urban sprawl and its consequences in future are of 

Independent Variables Odds ratio ROC Standard error 

Collection 1 2.397853 0.9017 0.014891 

Collection 2 1.852981 0.9164 0.023195 

Collection 3 2.461983 0.8735 0.012732 

Collection 4 1.679826 0.8436 0.001291 

Collection 5 2.789532 0.9216 0.000012 

Collection 6 0.000085 0.7351 0.000364 

Collection 7 9.873901 0.9431 3.984701 

Collection 8 0.000381 0.7539 0.000185 

Collection 9 2.287643 0.9142 0.000184 

Collection 10 0.090367 0.8974 0.000046 

Collection 11 7.679031 0.9673 11.390572 

Collection 12 0.000238 0.7976 0.001394 
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concern. Simulation and forecast of urban expansion is a must for urban planners and land 

conservationists in formulating sustainable development strategy(s). In this assessment, the LR 

model is combined with MC and CA models in order to develop an efficient hybrid geospatial 

explicit approach. The logistic regression model explores correlation between land conversion and 

the causative factors in a quantitative sense, which enables the researchers to distinguish the 

essential driving forces. The customary LR models in spatial studies have the restrictions of their 

own like: mere focus on natural factors and disregarding the spatial-interacted impact on key 

industries; accordingly, the integrated approach is introduced and implemented to compensate the 

existing constraints. How has the unsustainable urban development delivered its adverse effect on 

the natural landscape at the cost of major loss in the Hyrcanian forests and rangelands is revealed in 

this article. It is predicted that this deteriorating trend would continue in future. According to a 

close estimation by CA imagines the built-up areas will be developed in 71263 ha by the year 2025 

and 78073 ha by the year 2037.  According to the estimates, the urbanization in Gilan Province 

follows an upward trend, that is, an expansion of about 5.65 % over the period between 1989 and 

2037. Moreover, the results of land use change detection demonstrated a continuous decrease in 

agricultural and forest lands in the study area for the same period. The situated land use maps of 

2025 and 2037 reveal an alarming descending acceleration in the non-urban areas. Based on the 

predicted results, the expansion of the urban areas would follow a scattered pattern, while 

indicating extensive loss of forests and natural rangelands which would in turn become an obstacle 

for sustainable development. This fact justifies the need for adopting of comprehensive planning 

approaches to develop an up-dated urban sprawl management system to control expansion of the 

cities in Gilan Province. 
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