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Abstract: The problem of quantifying the vulnerability of graphs has received much attention 
nowadays, especially in the field of computer or communication networks. In a communication 
network, the vulnerability measures the resistance of the network to disruption of operation after 
the failure of certain stations or communication links. If we think of a graph as modeling a network, 
the average lower 2-domination number of a graph is a measure of the graph vulnerability and it is 

defined by 2 2( )
1( ) ( )
( )av vv V GG G
V G ∈γ = γ , where the lower 2-domination number, denoted by 2 ( )v Gγ , 

of the graph G relative to v is the minimum cardinality of 2-domination set in G that contains the 
vertex v. In this paper, the average lower 2-domination number of wheels and some related networks 
namely gear graph, friendship graph, helm graph and sun flower graph are calculated. Then, we 
offer an algorithm for computing the 2-domination number and the average lower 2-domination 
number of any graph G. 

Keywords: graph vulnerability; connectivity; network design and communication; domination 
number; average lower 2-domination number 
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1. Introduction 

Graph theory has seen an explosive growth due to interaction with areas like computer science, 
operation research, etc. In particular, it has become one of the most powerful mathematical tools in 
the analysis and study of the architecture of a network. The most common networks are 
telecommunication networks, computer networks, road and rail networks and other logistic 
networks [20]. In a communication network, the measures of vulnerability are essential to guide the 
designers in choosing a suitable network topology. They have an impact on solving difficult 
optimization problems for networks [21,27].  

The graph vulnerability relates to the study of a graph when some of its elements (vertices or 
edges) are removed. The measures of graph vulnerability are usually invariants that measure how a 
deletion of one or more network elements changes properties of the network [24]. In the literature, 
various measures have been defined to measure the robustness of a network and a variety of graph 
theoretic parameters have been used to derive formulas to calculate network vulnerability. The best 
known measure of reliability of a graph is its connectivity. The connectivity is defined to be the 
minimum number of vertices whose deletion results in a disconnected or trivial graph [15]. 

The connectivity of a graph G is denoted by ( )k G  and it is defined as follows: 

{ }( ) m in : ( ) 1k G S S V and w G S= ⊂ − >  

where ( )w G S−  is the number of components of the graph G S− . 
The toughness [13], the integrity [8], the domination number [16], the bondage number [5,6], the 

edge eccentric connectivity number [28], etc., have been proposed for measuring the vulnerability of 
networks. Recently, some average vulnerability parameters like the average lower independence 
number [4,17], the average lower domination number [2,7,11,17,23], the average connectivity number 
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[10], the average lower connectivity number [1] and the average lower bondage number [24] have 
been defined. 

Let ( ( ), ( ))G V G E G=  be a simple undirected graph of order n. We begin by recalling some 
standard definitions that we need throughout this paper. For any vertex ( )v V G∈ , the open 
neighborhood of v is ( ) { | ( )}GN v u V uv E G= ∈ ∈  and closed neighborhood of v is [ ] ( ) { }G GN v N v v= ∪ . 
The degree of vertex v in G denoted by ( )Gd v , that is, the size of its open neighborhood [16]. The 
minimum degree of graph G is denoted by ( )Gδ . A set ( )S V G⊆  is a dominating set if every vertex in 

( )V G S−  is adjacent to at least one vertex in S. The minimum cardinality taken over all dominating 
sets of G is called the domination number of G and denoted by ( )Gγ  [16]. Another domination concept 
is 2-domination number. A 2-dominating set of a graph G is a set ( )D V G⊆  of vertices of graph G such 
that every vertex of ( )V G D−  has at least two neighbors in D. The 2-domination number of a graph G, 
denoted by 2 ( )Gγ , is the minimum cardinality of a 2-dominating set of the graph G [9,12,14,16]. 

In 2004, Henning introduced the concept of average domination and average independence in 
[17]. Moreover, the average lower domination and average lower independence number are the 
theoretical vulnerability parameters for a network that modeled a graph [4,7]. The average lower 
domination number of a graph G, denoted by ( )av Gγ , is defined as follows:  

( )
1( ) ( )
( )av vv V GG G
V G ∈γ = γ  (1)

where the lower domination number, denoted by ( )v Gγ , is the minimum cardinality of a dominating 
set of the graph G that contains the vertex v [11,17]. In [7], an algorithm is given for computing the 
average lower domination number of any graph G. 

In 2015, a new graph theoretical parameter namely the average lower 2-domination number was 
defined in [25,26]. The average lower 2-domination number of a graph G, denoted by 2 ( )av Gγ , is 
defined as follows: 

2 2( )
1( ) ( )
( )av vv V GG G
V G ∈γ = γ  (2)

where the lower 2-domination number, denoted by 2 ( )v Gγ , is the minimum cardinality of a 
dominating set of the graph G that contains the vertex v [25,26]. 

If we think of a graph as modeling a network, then the average lower 2-domination number can be 
more sensitive for the vulnerability of graphs than the other known vulnerability measures of a graph 
[25]. We consider two connected simple graphs G and H in Figure 1, where ( ) ( ) 10V G V H= =  and 

( ) ( ) 17E G E H= = . Graphs G and H have not only equal the connectivity but also equal the 
domination number, the average lower domination number and the 2-domination number such as 

( ) ( ) 1k G k H= = , ( ) ( ) 1G Hγ = γ = , ( ) ( ) 19 5av avG Hγ = γ =  and 2 2( ) ( ) 5G Hγ = γ = . The results can be 
checked by readers. So, how can we distinguish between the graphs G and H ? 

When we compute 2 ( )av Hγ  and 2 ( )av Gγ , we get 2 ( ) 51 10 5.1av Hγ = =  and 2 ( ) 50 10 5av Gγ = = . 
So, the average lower 2-domination number may be used for distinguish between these two graphs 
G and H. Since 2 2( ) ( )av avG Hγ < γ , we can say that the graph H is more vulnerable than the graph G. 
In other words, the graph G is tougher than the graph H [25,26]. 
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Figure 1. Graphs G and H.  

The wheel graph has been used in different areas such as the wireless sensor networks, the 
vulnerability of networks, and so on. The wheel graph has many good properties. From the 
standpoint of the hub vertex, all elements, including vertices and edges, are in its one-hop 
neighborhood, which indicates that the wheel structure is fully included in the neighborhood graph 
of the hub vertex. Furthermore, wheel graphs are important for localizability because they are 
globally rigid in 2D space, which indicates an approach to identifying localizable vertices [29]. 
Moreover, the wheels and various related graphs have been studied for many reasons. The gear 
graphs, the friendship graph, the helm graphs and the sun flower graphs are among such graphs. 
The definitions of these graphs will be given in Section 3. In [3], Aytac and Odabas compute the 
residual closeness for wheels and related graphs. In [18], Javaid and Shokat give upper bounds for 
the cardinality of vertices in some wheel related graphs with a given partition dimension k. 

Our aim in this paper is to study a new vulnerability parameter, called the average lower 2-
domination number. In Section 2, well-known basic results are given for the average lower domination 
number, the average lower 2-domination number and the 2-domination number. In Section 3, we 
compute the average lower 2-domination numbers of wheels and some related graphs. Finally, an 
algorithm is proposed for computing the 2-domination number and the average lower 2-domination 
numbers of any given graph in Section 4.  

2. Basic Results 

In this section, well known basic results are given with regard to the average lower domination 
number, the average lower 2-domination number and the 2-domination number.  

Theorem 2.1. [17] Let G be any graph of order n with the domination number ( )Gγ , then 
( )( ) ( ) 1av
GG G
n

γγ ≤ γ + −  

with equality if and only if G has a unique ( )Gγ -set. 

Theorem 2.2. [17] If 1, 1nK −  is a star graph of order n, where 3n≥ , then 1, 1
1( ) 2av n n

K −γ = − . 

Theorem 2.3. [17] If nP  is a path graph of order n, then 

2 2 , 2(mod3);
3 3( )

2 , .
3

av n

n if n
nP

n otherwise

+ − ≡γ =  +


 

Theorem 2.4. [17] If nC  is a cycle graph of order n, then ( ) 2av nCγ = . 

Theorem 2.5. [17] If nK  is a complete graph of order n, then ( ) 1av nKγ = . 

Observation 2.1. If nW  is a wheel graph of order 1n+ , then 
2 1( )

1av n
nW
n

+γ =
+

. 
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Theorem 2.8. [19] If nK  is a complete graph of order n, then 2 ( ) min{2, }nK nγ = . 

Theorem 2.9. [19] If nP  is a path graph of order n, then 2 ( ) 2 1nP nγ = +   . 

Theorem 2.10. [19] If nC  is a cycle graph of order n, where 3n≥ , then 2 ( ) ( 1) / 2nC nγ = +   . 

Theorem 2.11. [19] If nW  is a wheel graph of order 1n+ , where 3n≥ , then 

2

2 , 3, 4;
( )

( 1) 3 1 , .n

if n
W

n otherwise
=

γ =  + +  
 

Theorem 2.12. [25] Let G be any connected graph of order n. If 2 ( )Gγ -set is unique, then 

2
2 2

( )( ) ( ) 1av
GG G
n

γγ = γ + −  

Theorem 2.13. [25] Let G be any connected graph of order n. If ( ) 2Gδ ≥ , then 

2
2 2

( )( ) ( ) 1av
GG G
n

γγ ≤ γ + −  

Theorem 2.14. [25] Let G be any connected graph of order 2n≥ . Then, 2
12 ( ) 1av G n
n

≤ γ ≤ − + . 

Theorem 2.15. [25] If nP  is a path graph of order n, then 

2

2 1
2 2 , ;( )

2 1 , .
av n

n
n If n is odd

P n
n If n is even

+   + −   γ = 
 +  

 

Theorem 2.16. [25] If nC  is a cycle graph of order n, then 2 ( ) ( 1) 2av nC nγ = +   . 

Theorem 2.17. [25] If nK  is a complete graph of order n, then ( ) 2av nKγ = . 

Theorem 2.18. [25] If 1, 1nK −  is a star graph of order n, where 3n≥ , then 2 1, 1
1( ) 1av nK n
n−γ = − + . 

3. The Average Lower 2-Domination Number of Wheels Related Graphs 

In this section, we have calculated the average lower 2-domination number of wheels and related 
graphs such as the wheel graph nW , the gear graph nG , the friendship graph nf , the helm graph 

nH  and the sun flower graph nSf . Now, we recall the definitions of these graphs.  

Definition 3.1. [3] The wheel graph nW  with n spokes is a graph that contains an n-cycle and one 
additional central vertex cv  that is adjacent to all vertices of the cycle. Wheel graph nW  has ( 1)n +

-vertices and 2n -edges. 

Definition 3.2. [4] The gear graph nG  is a wheel graph with a vertex added between each pair 
adjacent graph vertices of the outer cycle. The gear graph nG  has (2 1)n + -vertices and 3n -edges. 

Definition 3.3. [3] The friendship graph nf  is collection of n triangles with a common vertex. The 
friendship graph nf  has (2 1)n + -vertices and 3n -edges. 

Definition 3.4. [18] The helm graph nH  is the graph obtained from an n-wheel graph by adjoining a 
pendant edge at each vertex of the cycle. The helm graph nH  has (2 1)n + -vertices and 3n -edges. 
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Definition 3.5. [18] The sun flower graph nSf  the graph obtained from an n-wheel graph with central 
vertex cv  and n-cycle 0 1 2 1, , , ..., nv v v v −  and additional n vertices 0 1 2 1, , , ..., nw w w w −  where iw  is 
joined by edges to 1,i iv v +  for {0,1,..., 1}i n∈ −  where ( 1)i +  is taken modulo n. The sun flower 
graph nSf  has (2 1)n + -vertices and 4n -edges. 

We display the graphs 4 4 4 4, , ,W G f H  and 4Sf  in Figure 2. 

 
Figure 2. Graphs 4 4 4 4, , ,W G f H  and 4Sf . 

Theorem 3.1. If nW  is a wheel graph of order 1n+ , where 5n≥ , then 2 ( ) 1 3av nW nγ = +    . 

Proof of Theorem 3.1. The 2 ( )nWγ - set of a graph nW , 5n≥ , is a set with the vertex cv  and 3n    
vertices from the set ( ) \{ }n cV W v . So, 2 ( ) 1 3nW nγ = +    . Thus, 2 ( ) 1 3nW nγ = +     is obtained for 
every vertex ( )nv V W∈ . As a result, we get 2 ( ) 1 3av nW nγ = +    . 

Remark 3.1. Let 3W  and 4W  be wheels graph with order 3 and 4, respectively. Then, 2 3( ) 2av Wγ =  and

2 4 11 5( )av Wγ = . 

Remark 3.2. If 2nW  is a wheel graph of order 2 1n+ , then 2 2( ) 1 2 3av nW nγ = +    . 

Theorem 3.2. If nG  is a gear graph of order 2 1n+ , then 
2

2
2 2 1( )

2 1av n
n nG
n
+ +γ =

+
. 

Proof of Theorem 3.2. We partition the vertices of graph nG  into three subsets 1V , 2V  and 3V  as 
follows:  

1 { ( ) | ( ) }
nc n G cV v V G d v n= ∈ =  

2 { ( ) | ( ) 3, {1, 2, ..., }}
ni n G iV v V G d v i n= ∈ = ∈  

3 { ( ) | ( ) 2, { 1, 2, ..., 2 }}
ni n G iV v V G d v i n n n= ∈ = ∈ + +  

When the 2 ( )av nGγ  is calculated for all vertices v in the graph nG , each vertex satisfies one of 
the three cases below. 

Case1. Let cv  be the vertex of 1V . The center vertex cv  is adjacent to n vertices in 2V . Thus, all 
vertices of 2V  are 1-dominated. By the definition of gear graphs, the whole vertex set 2V  (or 3V ) 
is taken to 2 ( )nGγ -set, then 

2 ( ) 1
cv nG nγ = +  is obtained. 

Case2. Let iv  be the vertex of 2V . Clearly every vertex of the graph nG  is 2-dominated by the 
vertices of 2V . As a result, we have 

2 ( )
iv nG nγ = , where {1, 2, ..., }i n∈ . 

Case3. Let iv  be the vertex of 3V . The 2 ( )nGγ -set including vertex iv  is similar to 2 ( )nGγ -set in the 
Case 1. So, we have 

2 ( ) 1
iv nG nγ = + , where { 1, 2,..., 2 }i n n n∈ + + . 

By the Cases 1, 2 and 3, we have: 

1 2 3
2 2 2 2

1( ) ( ) ( ) ( )
( )av n v n v n v n

v V v V v Vn

G G G G
V G ∈ ∈ ∈

 γ = γ + γ + γ   
 

 (3)
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2 3

1 1 ( 1)
2 1 v V v V

n n
n n n

n ∈ ∈

 = + + + +  +  
 (4)

22 2 1
2 1
n n
n
+ +=

+
  (5)

Theorem 3.3. If nf  is a friendship graph of order 2 1n+ , then 2 ( ) 1av nf nγ = + . 
Proof of Theorem 3.3. By the definition of the friendship graph and 2-domination number, a 2 ( )nfγ
-set must include the vertex cv  whose degree is 2n. Thus, 2n-vertices are 1-dominated by the vertex 

cv . Furthermore, n-disjoint graphs 2K  are formed by these 2n-vertices in the graph \ { }n cf v . When 
any vertex of each graph 2K  is taken to a 2 ( )nfγ -set, 2 ( ) 1nf nγ = +  is obtained. It is easy to see that 

2 ( ) 1v nf nγ = +  for every vertex ( )nv V f∈ . Thus, we get 2 ( ) 1av nf nγ = + .  

Theorem 3.4. If nH  is a helm graph of order 2 1n+ , then 
2

2
2 4 1( )

2 1av n
n nH
n
+ +γ =

+
. 

Proof of Theorem 3.4. Since the 2 ( )nHγ -set is unique in the graph nH , we have 

( )2 ( ) 2 ( 1) (2 1)av nH n n nγ = + − + +  by the Theorem 2.12. As a result, 
2

2
2 4 1( )

2 1av n
n nH
n
+ +γ =

+
 is 

obtained.  

Theorem 3.5. If nSf  is a sun flower graph of order 2 1n+ , then 
2

2
2 2 1( )

2 1av n
n nSf
n
+ +γ =

+
. 

Proof of Theorem 3.5. The proof follows directly from the Theorem 3.2.  

It is point out that the gear graph nG  is tougher than the friendship graph nf  and the helm 
graph nH , where ( ) ( ) ( )n n nV G V f V H= =  and ( ) ( ) ( )n n nE G E f E H= = . Similarly, the wheel 
graph 2nW  is tougher than the sun flower graph nSf , where 2( ) ( )n nV W V S f=  and 

2( ) ( )n nE W E S f= . Readers can see that these results are shown in Figures 3 and 4. 

 
Figure 3. Values of 2 ( )av nGγ , 2 ( )av nfγ  and 2 ( )av nHγ . 
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Figure 4. Values of 2 2( )av nWγ  and 2 ( )av nSfγ . 

4. An Algorithm for Computing the Average Lower 2-Domination Number 

In this section, the algorithm in [22] which finds the domination number and all the minimal 
dominating sets of a graph is improved. The improved algorithm also computes the 2-domination 
number and the average lower 2-domination number of a graph. The definitions used in the 
algorithm below are found in [22]. 

2, , , , , , min :i j n es topγ  positive integer 
:f  element of ( )L n  
, :DW  array n+  of ( )L n  

2 avγ : real number 

BEGIN 
for 1j ←  to n  do 
begin 
    [ ] 0D j ← ; 

     if  [v ] 0G jd =  then [ ] [ ] jD j D j v← +  end if; 

     if  [v ] 1G jd =  then [ ] [ ] jD j D j v← +  

     ELSE 
    [ ] [ ] jD j D j v← +  

        for 1i←  to 1n−  do 
        begin 
              for 1k i← +  to n  do 
              begin 

                    if ( )^j i =  and ( )^ kj =  and ( )j iv Ev  and ( )k jv E v   

                    then [ ] [ ] i kD j D j v v← +  end if; 

              end; {for k} 
       end; {for i} 
    end if;  
end; {for j} 

1f ←  
 for 1j ←  to n do 
 begin 
     [ ]*f f D j← ; 

 end; 
 { }2 min

x f
x

∈
γ ← ;  
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0es← ; 
for x f∈  do 

1es es← + ; 
0top← ; 

     for 1i←  to n  do 
     begin 
     0S← ; 
           for 1j ←  to e s  do 
           begin 
                if [ ]iv f j∈  then 1S S← +  end if; 
                if ( 1)S =  then m in [ ]f j←  end if; 

                if ( )[ ] minf j <  then m in [ ]f j←  end if; 

           end; {for j} 
      mintop top← + ; 
      end; {for i} 
      2 /av top nγ ← ; 
END. 

Example 4.1. Compute the 2-domination number and the average lower 2-domination number of 
graph G in Figure 5. 

 
Figure 5. Graph G with 5-vertices and 5-edges.  

Firstly, we must find function f as follows: 

( )( )( ) ( )( )f a b ec c bd d ec e bd= + + + +
 

Then, two mathematical logic functions are used as follows: 
 

( ) .
( )
i x x x
ii x xy x

=
+ =

  

Thus, we have 

( )( ) ( )( )f ab aec c bd d ec e bd= + + + +  

( ) ( )( )f abc abd aec d ec e bd= + + + +  

( ) ( )f abd aec e bd= + +  

( ).f abd aec= +  

Furthermore, we have f abd aec= + . 

Clearly, the 2-domination sets { }, ,a b d  and { }, ,a e c  have been found by the algorithm. Thus, we 
get 2 2( ) ( ) 3avG Gγ = γ = . 

5. Conclusions 

Communication systems are often subjected to failures and attacks. A variety of measures have 
been proposed in the literature to quantify the robustness of networks and a number of graph 
theoretic parameters have been used to derive formulas for calculating network reliability. In this 
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paper we have studied the average lower 2-domination number for graph vulnerability. The average 
lower 2-domination number can be more sensitive than the other measures of vulnerability like 
connectivity, domination number, average lower domination number and 2-domination number. We 
have also studied wheel graphs and wheels related graphs. Finally, an algorithm is proposed for 
computing the 2-domination number and the average lower 2-domination numbers of any given 
graph G. 
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