MWL Picture Of The Blazar S5 0716+714 During Its Brightest Outburst

Marina Manganaro 1,∗, Giovanna Pedaletti 2, Marlene Doert 3, Denis Bastieri 4, Vandad Fallah Ramazani 5, Dario Gasparetti 6, Elina Lindfors 5, Benoit Lott 7, Mireia Nievas 8, Bindu Rani 9, David J. Thompson 10, for the MAGIC and Fermi-LAT Collaborations; Emmanouil Angelakis 9, George Borman 11, Mark Gurwell 12, Talvikki Hovatta 13,17, Ryosuke Itoh 14, Svetlana Jorstad 15, Alex Kraus 9, Thomas P. Krichbaum 9, Paul Kuin 16, Anne Lähteenmäki 13,17, Valeri Larionov 18, Amy Yarleen Lien 10, Ioannis Myserlis 9, Merja Tornikoski 13, Ivan Troitsky 18, J. Anton Zensus 9

1 Inst. de Astrofísica de Canarias, E-38200 La Laguna, and Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain; manganaro@iac.es
2 DESY, 22607 Hamburg, Germany; giovanna.pedaletti@desy.de
3 TU Dortmund, Germany; marlene.doert@tu-dortmund.de
4 INFN Padova, 35020 Legnaro PD, Italy; denis.bastieri@gmail.com
5 University of Turku, Turku, Finland; vafara@utu.fi; elilin@utu.fi
6 ASDC/INFN Perugia, Rome, Italy; dario.gasparrini@asdc.asi.it
7 CEN Bordeaux-Gradignan, 33170 Gradignan, France; lott@cenbg.in2p3.fr
8 Universidade Complutense, Madrid, Spain; mnievas@ucm.es
9 MPIfR, Bonn, Germany; brani@mpifr-bonn.mpg.de; engelakis@mpifr.de; akraus@mpifr.de; tkrichbaum@mpifr-bonn.mpg.de; imyserlis@mpifr-bonn.mpg.de; azensus@mpifr-bonn.mpg.de
10 NASA/GSFC, Greenbelt, MD 20771, USA; David.J.Thompson@nasa.gov; amy.y.lien@nasa.gov
11 Crimean Astrophysical Observatory, Crimea; borman@crao.crimea.ua
12 Harvard-Smithsonian CfA, Cambridge, MA 02138, USA; mgurwell@cfa.harvard.edu
13 Aalto University, Metsähovi Radio Observatory, Aalto, Finland; talvikki.hovatta@aalto.fi
14 Hiroshima University, Japan; itoh@hep01.hep.hiroshima-u.ac.jp
15 Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA; jorstad@bu.edu
16 Mullard Space Science Lab., University College London, UK; n.kuin@ucl.ac.uk
17 Aalto University, Department of Radio Science and Engineering, Aalto, Finland; anne.lahteenmaki@aalto.fi; merja.tornikoski@aalto.fi
18 Astronomical Institute, St.-Petersburg State University, St.-Petersburg, 198504 Russia; v.larionov@spbu.ru
* Correspondence: manganaro@iac.es; Tel.: +34-922-605-551

Abstract: S5 0716+714 is a well known BL-Lac object, one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV) by MAGIC happened in 2008. In January 2015 the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with ~ 13σ significance (ATel #6999). Rich multi-wavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE and VHE band, together with radio (Metsähovi, OVRO, VLBA, Effelsberg), sub-millimeter (SMA), optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata), X-ray and UV (Swift-XRT and UVOT), in the same time-window and discuss the time variability of the MWL light curves during this impressive outburst.

Keywords: BL-Lacertae objects: individual: S5 0716+714; Galaxies:active; gamma-rays: galaxies

1. Introduction

The BL Lac object S5 0716+714 is among the brightest and most active blazars [1]. Because of the featureless optical continuum it is hard to estimate its redshift. A value of z = 0.31 ± 0.08 is derived from the photometric detection of the host galaxy[2]. It was detected in VHE for the first time by MAGIC in 2008 [3]. Because of its extreme variability, S5 0716+714 has been the subject of several
optical monitoring campaigns (e.g. [4–8] and references therein). S5 0716+714 is also among the bright blazars in the Fermi-LAT (Large Area Telescope) Bright AGN Sample (LBAS) [9], whose GeV spectra are governed by a broken power law. The combined GeV-TeV spectrum of the source displays absorption-like features in 10 - 100 GeV energy range [10]. The blazar S5 0716+714 was observed in an unprecedented outburst phase during January 2015. The source was detected at its historic high brightness at optical and IR bands. In January 2015 MAGIC, triggered by the high optical state and by high energy photons detected by Fermi-LAT, detected the source with a significance of $\sim 13\sigma$ [11].

2. Instruments involved

MAGIC is a stereoscopic system consisting of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes located at the Observatorio del Roque de los Muchachos, on the Canary Island of La Palma (Spain). The current integral sensitivity for the zenith range $35^\circ < \theta_d < 50^\circ$ above 100 GeV is $1.76 \pm 0.03\%$ of the Crab Nebula’s flux in 50 h. The Field of View (FoV) of MAGIC is 3.5° [12]. The Large Area Telescope (LAT) on board of Fermi is an imaging high-energy γ-ray telescope in the energy range from about 20 MeV to more than 300 GeV [13]. The LAT’s Field of View covers about 20% of the sky at any time, and it scans continuously, covering the whole sky every three hours. Multiwavelength (MWL) observations were performed collecting data from a large number of instruments. Our dataset includes data from Swift-XRT [14] in the X-ray and Swift-UVOT [15] in optical-UV; for the optical band we show data from the Tuorla Blazar monitoring program\(^1\), the 1.8 meter Perkins telescope\(^2\), the Steward Observatory\(^3\), the 70-cm AZT-8 reflector of the Crimean Astrophysical Observatory\(^4\), the 40-cm LX-200 telescope in St. Petersburg, Russia\(^5\) and Kanata telescope at the Hiroshima Observatory\(^6\); radio band was covered by Metsähovi\(^7\), the OVRO Owens Valley Radio Observatory 40 m telescope [18] and the Effelsberg 100 m radio telescope\(^6\). Radio data at 230 GHz band are obtained using the Submillimeter Array\(^7\) (SMA).

3. Observations and results

3.1. MAGIC analysis

MAGIC started to observe S5 0716+714 on the 19\(^{th}\) of January. Unfortunately the following two nights strong wind during the S5 0716+714 visibility window prevented the observation of the source, which was resumed on the 23\(^{rd}\) of January. From that day, the flux constantly increased up to the maximum flux ever observed in the VHE range for this source, on the 27\(^{th}\) of January. The next activity of S5 0716+714 in the VHE was detected by MAGIC on the 13\(^{th}\) of February, and this time lasting three days only, up to the 16\(^{th}\) of February. The observations were performed in wobble mode with a 0.4 deg offset and four symmetric positions with respect to the camera center. The observations were performed in 12 nights in January and February 2015 for a total duration of 17.56 h at the zenith range of $40^\circ < \theta_d < 50^\circ$). The corresponding distribution of the squared angular distance θ^2 between the reconstructed source position and the nominal source position (points) or the background estimation position (shaded area) for the whole period of observation is shown in Fig.1(a). The vertical dashed line shows the value of θ^2 up to which the number of excess events and significance are integrated. The cuts used are optimized for steep sources and low energy thresholds. The analysis energy threshold is ~ 65 GeV, measured as the peak of the energy distribution of a

\(^{1}\) http://users.utu.fi/kani/1m

\(^{2}\) https://lowell.edu/research/research-facilities/1-8-meter-perkins/

\(^{3}\) http://www.bu.edu/blazars/

\(^{4}\) http://craocrimea.ru/ru

\(^{5}\) http://hasc.hiroshima-u.ac.jp/telescope/kanatatel-e.html

\(^{6}\) http://www.mpifr-bonn.mpg.de/en/effelsberg

\(^{7}\) http://sma1.sma.hawaii.edu/
sample of Monte Carlo simulated events for a source with spectral shape of S5 0716+714. The analysis of the data collected was performed within the standard MAGIC analysis framework MARS [12,19].

3.2. Fermi-LAT analysis

The HE γ-ray (0.1–300 GeV) observations were obtained in a survey mode by the Fermi-LAT Large Area Telescope. The LAT data were analyzed using the standard ScienceTools (software version v10.01.01) and instrument response function CALDB. Photons in the source event class were selected for the analysis. We analyzed a region of interest of 10° in radius centred at the position of S5 0716+714 using a maximum-likelihood algorithm [20]. We included all the 54 sources of the 3FGL catalogue [21] within 10° in the un binned likelihood analysis. Model parameters for sources within 5 degrees of the ROI are kept free; while, we kept the model parameters for the rest fixed to their catalogue values.

![Image](https://example.com/image.png)

(a) Distribution of the squared angular distance θ^2

(b) Skymap

Figure 1. Distribution of the squared angular distance θ^2 between the reconstructed source position and the nominal source position (points) or the background estimation position (shaded area) for S5 0716+714 (a) and VHE skymap of the source (b). The color bar indicates the relative flux. The contours indicate significance in steps of 5σ.

3.3. MWL light curves

The unprecedented outburst of S5 0716+714 was covered in all the wavelengths: such a rich collection of simultaneous data allows us to study with great precision the broadband spectral energy distribution of the source, deeply investigating its nature. MWL flux light curves of S5 0716+714 during the period from MJD 57010 to MJD 57075 are shown in Fig. 2. The top panel shows the MAGIC light curves: in the VHE band, the no-variability hypothesis has been discarded, because it resulted in a $\chi^2/ndf = 67/7$ for January and $\chi^2/ndf = 22/3$ for the February data for a constant fit. Intranight variability in VHE was not detected. The shadowed areas indicate phase A (from MJD 57010 to MJD 57050) and phase B (from MJD 57066 to MJD 57069), the two high states in VHE, and the corresponding activity in the other bands. When MAGIC discovered S5 0716+714 in 2008 ([3]) the radio band was in a quiescent level, while here even if delayed with respect to the optical peak, it is possible to discern a response in the radio frequency. The two phases show quite different behavior: phase A is characterized by a high state of the source clearly visible in every energy band, especially in optical where the highest flux ever detected for S5 0716+714 is reported. HE, and optical curves show a double peaked structure and the polarization angle undergoes a fast change between the two optical peaks. After an intermediate time period when activity is limited to the radio band, phase B is characterized by VHE and X-ray high flux, while the other bands reached a lower state after the outburst of phase A. The fractional variability of both phases shows an increasing trend with the energy. The phase B flare is clearly visible in the VHE and X-ray band only. Such differences
in behaviour between the two activity states is very interesting to study, and together with the jet analysis of the source and the modeling of the broadband spectral energy distribution, which will be presented in [22], it will improve our understanding of the BL-Lac emission mechanism[23].

Figure 2. MWL light curves of S5 0716+714. Shadowed areas indicate phase A (from MJD 57010 to MJD 57050) and phase B (from MJD 57066 to MJD 57069) and the respective activity in all the energy bands. Fermi-LAT panels (second and third from the top) show by blue dashed lines the 3FGL averaged flux and index respectively from the 3FGL catalog [21].

4. Discussion

The unprecedented outburst of the BL-Lac object S5 0716+714 in January 2015 was observed in all the wavebands. The MAGIC detection of the source, together with simultaneous data in the HE range from Fermi-LAT, will allow us to constrain the Inverse Compton part of the broadband spectrum. The
rich multi-wavelength coverage presented here is part of a more comprehensive study of the source in preparation [22]. The impressive activity in phase A was followed by some days of decreasing flux, and then a new high-state was observed in the VHE and X-ray bands (phase B). The structure of the light curve in phase A showed a double-peaked shape, and the electric vector position angle (EVPA) of the linearly polarized optical emission rotated by $\sim 360^\circ$ in between the two peaks. Such swings in EVPA have been frequently observed in connection with γ-ray flaring epochs (e.g. [24–26]). Detailed correlation study and modelling of the spectral energy distribution are in progress.

Acknowledgments: We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the he ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36688, FPA2015-68278-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2013-47447-C3-1-P, AYA2015-71042-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MD&M-2014-0369, by the Croatian Science Foundation (HRZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. We thank the Swift team duty scientists and science planners. The Metsähovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW35G, NNX11AO43G and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. St.-Petersburg University team was supported by research grant 6.38.335.2015 and RFBR grant 15-02-00949.

Author Contributions: MM, GP and MN performed the MAGIC analysis of the source. BR, DB, DG took care of the Fermi-LAT analysis. This proceeding is part of a joint MAGIC-Fermi-LAT work involving also other MW authors. The preliminary results here included will be part of a paper in preparation which is led by MM, MD and BR. All the other authors listed provided the analysis of their data and participated in the discussion of the MWL curve. EL is the PI of the MAGIC program of ToO observations of flaring AGNs based on optical, X-ray and γ-ray triggers. MM wrote this proceeding.

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).