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1. Introduction

For a locally compact Hausdorff topological group G, the function algebra Cc(G) consisting of all
continuous functions of compact support on G encodes all the information on the topology of G. For
instance G is compact iff Cc(G) is unital. On the other hand it gives no information on the algebraic
structure of G, since its algebraic operations are defined pointwise. Indeed, for such groups G1 and
G2, the corresponding function algebras Cc(G1) and Cc(G2) are isomorphic (as normed algebras) iff
G1 is homeomorphic to G2 as a topological space. To overcome this shortcoming, people usually
endow Cc(G) with the convolution product

f ∗ g(x) =
∫

G
f (y)g(y−1x)dy,

where the integral is taken against a left Haar measure (an essentially unique, left translation
invariant, regular Borel measure) on G. With this product, Cc(G) is again a normed algebra, but
this time in the above situation, the function algebras Cc(G1) and Cc(G2) are isomorphic iff G1 is
homeomorphic and algebraically isomorphic to G2 as a topological group. It now remains to complete
the convolution algebra Cc(G) to a Banach or complete operator algebra. One completion of the first
kind is to the Banach algebra L1(G) of absolutely integrable functions on G (with respect to the left
Haar measure). This is a descent algebra whose representation theory fully reflects that of G, namely,
its non-degenerate representations are in one-one correspondence with unitary representations of
G [6]. The only major shortcoming of this function algebra is its spectral theory. Indeed, among
Banach ∗-algebras, only C∗-algebras have a fairly good spectral theory. The good news is that one
could complete L1(G) into a universal (full) C∗-algebra C∗(G) with the same representation theory.
This is done using all non-degenerate representations on Hilbert spaces and taking supremum of
the corresponding operator norms. Alternatively, one could take the completion under the operator
norm in the image of the left regular representation to get the reduced C∗-algebra C∗r (G). The two
constructions are the same exactly when G is amenable [15]. The above mentioned full and reduced
C∗-algebra construction is generalized by Jean Renault [18] to locally compact (not necessarily
Hausdorff) groupoids. The construction is shown to be very useful in the study of the representation
theory of groupoids [1].
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In this paper we study C∗-algebras on abelian groupoids and the corresponding extensions.
We also study eigen-functionals on abelian groupoids which paly the role of characters in group
C∗-algebras. The structure of abelian groupoids is recently studied by the authors in [13,14]. Our
basic reference for groupoids is [18].

A groupoid Γ is a small category in which each morphism is invertible (for a formal definition,
see [18]). The unit space X = Γ(0) of Γ is the subset of elements γγ−1 where γ ranges over Γ. The range
source maps s, r : Γ → Γ(0) are defined by r(γ) = γγ−1, s(γ) = γ−1γ, for γ ∈ Γ. For u ∈ Γ(0), we
set Γu = r−1(u) and Γu = s−1(u). The isotropy group of Γ at a unit u is Γu

u = {γ ∈ Γ : r(γ) = s(γ)}.
For subgroupoidsH and K of Γ, Γ/K (resp. H\Γ) is the set of right (resp. left) classes in Γ modulo K
(resp. H), that is,

{γKs(γ)|γ ∈ Γ} {Hr(γ)γ|γ ∈ Γ}.

The quotient spaces Γ/K and H\Γ are fibered on Γ(0). Note that even for the case of a group bundle
H, it is not necessary that each fibreH(x) is open. Indeed we have the following characterization for
the case of wide subgroupoids (i.e., a subgroupoid whose unit space is the same as the unit space of
the groupoid).

Proposition 1. Every wide subgroupoidH with open fibersHx in a groupoid Γ with locally compact topology
is closed.

Proof. Since Γ −H is equal to the disjoint union of the cosets of H in Γ, except H itself, and these
cosets are open (because the fibers Hx are open and the multiplication is continuous), Γ−H is open
and soH is closed.

A subgroupoid N of Γ is called normal if there exist a groupoid G and a surjective groupoid
morphism π : Γ→ G such that π−1(G(0)) = N . In this case, Γ/N and G are isomorphic, as groupoids.
As a typical example, Γ(X) is a closed normal subgroupoid of locally compact groupoid Γ. It is also
a locally compact group bundle [18, page 18]. When Γ is locally compact, the subgroupoid Γ(X) is
closed, but not necessarily open. Note that intΓ(X) is an open subgroupoid, but it has open bundle
maps only if Γ has a continuous Haar system, in which case, intΓ(X) also has a continuous Haar
system.

For the case of group bundles, a normal locally compact (resp. measured) subgroupoid N of
a locally compact (resp. measured) groupoid Γ is a continuous (resp. measurable) field {x ∈ X →
N (x) ⊂ Γ(x)} of subgroups such that γN (x)γ−1 = N (y), where γ : x → y [8, Def 1.10].

It is shown in [2, Prop. 1.1.10] that the quotient topology on Γ/N is induced by the continuous
surjection π : Γ → Γ/N . For a topological groupoid Γ with subgroupoid N (with the induced
topology) if Γ is second countable and locally compact and N is locally closed, then N is locally
compact. If N is open in Γ, then its range and source maps are open.

The subgroupoids Γ(X) and R(Γ) are measured groupoids. Note that for a measured groupoid,
the continuity of the Haar systems β and α holds only in particular cases (for example see [11] and
[7]). In these cases, the above groupoids are locally compact groupoids.

2. Main results

Definition 2. An abelian groupoid is a groupoid whose isotropy groups are abelian.

If Γ is r-discrete and X is compact, C∗r (Γ) is unital, and its unit is the characteristic function X
[16, page 15].

We consider the trivial continuous Γ- bundle of C∗-algebras over X with fibre C and apply [1,
Prop. 6.1.10]. If Γ is an abelian groupoid with amenable associated principal groupoid R(Γ), then
C∗(Γ) = C∗red(Γ).
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Lemma 3. If Γ is an r-discrete abelian groupoid with finite unit space, then C∗(Γ) = C∗red(Γ).

Proof. Because an r-discrete abelian groupoid with finite unit space is decomposable abelian
groupoid [13], and therefore amenable, and for amenable groupoid Γ, we have C∗(Γ) = C∗red(Γ)
[1, Prop. 6.1.10].

Theorem 4. If Γ is an r-discrete abelian groupoid with finite unit space, then (C∗(Γ), C∗(Γ(X))) is a
C∗-diagonal pair.

Proof. Since (Γ̂(X)oc R)
(0)

= Γ̂(X) and Γ̂(X)oc R is a principal r-discrete groupoid,

(C∗(Γ̂(X)oc R,G), C0(Γ̂(X)))

is a diagonal pair [10, Theorem VIII.6], hence (C∗(Γ), C∗(Γ(X))) is a C∗-diagonal, because the
isomorphism between groupoid C∗-algebras preserves the diagonal.

Corollary 5. If Γ is an r-discrete abelian groupoid with finite unit space, then the restriction map P : C∗(Γ)→
C∗(Γ(X)) is the unique faithful conditional expectation onto C∗(Γ(X)).

In [11], the authors show that there is generalized conditional expectation C∗(Γ) → C∗(Γ(x)),
if we add these generalized conditional expectations, we get a generalized conditional expectation
C∗(Γ)→ C∗(Γ(X)). In [4, Theorem 3.4], the following corollary is proved for the r-discrete case.

Corollary 6. If Γ is an r-discrete abelian groupoid with finite unit space, then C∗(Γ(X)) (resp. C∗µ(Γ(X))) is
a masa in C∗(Γ) (resp. C∗µ(Γ)).

If Γ is a nontrivial r-discrete abelian groupoid with finite unit space, X can not be the interior
of Γ(X), therefore C∗(X) is not a maximal subalgebra of C∗(Γ) [18, Prop. II.4.7(ii)]. But C∗(Γ(X))

is commutative, and we can conclude that there is no f ∈ Cc(Γ) in the center of the commutative
C∗-algebra C∗(Γ(X)) with support outside of Γ(X). The next result follows from [10, Remark VIII5].

Corollary 7. If Γ is an r-discrete abelian groupoid with finite unit space, C∗(Γ(X)) has the extension property
in C∗(Γ)

Corollary 8. If Γ is an r-discrete abelian groupoid with finite unit space, C∗(Γ) is regular as a
C∗(Γ(X))-bimodule.

For a Banach C∗(Γ(X))-bimodule M, An element m ∈ M is called an intertwiner if
m.C∗(Γ(X)) = C∗(Γ(X)).m. If m ∈ M is an intertwiner such that for every f ∈ C∗(Γ(X)), f .m ∈
Cm, we call m a minimal intertwiner. When the abelian algebra is a masa, intertwiners are the
same as normalizers [5, Prop 3.3], that is the set N(C∗(Γ(X))) = {v ∈ C∗(Γ) : vC∗(Γ(X))v∗ ⊂
C∗(Γ(X)) and v∗C∗(Γ(X))v ⊂ C∗(Γ(X))}. For v ∈ N(C∗(Γ(X))), put dom(v) := {φ ∈ Z : φ(v∗v) >
0}, this is an open set in Z = ̂C∗(Γ(X)). As observed by Kumjian, there is a homeomorphism
βv : dom(v)→ dom(v∗) := ran(v) given by

βv(φ)( f ) =
φ(v∗ ∗ f ∗ v)

φ(v∗ ∗ v)
,

such that β−1
v = βv∗ .

Regularity of a bimoduleM is equivalent to norm-density of the set of C∗(Γ(X))-intertwiners.
Intertwiners and normalizers are closely related, at least when C∗(Γ(X)) is a masa in the unital
C∗-algebra C∗(Γ) containingM [5, Remark 4.2]:
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(i) If v ∈ C∗(Γ) is an intertwiner for C∗(Γ(X)), then v∗v, vv∗ ∈ C∗(Γ(X))′
⋂

C∗(Γ). If C∗(Γ(X))

is maximal abelian in C∗(Γ), then v is a normalizer of C∗(Γ(X)) [5, proposition 3.3].
(ii) For v ∈ N(C∗(Γ(X))), if βv∗ extends to a homeomorphism of dom(v∗) onto dom(v), then

v is an intertwiner. Moreover, if I is the set of intertwiners, then N(C∗(Γ(X))) is contained in the
norm-closure of I, and when C∗(Γ(X)) is a masa in C∗(Γ), N(C∗(Γ(X))) = I [5, Proposition 3.4].

Definition 9. A minimal intertwiner of M∗ will be called an eigen-functional, when necessary for
clarity, we use C∗(Γ(X))-eigen-functional. That is, a C∗(Γ(X))-eigen-functional is a nonzero linear
functional φ : M → C such that, for all f ∈ C∗(Γ(X)), g → φ( f ∗ g), g → φ(g ∗ f ) are multiples of
φ. We equip the set of all C∗(Γ(X))-eigen-functionals EC∗(Γ(X))(M) in the relative weak∗ topology
σ(M∗,M).

We know that ̂C∗(Γ(X) ⊂ E1(M). If Γ = G is an abelian group, we have C∗(Γ(X)) = C∗(Γ) =
C∗(G), hence E1

C∗(Γ(X))(C
∗(Γ)) = Ĉ∗(G) hence eigen-functionals are generalizations of multiplicative

functionals.
Given an eigen-functional φ ∈ EC∗(Γ(X))(M), the associativity of the maps f ∈ C∗(Γ(X)) 7→ f .φ

and f ∈ C∗(Γ(X)) 7→ φ. f yields the existence of unique multiplicative linear functionals s(φ) and
r(φ) on C∗(Γ(X)) satisfying s(φ)( f )φ = f .φ and r(φ)( f )φ = φ. f , that is,

φ(g ∗ f ) = φ(g)[s(φ)( f )], φ( f ∗ g) = [r(φ)( f )]φ(g).

We call s(φ) and r(φ) the source and range of φ, respectively [5, page 6].
There is a natural action of the nonzero complex numbers z on E(M), sending (z, φ) to the

functional m 7→ zφ(m); clearly s(zφ) = s(φ) and r(zφ) = r(φ). Also, E(M) ∪ {0} is closed in the

weak∗-topology. Furthermore, r : E(M)→ ̂C∗(Γ(X)) and s : E(M)→ ̂C∗(Γ(X)) are continuous.

Notation 10. We put G = E1(C∗(Γ)), where E1(C∗(Γ)) is the collection of norm-one eigenvectors for
the dual action of C∗(Γ(X)) on the Banach space dual C∗(Γ)∗, also for a bimoduleM⊂ C∗(Γ), G|M
is defined directly in terms of the bimodule structure ofM, without explicit reference to C∗(Γ) as in
[5, Remark 4.16].

The groupoid G, with suitable operations and the relative weak∗- topology, admits a natural
T-action. If φ, ψ ∈ E(M) satisfy r(φ) = r(ψ) and s(φ) = s(ψ), then there exists z ∈ C such that z 6= 0
and φ = zψ [5, Corollary 4.10].

With the relative weak∗-topology, E1(M) ∪ {0} is compact [5, Prop. 4.17]. Thus, E1(M) is a
locally compact Hausdorff space. As usual, we may regard an element m ∈ M as a function on
E1(M) via m̂(φ) = φ(m). When A is both a norm-closed algebra and a C∗(Γ(X))-bimodule, the
coordinate system E1(A) has the additional structure of a continuous partially defined product as
described in [5, Remark 4.14]. In this case, we will sometimes refer to the coordinate system as a
semitwist.

Definition 11. Let R(M) := {|φ| : φ ∈ E1(M)}. Then R(M) may be identified with the quotient
E1(M)\T of E1(M) by the natural action of T. A twist is a proper T-groupoid G so that G\T is a
principal r-discrete groupoid. The topology onR(C∗(Γ)) is compatible with the groupoid operations,
soR(C∗(Γ)) is a topological equivalence relation.

Consider the C∗-diagonal (C∗(Γ), C∗(Γ(X))), and let M ⊂ C∗(Γ) be a norm closed
C∗(Γ(X))-bimodule. Then the span of E1(M) is σ(M∗,M)-dense in M∗. Suppose A is a norm
closed algebra satisfying C∗(Γ(X)) ⊂ A ⊂ C∗(Γ). If B is the C∗-subalgebra of C∗(Γ) generated by
A, then B is the C∗-envelope of A. If in addition, B = C∗(Γ), then R(C∗(Γ)) is the topological
equivalence relation generated byR(A) [5].
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Eigen-functionals can be viewed as normal linear functionals on C∗∗ and we start by using
the polar decomposition for such functionals one obtains a minimal partial isometry for each
eigen-functional as follows. By the polar decomposition for linear functionals, there is a partial
isometry u∗ ∈ C∗(Γ)∗∗ and positive linear functionals |φ|, |φ∗| ∈ C∗(Γ)∗ so that φ = u∗.|φ| = |φ∗|.u∗.
We find that r(φ) = |φ| and s(φ) = |φ∗|. Moreover, uu∗ and u∗u are the smallest projections
in C∗(Γ)∗∗ which satisfy, u∗u.s(φ) = s(φ).u∗u = s(φ) and uu∗.r(φ) = r(φ).uu∗ = r(φ). For
φ ∈ E1(C∗(Γ)), we call the above partial isometry u, the partial isometry associated to φ and denote

it by vφ. If φ ∈ ̂C∗(Γ(X)), then u is a projection and is denoted by pφ. The above equations show
that v∗φvφ = ps(φ) and vφv∗φ = pr(φ). Moreover, given φ ∈ E1(C∗(Γ)), vφ, may be characterized as the

unique minimal partial isometry w ∈ C∗(Γ)∗∗ such that φ(w) > 0. Recall that χ, ξ ∈ ˆC∗(Γ(X)) satisfy
(χ, ξ) ∈ R(C∗(Γ)) if and only if there is φ ∈ E1(C∗(Γ)) with r(φ) = χ and s(φ) = ξ. For brevity, we
write χ ∼ ξ in this case [5].

For χ ∈ ̂C∗(Γ(X)), we use (Hχ, πχ) for the GNS representation of C∗(Γ) associated to the unique

extension of χ. Let χ, ξ ∈ ̂C∗(Γ(X)), then ξ ∼ χ if and only if the GNS representations πχ and πξ

are unitarily equivalent [5, Lemma 5.8]. Therefore if χ, ξ ∈ ̂C∗(Γ(X))(x), then ξ ∼ χ iff ξ = χ. If we
setM = { f ∈ C∗(Γ) : χ( f ∗ f ) = 0}, then C∗(Γ)/M is complete relative to the norm induced by the
inner product 〈 f +M, g +M〉 = χ(g∗ f ), and thus Hχ = C∗(Γ)/M [11, Lemma 2.11].

The next result is from [5].

Proposition 12. Suppose χ ∈ ̂C∗(Γ(X)) and φ ∈ E1(C∗(Γ)) satisfy χ ∼ s(φ). Then there exist unique
orthogonal unit vectors ω1, ω2 ∈ Hχ such that for every f ∈ C∗(Γ), φ( f ) = 〈πχ( f )ω1, ω2〉.

Theorem 13. We haveR(C∗(Γ)) ∼= ̂C∗(Γ(X))oc R(Γ) = Z oc R, algebraically and topologically.

Proof. Ionescu and Williams showed that every representation of Γ induced from an irreducible

representation of a stability group is irreducible [7]. We can extend a character χ ∈ ̂C∗(Γ(x)) to

χ ∈ Ĉ∗(Γ) such that χ|C∗(Γ|[y] 6=[x]) = 0, and since the extension is unique in C∗-diagonals, this

extension will be equal to Ind(x, Γ(X)x , χ). Let χ, ξ ∈ Γ̂(X), then by [3, lem 2.11] χ ∼ ξ if and only
if the GNS representations πχ and πξ are unitarily equivalent. By [11, lemma 2.5], Ind(x, Γ(X)x, χ)

is unitarily equivalent to Ind(x.k, Γ(X)s(k), χ.k) in Ĉ∗(Γ) so they are in the same class in Ĉ∗(Γ), that
is χ ∼ χ.k where k ∈ R. But if two stability groups of Γ are not in the same orbit, none of their
irreducible representation can be equivalent. Therefore the two space are the same. Finally, since the
topology is r-discrete, they are equal topologically.

Corollary 14. The groupoid G is the T-groupoid of Z oc R, that is we have the exact sequence

Z → Z ×T→ G → G\T ∼= Z oc R.

An r-discrete abelian groupoid with finite unit space and open fibers Γ(x) has AF principal
groupoid [13].

Lemma 15. If Γ is an r-discrete abelian groupoid whose principal groupoid R is AF, then C∗(Γ) is AF.

For A = C∗(Γ) in the above lemma, we can find an AF groupoid R such that C∗(Γ) ∼= C∗(R).
We conjecture that R = Γ̂(X)oc R. This is true by [13, Proposition 2.3], when Γ has a finite unite
space.

Definition 16. Let P be an open subset of R containing Γ̂(X). Then P is called a partial order in R
if P ◦ P ⊂ P and P ∩ P−1 = Γ̂(X). If moreover, P ∪ P−1 = R then P is called a total order in R. If
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P ◦ P ⊂ P and P = P−1, then P is an equivalence relation on a subgroupoid of R. If P is a total order
onR then P is closed.

If A is a strongly maximal triangular subalgebra of a unital AF C∗-algebra C∗(Γ), then
C∗(Γ(X)) = A∩A∗ is a canonical masa in C∗(Γ) and A+A∗ is dense in C∗(Γ).

We now coordinatize the triple of algebras (C∗(Γ(X)),A, C∗(Γ)), where C∗(Γ) is an AF C∗-
algebra and A is a strongly maximal triangular subalgebra of C∗(Γ) whose diagonal is C∗(Γ(X)).
We define the spectral triple (Z , P,R) for (C∗(Γ(X)),A, C∗(Γ)).

Theorem 17. For each partial order P in R, A(P) = { f ∈ C∗(Γ)|supp f ⊆ P} is a norm closed subalgebra
of C∗(Γ) containing C∗(Γ(X)). Conversely, each subalgebra A of C∗(Γ) containing C∗(Γ(X)) is of the form
A(P), for a unique partial order. The correspondence P 7→ A(P) is an inclusion preserving bijection between
the collection of partial orders inR and norm closed subalgebras of C∗(Γ) containing C∗(Γ(X)).

3. Conclusion

In this paper, we studied C∗-algebras of r-discrete abelian groupoids. When the unit space
is finite, we showed that the full and reduced C∗-algebras are the same. In this case, there is a
conditional expectation onto the C∗-algebra of the principal groupoid. We also studied maximal
abelian subalgebras (masa) and eigen-functionals for such groupoids.
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