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Abstract: Urbanization is considered as a main indicator of regional economic development due to 
its positive effect on promoting industrial development; however, many regions, especially 
developing countries, are troubled by its negative effect — the aggravating environmental 
pollution. Many researchers have indicated that rapid urbanization stimulated the expansion of 
industrial production scale and increased industrial pollutant emissions. However, this judgement 
contains a grave deficiency in that urbanization not only expands industrial production scales but 
can also increase industrial labour productivity and change the industrial structure. To modify this 
deficiency, we first decompose the influence which urbanization impacts on industrial pollutant 
emissions into the scale effect, the intensive effect and the structure effect by using the Kaya 
Identity and the LMDI Method; second, we perform an empirical study of the three effects’ impacts 
by applying the spatial panel model with data from 282 Chinese cities between 2003 and 2013. Our 
results indicate that (1) there are significant reverse U-shapes between Chinese urbanization rate 
and its industrial pollutant emissions; (2) the scale effect and the structure effect have aggravated 
Chinese industrial waste water discharge, sulphur dioxide emissions and soot (dust) emissions, 
while the intensive effect has generated a decreasing and ameliorative impact on that aggravated 
trend. The definite relationship between urbanization and industrial pollutant emissions depends 
on the combined influence of the scale effect, the intensive effect and the structure effect; (3) there 
are significant spatial autocorrelations of industrial pollutant emissions between Chinese cities, but 
the spatial spillover effect from other cities does not aggravate local urban industrial pollutant 
emissions, we offer an explanation to this contradiction that the vast rural areas surrounding 
Chinese cities have served as sponge belts and have absorbed the spatial spillover of cities’ 
industrial pollutant emissions. According to the results, we argue that this type of decomposition 
of the influence into three effects is necessary and meaningful, it establishes a solid foundation for 
understanding the relationship between urbanization and industrial pollutant emissions, and 
effectively helps to meet relative policy making. 

Keywords: industrial pollutant emissions; urbanization; the spatial panel model; Chinese case 

JEL Classification: C33; R11; Q53 
 

1. Introduction 

The theme of Shanghai World Expo in 2010 — Better City, Better Life — symbolized China’s 
great wish for its urbanization. In fact, current Chinese urbanization has experienced much 
disappointment, and the aggravating environmental pollution is one of the most serious problems. 
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The World Bank (1997, 2007) indicated in its reports that since 1978, China’s economy had produced 
economic growth that rated it one of the fastest growing economies in the world; even though 
tremendous efforts have been made in abating environmental pollution, in the same time period, 
China has suffered from an increase in environmental pollution and stern criticism. 

China’s deteriorated environment has lowered its people’s quality of life, and it would seem 
that cities does not bring a better life. Just as Easterlin et al. (2012) documented, self-reported life 
satisfaction indicators had not increased in China as much as would be expected during a period of 8 
percent annual economic growth.  

What makes China suffer from so many serious environmental pollution incidents? Haakon 
Vennemo et al. (2009) noted that China appeared to be following a path similar to the one trodden by 
more industrialized countries, and the increase in industrial pollutant emissions have deteriorated 
its environmental state. Furthermore, many researchers stated that China’s rapid urbanization 
stimulated the expansion of its industrial production scale, which then generated enormous 
volumes of air and water pollutants and consequently causing its air and water quality to deteriorate. 
Thus, urbanization aggravates environmental pollution.  

However, we believe that this judgement contains a grave deficiency. It is true that Chinese 
urbanization expands its industrial production scale, but the process of urbanization also promotes 
the industrial labour productivity and upgrades the industrial structures. we can draw a point that 
even though the expansion of Chinese industrial production scale will aggravate its industrial 
pollutant emissions, the promotion of its industrial labour productivity and the upgrading of its 
industrial structures will abate the increasing trend of industrial pollutant emissions. As a result, the 
definite relationship between urbanization and industrial pollutant emissions is ambiguous, it 
should be treated cautiously.  

In this paper, we will highlight our research in the following aspects: First, we expand the 
mechanism analysis between urbanization and industrial pollutant emissions and then apply the 
Kaya Identity and the LMDI Method to decompose out three effects (i.e., the scale effect, the 
intensive effect and the structure effect) which urbanization impacts on industrial pollutant 
emissions; Second, we give a description of the relationship between Chinese urbanization rate and 
its industrial pollutants emissions, and re-examine the reverse U-shapes between them, then we 
perform an empirical study on the three effects by using data from 282 Chinese cities between 2003 
and 2013; Third, as different regions’ economic developments are strongly related and the 
assumption of no spatial autocorrelations has been questioned by many scholars, we amend the 
traditional panel model by introducing the spatial panel model to take the spatial spillover effect 
into account.  

The rest of our paper is arranged as follows: Section 2 briefly reviews the previous studies; 
Section 3 analyses the mechanisms between urbanization and industrial pollutant emissions; Section 
4 establishes the spatial panel model and introduces the parameters; Section 5 presents the empirical 
analysis; and Section 6 presents the study’s conclusions and offers a discussion. 

2. Literature Review 

Understanding the trade-off between the positive and negative externalities of urban growth 
has long been the core issue in urban and environmental economics (Tolley, 1974; Glaeser, 1998). 
Urbanization is considered as a main indicator of regional economic development due to its positive 
effect on promoting industrial development, but many regions, especially developing countries, are 
troubled by its negative effect — the aggravation of environmental pollution (Wan, Guanghu & 
Wang, Chen, 2014). The relationship between economic development and environmental pollution 
has been analysed by early representative works such as Grossman and Krueger (1993, 1995) and 
Panayotou (1993), which together proposed the Environmental Kuznets Curve (i.e., the EKC theory). 
Based on these influential studies, an entire subfield of environment economics has emerged that 
focuses on the association between economic and environmental indicators.  

One subfield of environment economics studies focuses on the re-examination of the validity of 
the EKC theory. For example, Lindmark (2002), Nasir & Rehman (2011), Eeteve & Tamarit (2012), 
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Jalil & Mahmud (2009) and Tingting, Li et al. (2016) had applied Swedish, Pakistani, Spanish and 
Chinese data to perform empirical tests on the reverse U-shapes between national per capita income 
and environmental pollution status, and their results have strongly supported the EKC theory in 
various scenarios. However, many other empirical studies, especially those based on time series 
models, argued that the declining portions of the Environmental Kuznets Curve were illusory, either 
because they are cross-sectional snapshots that mask a long-run “race to the bottom” in 
environmental standards or because industrial societies continually produce new pollutants because 
the old ones are controlled (Stern, 2001, Richard York et al. 2003; Kwon, 2005). 

Another subfield is the study of the causes of the reverse U-shapes in the Environmental 
Kuznets Curve. Dasgupta et al. (2002) suggested that the driving forces that made the 
Environmental Kuznets Curve flatten and shift to the right appeared to be economic liberalization, 
clean technology diffusion, and new approaches to pollution regulation. Panayotou (2003) offered 
another visualized explanation based on the decomposition of the influence of economic 
development on environmental pollution into three effects: the scale effect, the technology effect and 
the composition effect. He noted that the reverse U-shape of EKC was the comprehensive impact of 
the three effects.  

In term of the relationship between urbanization and industrial pollutant emissions, Kanada 
and Momoe et al. (2013), Huapeng and Qin et al. (2014), and Huijuan and Dong et al. (2015) studied 
the way in which urban population growth impacted local pollution levels and indicated that as the 
urban population became richer, its demand for private transportation and electricity sharply 
increased; thus, the activities and demands of individuals exacerbated urban pollution externalities. 
However, Tao and Yu et al. (2016) obtained an opposite result in which the overall quantity of 
pollutant discharge decreased as cities became more economically developed during the period 
2000-2010, and they attributed this positive effect to higher urban production efficiencies. Zhou and 
Mi et al. (2016) used the STIRPAT model (Stochastic Impacts by Regression on Population, Affluence 
and Technology) to evaluate whether urbanization would lead to greater environmental pollution. 
Their study indicated that the estimated contemporaneous coefficients on the urbanization variables 
were presented as significant reverse U-shapes. In China's case, Siqi Zheng & Matthew E. Kahn 
(2013) had documented that one-quarter of the rural people who relocated to cities worldwide were 
in China over the last thirty years, and China was preparing to supply a massive amount of 
industrial products to meet the demands of growing cities with higher-income urban people. In 
recent years, China’s urbanization has been roundly criticized for its stimulation of the expansion of 
industrial scale and the aggravation of industrial pollutant emissions (Haakon Vennemo et al., 2009).  

In summary, until now, most studies have focused on the empirical testing of the shapes 
between economic and environmental indicators, and many of their results have strongly supported 
the EKC theory in various scenarios. Other studies have discussed the underlying driving forces that 
made the Environmental Kuznets Curve present as a reverse U-shape and have hinted that this 
reverse U-shape was the comprehensive impacts of different types of effects, but they failed to 
model the decomposition of these effects or calculate the impact of each effect with empirical data.  

Therefore, this paper attempts to address the above shortcomings by decomposing the 
influence of urbanization on industrial pollutant emissions into the scale effect, the intensive effect 
and the structure effect by using the Kaya Identity and the LMDI Method and performing an 
empirical study of the impact of the three effects by applying the spatial panel model with data from 
282 Chinese cities between 2003 and 2013. 

3. Mechanisms Analysis and Hypotheses 

The mechanisms between urbanization and industrial pollutant emissions can be briefly and 
vividly described as the following process (see Figure 1): Urbanization leads to population 
redistribution and labour force redistribution between rural areas and cities. Many young, 
able-bodied rural people migrate to cities to work in industrial production, which aggravates the 
total industrial pollutant emissions by expanding industrial production scales. On the other side, 
every unit of industrial production’s pollutant emissions will be decreased due to cities’ higher 
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industrial labour productivity which benefits from advanced technology, scientific management and 
the agglomeration economy. Additionally, the industrial structures will also be upgraded due to 
cities’ economic development and division, that will affect industrial pollutant emissions because 
different industrial sectors have different pollutant emissions intensities. For example, compared 
with a heavy industry-oriented economy, a service-oriented economy is always regarded as a kind 
of environment-friendly development mode.  

Urbanization

Population redistribution and labor 
force redistribution

leads to

Expanding industrial scale Improving labor productivity Upgrading industrial structure

Tends to increase cities’ 
industrial  pollutant emissions

Tends to decrease cities’ 
industrial  pollutant emissions

Tends to decrease cities’ 
industrial  pollutant emissions

The scale effect The intensive effect The structure effect

i.e. i.e. i.e.

 
Figure 1. The mechanisms between urbanization and industrial pollutant emissions 

In summary, the influence of urbanization on industrial pollutant emissions can be 
decomposed into three types of effects according to their diverse mechanisms: the scale effect 
indicates the expansion of industrial production scale and denotes a greater consumption of fossil 
energy and water, the intensive effect indicates the improvement of industrial technologies and 
denotes higher production efficiencies, the structure effect indicates the upgrading of industrial 
structures shifting from high-intensity pollutants emission sectors to low-intensity pollutants 
emission sectors. Here, we propose three hypotheses and we will test their validities in empirical 
analysis sections.  

Hypothesis 1: The scale effect of urbanization tends to increase industrial pollutant 
emissions.  

Hypothesis 2: The intensive effect of urbanization tends to decrease industrial pollutant 
emissions.  

Hypothesis 3: The structure effect of urbanization tends to decrease industrial pollutant 
emissions.  

We use the Kaya Identity and the LMDI Method to establish a model to present the mechanisms 
between urbanization and industrial pollutant emissions in Equation (1): 

            
populationqpe

population
population
labor

labor
output

output
pollutant

pollutant

×××=

×××=
               (1) 

Where pollutant  denotes total industrial pollutant emissions, output  denotes total 
industrial production scales, labor  denotes total industrial labour force, and population  
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denotes total population. Thus, 
output
pollutant

e =  denotes industrial pollutant emission 

intensity, 
employee
output

p =  denotes industrial labour productivity, and 
population
labor

q =  

denotes the employment rate. 
Taking urbanization process into account, Equation (1) can be specified as:  
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Where subscripts u  and r  denote cities and rural areas, respectively; 
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u =  

denotes the proportion of urban industrial output in total industrial production; 
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denotes the proportion of urban industrial employees in total industrial labour force; and 
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Then taking industrial structure into account, Equation (2) can be specified as:  
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Where subscript j  denotes different industrial sectors and 
u

j,u
j,u labor
labor

s =  denotes the 

proportion of employees who are part of the industrial sector j .  

Taking the logarithm for Equation (3), and then we have:  
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In Equation (4), uβ , uφ  and uα are variables that reflect population redistribution and labour 

force redistribution during the process of urbanization. According to the mechanisms analysis, we 

decompose the scale effect as { }populationqq ruuu ×−+ ])1([ln φφ  in the reason that this 

monomial reflects the scale expansion of industrial production scale; we decompose out the 

intensive effect as ])1([ln ruuu pp ββ −+  in the reason that this monomial reflects the promotion 

of industrial productivity; we decompose the structure effect as 



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==

])1([])1([ln
...1

,
...1

,
nj

jru
nj

juuruuu ssee ββαα  because this monomial reflects the 

structure upgrading during urbanization.  
In conclusion, by using the Kaya Identity and the LMDI Method, we reasonably decompose the 

influence of urbanization on industrial pollutant emissions into the scale effect, the intensive effect 
and the structure effect. Therefore, we can analyse the three effects independently. We argue that 
this type of decomposition is necessary and meaningful, it establishes a solid foundation for 
understanding the relationship between urbanization and industrial pollutant emissions, and 
effectively helps to meet relative policy making.  

4. Modelling and Parameters 

4.1. Modelling 

According to the mechanisms analysis in Section 3, by applying the Kaya Identity and the 

LMDI Method, we have decomposed out the scale effect as { }populationqq ruuu ×−+ ])1([ln φφ , 

the intensive effect as ])1([ln ruuu pp ββ −+ , and the structure effect as 
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independently, we establish the traditional panel model as follows:  
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(5) 

Where subscript i  denotes the cross-sections; t  denotes the time series; c  denotes the 

constant; ti,ε  denotes the random errors; and 1ρ , 2ρ  and 3ρ  are the regression coefficients of 

the scale effect, the intensive effect and the structure effect, respectively. Specifically, according to 
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the three hypotheses in section 3, 1ρ  is expected to be positive and indicates that the scale effect 

will aggravate industrial pollutant emissions; 2ρ  and 3ρ  are expected to be negative and indicate 

that the intensive effect and the structure effect will cause an abatement in industrial pollutant 
emissions.  

One of the assumptions for establishing a traditional panel model, such as Equation (5), is that 
different cities are completely independent of one another; that is to say, the variables’ spatial 
autocorrelations are non-existent or non-significant. However, this assumption has been questioned 
by many scholars (Arbia, Giuseppe & Thomas-Agnan, Christine, 2014; LeSage, James P., 2015), who 
believe that benefiting from the development of transportation networks and communication 
technologies, different regions’ economic developments are strongly related.  

Therefore, the empirical results of the traditional panel model may generate biased errors due 
to its omission of variables’ spatial autocorrelations. To remedy this drawback, we try to apply the 
spatial panel model as follows:  

t,it,it,i

t,ii,t

i,ti,ti,ti,t

υεWτε

επeffectstructure_ρ
effectintensive_ρctscale_effeρpollutantWψpollutant

+=

++ln+
ln+ln+ln=ln

3

21

∑

∑
   (6) 

Where W  denotes the spatial weight matrix, ψ  is the spatial lag coefficient, and τ  is the 

space error coefficient. Compared to the traditional panel model in Equation (5), the spatial panel 
model in Equation (6) is more reasonable in two ways: First, it has focused on the spatial 

autocorrelation of the dependent variable by introducing i,tpollutantW ln ; and second, it has 

focused on the spatial autocorrelations of the omitted variables by extending ti ,ε  into tiW ,ε .  

According to different situations, the spatial panel model can also be subdivided into the 
Spatial Lag Model (SLM) and the Spatial Error Model (SEM), and which model should be chosen can 
be assessed by the Lagrange Multipliers (LM) and their robustness tests (Anselin, 1995; Lee & Yu, 
2010; Elhorst, 2012). Specifically, if the Lagrange Multiplier of SLM (LM_lag) is more significant than 
that of SEM (LM_error), and the robustness of SLM (robustness_lag) passes significance testing 
while the robustness of SEM (robustness_error) does not, then the Spatial Lag Model will be more 
suitable. Otherwise, the Spatial Error Model will be more suitable.  

4.2. Parameters 

In this paper, the spatial panel model is established based on data from Chinese 282 
prefecture-level cities between 2003 and 2013. The main data are extracted from the China City 
Statistical Yearbook. Here, we give a brief introduction to the variables.  

In terms of the dependent variables, industrial pollutant emissions ( pollutant ) are measured 
by the volume of industrial waste water discharge ( waterpollutant _ ), the volume of industrial 
sulphur dioxide emissions ( sulphur_pollutant ) and the volume of industrial soot (dust) 
emissions ( soot_pollutant ), respectively.  
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In terms of the independent variables, employment rates ( ru q,q ) are measured by the ratio of 

industrial employees to the total population; industrial labour productivities ( j,rj,u pp , ) are 

measured by industrial output per unit of labour; pollutant emissions intensities ( j,rj,u e,e ) are 

measured by the ratios of each sector’s pollutant emissions to their industrial output; industrial 

structures ( j,rj,u s,s ) are measured by the proportions of employees in each industrial sector; and 

the distributions of population ( uφ ), industrial employee ( uβ ) and industrial output ( uα ) between 

cities and rural areas are measured by their proportions in cities.  
The spatial weight matrix (W ) is measured by the reciprocal of the geographic distances 

between different cities. 

5. Empirical Analysis 

5.1. Description of the relationship between urbanization and industrial pollutants emissions 

Figure 2(a) has reported the trend comparison of Chinese urbanization rate and its industrial output 
between 2003 and 2013. It tells us that Chinese urbanization rate rose steadily from 40.53% in 2003 to 53.73% 
in 2013. During the same period, Chinese industrial output also showed a gradual upward trend. This 
phenomenon has supported the view that Chinese urbanization expands its industrial production scale, which 
many economic scholars refer to as the demographic dividend (Peng, Xizhe, 2013; Song, Shibin et al., 2011).  

Figure 2(b), Figure 2(c) and Figure 2(d) have reported the trend comparisons of Chinese urbanization rate 
and the three types of industrial pollutant emissions between 2003 and 2013. We can see from these figures that 
with the steady rise of Chinese urbanization rate, the volume of its industrial waste water discharge continued to 
increase and reached its peak in 2007; after that, the volume of its industrial waste water discharge showed a 
downward trend. The curves of the volume of Chinese industrial sulphur dioxide emissions and its industrial 
soot (dust) emissions also fitted reverse U-shapes, especially between the year 2003 and 2010.  

   

(a)                                        (b) 
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(c)                                        (d)  

Figure 2. (a) The trend comparison of urbanization and industrial output; (b) The trend comparison 
of urbanization and industrial waste water discharge; (c) The trend comparison of urbanization and 
industrial sulphur dioxide emission; (d) The trend comparison of urbanization and industrial soot & 
dust emission.  

As a conclusion, the trend comparisons of Chinese urbanization rate and its three types of industrial 
pollutant emissions have documented that at the beginning stage of Chinese urbanization, its industrial pollutant 
emissions shew an aggravating trend accompany with the increase of its urbanization rate. However, with 
further development in urbanization, some driving forces that made its industrial pollutant emissions flatten and 
downward. Therefore, we argue that even though urbanization has correlations with industrial pollutant 
emissions, their definite relationship is ambiguous and should be treated cautiously. 

5.2. Test of industrial pollutant emissions’ spatial autocorrelations 

In this paper, we apply the Moran’s Index to test the spatial autocorrelations of cities’ industrial 
pollutant emissions. The Moran’s Index can be calculated as seen in Equation (7).  

∑∑

∑∑

2 1

2
2 1

-

2

-

1 )-)(-(
='

c c

c c
cc

WS

pollutantpollutantpollutantpollutantW
IsMoran        (7) 

Where 1c  and 2c  denote different cities, 
-

pollutant  denotes the average industrial 

pollutant emissions of the entire city, W  denotes the spatial weight matrix, 

∑ ）（
1

-

1
2 -

1
=

c
c pollutantpollutant

n
S  and n  denotes the number of cities.  

Table 1 has reported the Moran’s Indexes for the three types of Chinese cities’ industrial 
pollutant emissions between 2003 and 2013. We can conclude from Table 1 that all the Moran’s 
Indexes are significant and positive, which indicates that there are significant spatial 
autocorrelations of industrial pollutant emissions between different cities.  

Table 1. The Moran’s Indexes of Chinese cities’ industrial pollutant emissions 

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

pollutant_water 
0.050*** 
(8.054) 

0.057*** 
(9.136) 

0.064*** 
(10.183) 

0.076*** 
(12.019) 

0.078*** 
(12.349) 

0.075*** 
(11.866) 

0.080*** 
(12.663) 

0.082*** 
(12.967) 

0.087*** 
(13.646) 

0.085*** 
(13.293) 

0.084*** 
(13.152) 

pollutant_sulphur 0.048*** 0.045*** 0.052*** 0.053*** 0.036*** 0.040*** 0.035*** 0.031*** 0.052*** 0.058*** 0.083*** 
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(7.851) (7.328) (8.416) (8.473) (6.049) (6.639) (5.877) (5.390) (8.507) (9.469) (13.229) 

pollutant_soot 
0.085*** 
(13.390) 

0.080*** 
(12.593) 

0.083*** 
(13.068) 

0.086*** 
(13.563) 

0.071*** 
(11.303) 

0.066*** 
(10.500) 

0.063*** 
(10.121) 

0.053*** 
(8.637) 

0.094*** 
(14.795) 

0.087*** 
(13.737) 

0.086*** 
(13.488) 

Notes: The figures in () are Z statistics; ***, ** and * denote the level of significance at 1%, 5% and 10%, 
respectively. 

Figure 3 to Figure 5 have reported the cluster maps of Chinese cities’ three types of industrial 
pollutant emissions in 2013, respectively. We can see from these figures that the High-High clusters 
of cities’ industrial waste water discharge are concentrated in Chinese Beijing-Tianjin-Hebei Urban 
Agglomeration and Yangtze River Delta Urban Agglomeration. The High-High clusters of cities’ 
industrial sulphur dioxide emissions and soot (dust) emissions are concentrated in the northeast of 
China. Most cities in Chinese west region are presented the Low-Low clustering phenomena or are 
not significant.  

 

Figure 3. The cluster map of cities’ industrial waste water discharge in 2013 
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Figure 4. The cluster map of cities’ industrial sulphur dioxide emissions in 2013 

 

Figure 5. The cluster map of cities’ industrial soot (dust) emissions in 2013 

The most important conclusion we can draw from the above testing is that there are significant 
spatial autocorrelations of industrial pollutant emissions between different cities, so applying the 
spatial panel model will be more reasonable than applying the traditional panel model in this paper.  

5.3. Regression result analyses 

5.3.1. Analysis of the scale effect, the intensive effect and the structure effect 
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Table 2 has reported the regression results of the scale effect, the intensive effect and the 
structure effect of Chinese urbanization on its industrial waste water discharge, sulphur dioxide 
emissions, and soot (dust) emissions.  

We list three models: the OLS denotes regression results when applying the traditional panel 
model and the SLM and SEM denote regression results when applying the Spatial Lag Model and 
the Spatial Error Model, respectively. The non-FE denotes regression without fixed effects, while FE 
denotes regression with fixed effects. Following the judgment rules in Section 4.1, we finally choose 
the Spatial Lag Model with fixed effect as the optimal model, and regard other models as control 
groups.  

We can see from Table 2 that the regression coefficients 1ρ , 2ρ  and 3ρ  have all passed the 
significance testing, and 1ρ  and 3ρ  are positive in each model, while 2ρ  are always negative. 
As 1ρ , 2ρ  and 3ρ  reflect the impacts of the scale effect, the intensive effect and the structure 

effect of Chinese urbanization on its industrial pollutant emissions, we can draw the conclusion that 
the scale effect and the structure effect of Chinese urbanization have aggravated its industrial waste 
water discharge, sulphur dioxide emissions and soot (dust) emissions; however, the intensive effect 
has generated a decreasing and ameliorative impact on its industrial pollutant emissions.  

The orientation of the scale effect and the intensive effect are in line with our expectations, but 
the orientation of the structure effect is beyond our expectation. That is to say, Hypothesis 1 and 
Hypothesis 2 have been tested and proved correct, while Hypothesis 3 cannot pass the test. 
Specifically, the population redistribution and labour force redistribution during Chinese 
urbanization expanded its industrial production scale and have generated increasing pollutant 
emissions. The improvement of Chinese industrial labour productivity has decreased every unit of 
industrial production’s pollutant emissions and has generated an ameliorative impact on its 
industrial pollutant emissions. However, the changes of Chinese cities’ industrial structures have 
not decreased its industrial pollutant emissions but rather aggravated them. We can speculate from 
these conclusions that Chinese industrial structures did not upgrade significantly but tended to 
aggravate its heavily polluting industries. In fact, our speculation is consistent with many other 
studies (Haakon Vennemo et al., 2009; Yu, Lihong; He, Yuan, 2012; Zhang, Miao & Rasiah, Rajah, 
2015), they documented that China appeared to be following a path similar to that trodden by more 
industrialized countries, the development of its high-tech and service industries shows slow growth 
tendencies.  

Table 2. The regression results of the scale effect, the intensive effect and the structure effect 

model 
OLS SLM SEM 

Non-FE FE Non-FE FE Non-FE FE 

dependent variables pollutant_water 

scale effect ( ρ1) 
0.579*** 

(25.182) 

0.608*** 

(25.567) 

0.554*** 

(24.525) 

0.536*** 

(23.952) 

0.535*** 

(24.808) 

0.534*** 

(24.775) 

intensive effect (ρ2) 
-0.135*** 

(-6.213) 

-0.196*** 

(-7.603) 

-0.100*** 

(-4.716) 

-0.060*** 

(-3.153) 

-0.060*** 

(-3.816) 

-0.052*** 

(-3.544) 

structure effect (ρ3) 
0.608*** 

(12.329) 

0.658*** 

(13.052) 

0.559*** 

(11.559) 

0.532*** 

(-3.366) 

0.533*** 

(11.374) 

0.528*** 

(11.262) 

LM spatial lag 328.639*** 401.383***     
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Robust LM spatial lag 48.911*** 19.204***     

LM spatial error 281.658*** 428.553***     

Robust LM spatial error 1.930 46.374***     

Adj-R2 0.316 0.319 0.348 0.334 0.349 0.341 

Log-likelihood -4.048×103 -4.035×103 -3.977×103 -4.005×103 -3.975×103 -3.993×103 

dependent variables pollutant_sulphur 

scale effect ( ρ1) 
0.410*** 

(15.770) 

0.419*** 

(15.670) 

0.408*** 

(15.705) 

0.409*** 

(15.923) 

0.409*** 

(15.778) 

0.403*** 

(15.705) 

intensive effect (ρ2) 
-0.068*** 

(-2.773) 

-0.083*** 

(-2.871) 

-0.067*** 

(-2.734) 

-0.064*** 

(-2.930) 

-0.068*** 

(-2.772) 

-0.059*** 

(-2.696) 

structure effect (ρ3) 
0.786*** 

(14.115) 

0.800*** 

(14.126) 

0.784*** 

(14.069) 

0.783*** 

(14.159) 

0.785*** 

(14.124) 

0.776*** 

(14.022) 

LM spatial lag 3.171* 156.666***     

Robust LM spatial lag 19.391*** 3.864**     

LM spatial error 0.009 166.477***     

Robust LM spatial error 16.229*** 13.674***     

Adj-R2 0.227 0.232 0.227 0.214 0.227 0.211 

Log-likelihood -4.424×103 -4.395×103 -4.424×103 -4.460×103 -4.424×103 -4.456×103 

dependent variables pollutant_soot 

scale effect ( ρ1) 
0.389*** 

(14.647) 

0.419*** 

(15.425) 

0.383*** 

(14.464) 

0.378*** 

(14.367) 

0.372*** 

(14.196) 

0.359*** 

(13.756) 

intensive effect (ρ2) 
-0.147*** 

(-5.848) 

-0.217*** 

(-7.398) 

-0.140*** 

(-5.536) 

-0.113*** 

(-5.015) 

-0.119*** 

(-5.092) 

-0.085*** 

(-4.039) 

structure effect (ρ3) 
0.553*** 

(9.728) 

0.601*** 

(10.450) 

0.545*** 

(9.613) 

0.536*** 

(9.442) 

0.530*** 

(9.410) 

0.512*** 

(9.078) 

LM spatial lag 60.582*** 613.836***     

Robust LM spatial lag 102.032*** 66.642**     

LM spatial error 25.610*** 547.420***     

Robust LM spatial error 67.060*** 0.226     

Adj-R2 0.139 0.143 0.142 0.116 0.141 0.116 

Log-likelihood -4.424×103 -4.443×103 -4.486×103 -4.543×103 -4.488×103 -4.532×103 

Notes: The figures in () are Z statistics; ***, ** and * denote the level of significance at 1%, 5% and 10%, 
respectively. 

5.3.2. Analysis of the spatial spillover effect 

Table 3 has reported the spatial lag coefficient (ψ) and the spatial error coefficient (τ). By 
analysing these coefficients, we can gain an insight into the spatial spillover effect of Chinese 
urbanization on its industrial pollutant emissions.  

In terms of Chinese industrial waste water discharge, both the spatial lag coefficient (ψ) and the 
spatial error coefficient (τ) are significant and negative; however, in terms of its industrial sulphur 
dioxide emissions and industrial soot (dust) emissions, neither of these two spatial coefficients 
passes the significant testing. That is to say, the spatial spillover from other cities’ industrial 
pollutant emissions does not aggravate the local city’s industrial pollutant emissions, and the spatial 
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spillover effect is non-existent. This result is beyond our expectation, moreover, it has established a 
contradiction with the conclusion which we draw in section 5.2.1: there are significant spatial 
autocorrelations of industrial pollutant emissions between different cities, but the spatial spillover 
effect from other cities does not aggravate local industrial pollutant emissions.  

We offer an explanation that there are vast rural areas surrounding Chinese cities, these vast 
rural areas serve as sponge belts and absorb the spatial spillover effect of industrial pollutant 
emissions from Chinese cities, so the spatial spillover effect from other cities does not aggravate local 
city’s industrial pollutant emissions. But, from another point of view, cross-regional economic 
relationships are shown in many forms, such as population flows, industrial associations, and 
material exchanges, these cross-regional activities have made Chinese industrial pollutant emissions 
present significant spatial autocorrelations, but cities’ industrial pollutant emissions themselves 
have failed to affect each other.  

Table 3. The regression results of the spatial spillover effect 

model 
SLM SEM 

Non-FE FE Non-FE FE 
dependent variables pollutant_water 

spatial lag coefficient (ψ) 
-0.812*** 
(-4.047) 

-0.666*** 
(-3.366) 

  

spatial error coefficient (τ)   
-0.990*** 
(-3.561) 

-0.990*** 
(-3.561) 

dependent variables pollutant_sulphur 

spatial lag coefficient (ψ) 
-0.045 

(-0.250) 
-0.167 

(-1.109) 
  

spatial error coefficient (τ)   
-0.005 

(-0.026) 
-0.009 

(-0.047) 
dependent variables pollutant_soot 

spatial lag coefficient (ψ) 
-0.158 

(-0.805) 
-0.121 

(-0.751) 
  

spatial error coefficient (τ)   
-0.236 

(-1.055) 
-0.284 

(-1.237) 
Notes: The figures in () are Z statistics; ***, ** and * denote the level of significance at 1%, 5% and 10%, 
respectively. 

6. Discussion and Conclusions 

In this paper, we first decompose the influence which urbanization impacts on industrial 
pollutant emissions into the scale effect, the intensive effect and the structure effect by using the 
Kaya Identity and the LMDI Method; second, we perform an empirical study of the three effects’ 
impacts by applying the spatial panel model with data from 282 Chinese cities between 2003 and 
2013. Our results indicate that (1) there are significant reverse U-shapes between Chinese 
urbanization rate and the volume of its industrial waste water discharge, sulphur dioxide emissions 
and soot (dust) emissions; (2) the scale effect and the structure effect of Chinese urbanization have 
aggravated its industrial waste water discharge, sulphur dioxide emissions and soot (dust) 
emissions, while the intensive effect has generated a decreasing and ameliorative impact on that 
aggravated trend. The orientation of the scale effect and the intensive effect are in line with our 
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expectations, but the impact of the structure effect is beyond our expectation, we speculate that 
Chinese industrial structures did not upgrade significantly but tended to aggravate its heavily 
polluting industries; (3) there are significant spatial autocorrelations of industrial pollutant 
emissions between Chinese cities, but the spatial spillover effect from other cities does not aggravate 
local urban industrial pollutant emissions, we offer an explanation to the contradiction that the vast 
rural areas surrounding Chinese cities have served as sponge belts and have absorbed the spatial 
spillover of cities’ industrial pollutant emissions.  

Based on the above conclusions, we argue that even though urbanization has correlations with 
industrial pollutant emissions, their effects should be treated cautiously, it depends on the combined 
influence of the scale effect, the intensive effect and the structure effect. China is in a phase of rapid 
urbanization, and tremendous efforts have been made in abating industrial pollutant emissions, but 
our research suggests that the lock-in of its heavily polluting industries has introduced a more 
difficult problem in the attempt to reduce its environmental pollution. During the past 38 years after 
the reform and opening up, China appeared to be following a path similar to that travelled by more 
industrialized countries, and the development of its high-tech and service industries shew slow 
growth tendencies. Fortunately, the vast rural areas surrounding Chinese cities have absorbed and 
cushioned the spatial spillover of cities’ industrial pollutant emissions, but as Chinese 
industrialization has been spreading to the countryside, its rural areas are facing a growing threat 
from industrial pollution. 
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