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Abstract 

We present a very computationally light and fast 
approximation algorithm and then verify it with genetic 
algorithm and simulated annealing. We show that our 
algorithm is on par with GA and SA in terms of output 
produced while having a tightly bounded time 
complexity. Our algorithm works best when there is a 
strong positive correlation between the reliability of a 
component and its cost. We present two algorithms with 
the same essence. One of them is system cost bounded 
and the other is target reliability bounded. Our proposed 
algorithm works on a subsystem level redundancy 
instead of component level redundancy. 
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1.0 Introduction 

Machines, factory lines, vehicles etc have a large number 
of components. Each component can fail at any given 
time. Reliability of a component is defined to be the 
chance that a component will be working at a given time.  

When a component fails, the whole system may fail. The 
component then has to be replaced. This is called standby 
redundancy. In certain situations, say in satellites and 
probes, we cannot replace a component. Even in power 
systems and data servers, we cannot afford to bring the 
entire system down for maintenance. In those cases we 
use active redundancy. In active redundancy, a server 
always runs along with all the other servers, when a 
server fails, it immediately takes over. The model we use 
in our paper is called binary system reliability framework, 
which simply means that either the component is 

completely working or it has completely failed. There are 
no intermediate stages. 

In either case, we have to have some components or 
subsystems in our inventory to replace the failed 
components. The number of components we can have in 
our inventory can be limited by factors like budget or 
storage space. The redundancy allocation problem is thus 
finding a way to maximize reliability while minimizing the 
cost. This problem has been proved to be NP-Hard by MS 
Chern [15]. 

The graph of failure rate of a component over time is said 
to be bathtub shaped. In most of the component’s 
lifetime, the failure rate remains constant. Therefore we 
assume the reliability of the component to be constant. 

 

Figure 1: Bathtub shaped failure rate curve 

In order to find the total system reliability, we multiply 
the reliabilities of each subsystem in series. Here ܴ௜ is the 
reliability of each subsystem in series. 

ܴ = 	ෑܴ௜௡
௜ୀ଴  
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Redundancy at component level is better than 
redundancy at subsystem level[1] for active redundancy. 
However it is not true for standby redundancy. [2] In our 
paper we go for subsystem level redundancy.  

 

Figure 2: Series parallel redundancy allocation problem 

Each subsystem can have different types of components. 
In this paper we pre-calculate the reliability of all the 
different types of components and merge it into a single 
subsystem. Then we go for subsystem level redundancy. 

Say we install ݊௜ redundant spares for the subsystem ݎ௜. 
Then the reliability of this subsystem after installation of 
redundancies is given as follows. ܴ௜ = 1 − (1	  	௜)௡೔ݎ	−
The n vector represents how many redundant spares of 
each subsystem we have to buy. The total cost of the 
system then becomes. 

࡯  = ∑ ୀ૙࢏࢔࢏࢔࢏ࢉ  

This problem can be solved using dynamic programming 
however both space complexity and computational 
complexity of the DP scheme grow with  ܱ(∏ ܾ௤ொ௤ୀ଴ ) . 
Where ܾ௤ is the bound of the resource q. [3] 
 
In order to solve the problem faster with less auxiliary 
space, many scholars have tried using different meta- 
heuristics. Some scholars have experimented with fuzzy 
systems [8] and fruit fly optimization techniques [4]. Ant 
[7] and bee [18] colony optimization techniques can also 
be used to solve this problem. Artificial immune system 
algorithms, [9] improved surrogate constraint methods 
[10] and Tabu search [16] have been successfully 
implemented as well. [21] have taken into account, the 
variability data of reliability of components, gathered 
through field tests. [22] have used an electromagnetism 
like mechanism to solve the redundancy allocation 
problem. [23] used a Non-dominated Sorting Genetic 
Algorithm(NSGA II) after optimizing its operators rate by 
using Response Surface Methodology (RSM).  
 
In this paper we present a faster method which gives 
reasonably close results and requires no auxiliary space. 
 

 

 

2.0 Cost bounded approach 

We claim that the reliability of the system is being limited 
by the least reliable subsystem. Our claim is in 
accordance with the law of limiting factors. The concept 
of limiting factors is based on Liebig's Law of the 
Minimum, which states that growth is controlled not by 
the total amount of resources available, but by the 
scarcest resource. We represent this in mathematical 
terms using Theorem 1. 

Theorem 1: When we multiply n numbers between 0 and 
1, the result is always lower than the lowest number. 

Proof: We prove it by induction. Let there be n numbers  
 1݇ = 	 1݇ଵ +	 1݇ଶ +	…	+	 1݇௡ 

 
First, let us prove it for two numbers.  
 1݇ = 1݇ଵ + 1݇ଶ	 
 ݇	 = ݇ଶ1 + ݇ଶ݇ଵ = 	݇ଵ ൬1 + ݇ଵ݇ଶ൰	
 
If ݇ଵ 	> 	݇ଶ  then  ௞ଶଵାೖమೖభ < 	݇ 

Similarly we can show for ݇ଶ 	> 	݇ଵ 

Using induction, we get 1݇(௡ାଵ) = 1݇(௡) + 1݇௡ + 1	
݇(௡ାଵ) 	< 	݉݅݊(݇(௡), ݇௡ାଵ)	݇(௡ାଵ) 	< 	݉݅݊(݉݅݊(݇(௡ିଵ), ݇௡), ݇௡ାଵ)	݇(௡ାଵ) 	< 	݉݅݊(݇ଵ, ݇ଶ, . . . , ݇௡ାଵ)	

Now, we establish the importance of this law in this 
context. To minimize the cost, we have to minimize the 
addition of the numbers in n multiplied by some 
constants. We maximize the reliability of R by increasing ܴ௜ for all i. Increasing ݊௜ would increase ܴ௜. Since ݊௜ is 
dependent on ܴ௜, we can say that minimizing the 
summation of ܴ௜will result in minimizing the summation 
of ݊௜. ݎ௜ is a constant. 

Theorem 2: In order to maximize the multiplication of n 
numbers while keeping their summations to a minimum, 
the n numbers must be equal. 
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Proof: This can be proved using Cauchy’s Mean Theorem 

Let there be two numbers x and y. We can write 4ݕݔ	 = 	 ݔ) + ݔ)	–	ଶ(ݕ − 	ଶ(ݕ
We can see that xy is maximum when ݔ − 	ݔ .is 0 i.e ݕ  .ݕ	=

Now we extend this proof to n numbers. Let there be two 
numbers a and b in n numbers such that ܽ 	 > ܾ and ܯ	 	  for a mean M of the n numbers. Using the above ܯ	>
equation we can show that the product of a and b is 
maximum when ܽ	 = 	ܾ. Since we have chosen a and b 
arbitrarily, we can repeat the process until all numbers 
are equal to mean. 

In this problem, we are multiplying the reliabilities of 
each subsystem in series. To have the biggest increase in 
reliability, we increase the reliability of the least reliable 
subsystem.  

Theorem 3: If we were to maximize the product, we can 
have the biggest impact by increasing the lowest number 
in the chain. 

Proof: In Theorem 2 we proved that we have to minimize (ݔ − ݔ ଶ for all x and y in n. Say(ݕ >  now in order to ,ݕ
minimize this equation we have to lower x or raise y. 
Lowering the reliability of a subsystem is not what we are 
going for, so instead of that, we will increase y to match 
x. The value of (ݔ −  ଶ grows quadratically as the(ݕ
difference increases. So, we can have the biggest impact 
on the geometric mean by increasing the reliability of the 
least reliable subsystem. 

The empirical proof of this claim can be verified by 
looking at Figure 3 and 4. When we increase the 
redundancy of the least reliable components, the 
reliability rapidly increases. After a certain point, the 
reliability plateaus out. 

In the cost bounded approach, we naively increase the 
redundancy of the least reliable subsystem by one unit. 
Then we recalculate the reliability of each subsystem 
including redundancies and the total reliability. This 
process is repeated until we have exhausted all our 
available resources. From this process we can see that 
the less reliable components will be bought more than 
the more reliable components. Therefore, if the cost of 
the less reliable components is less than the cost of more 
reliable components then the resources will be 
distributed effectively. So our algorithm must take an 
assumption that the cost and reliability is strongly 
correlated. 

 

Figure 3: Reliability with respect to number of iterations 
when there is a strong positive correlation between 
reliability and cost 

Figure 4:  Reliability with respect to number of iterations 
when there is a strong negative correlation between 
reliability and cost 

Comparing figures 3 and 4 we can see that when there is 
a strong negative correlation, the algorithm stops faster 
as it has exhausted all its resources.  

The algorithm is not as fast as the target bounded 
approach as it consumes the resources linearly as 
demonstrated from figure 5. 

 

Figure 5: Increase of cost with iterations 
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During every iteration, we calculate the reliability of the 
system. This takes time Θ(n). Then we find the 
component with lowest reliability, this also takes Θ(n). In 
the worst case, we have C iterations where C is the cost 
bound. Therefore the time complexity of this algorithm is 
O(cn). From empirical analysis (Figure 5) we can say that 
the convergence rate of this algorithm is super linear. 

 

Figure 6: Convergence rate of cost bounded algorithm 

2.1 Target reliability approach 

Sometimes, we are more interested in achieving a set 
level of confidence in terms of reliability rather than 
exhausting all the available resources. The following 
algorithm is for those cases.  

We fix a target reliabilityܴ௧. It is the target reliability of 
the entire system. In Theorem 2 we have already proved 
that all the ܴ௜ must be equal. Let us call it ܴ௖. 

ܴ௧ 	= 	ෑܴ௜௡
௜ୀ଴ 	

ܴ௧ = 	ܴ௖௡	ܴ௖ = 	 ඥܴ௧೙ 	
We can now computeඥܴ௧೙  , it is the target reliability of 
each subsystem. Let us call it k. When we equate it with ܴ௜, we get 1 − (1 − ௜)௡೔ݎ = 	1 − (1 − ݇) (1 − ௜)௡೔ݎ = 	 (1 − ݇)	
Taking log on both sides ݊௜	݈݊	(1 − (௜ݎ 	= 	݈݊(1 − ݇)	

݊௜ 	= ݈݊(1 − ݇)݈݊(1 −  (௜ݎ
Since ni is integer, we round it up. 

݊௜ 	= ݀݊ݑ݋ݎ	 ቆ݈݊(1 − ݇)݈݊(1 −  ௜)ቇݎ

This process can be thought as an approximation for 
integer programming where instead of integer 
programming, we do linear programming and just round 
the result. Since the cost has no upper bound in this case, 
the result is always within the solution space albeit it can 
be suboptimal, hence it is an approximation. [5] have 
implemented integer programming techniques to solve 
problems related with systems reliability design. 

This method is similar to using Lagrange Multipliers, 
implemented by [6].  

Just like the cost bounded approach, this works best 
when the reliability and cost are strongly correlated. 
Components with less reliability would be bought in far 
greater quantity then the ones with more reliability.  

In figure 7 and 8 we can see that the function converges 
much faster than the cost bounded approach. This 
algorithm also has a super linear rate of convergence. 

 

Figure 7: Reliability vs. number of iterations. 

 

Figure 8: Convergence rate vs. iterations 
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Calculating ݊ ௜ takes constant time. We have to repeat this 
process for each subsystem. Therefore the time 
complexity of this algorithm is Θ(n). 

2.2 Comparison with Simulated Annealing 

Simulated annealing is a probabilistic algorithm. It can be 
used in a wide variety of applications. The idea behind 
simulated annealing is derived from the crystallization of 
metals on cooling. As the crystals cool down, they align 
into a rigid formation. Simulated annealing interprets 
slow cooling as a slow decrease in the probability of 
accepting worse solutions as it explores the solution 
space. Accepting worse solutions is a fundamental 
property of meta-heuristics because it allows for a more 
extensive search for the optimal solution. the method 
was independently described by Scott Kirkpatrick, C. 
Daniel Gelatt and Mario P. Vecchi in 1983. [11] 

(௡ାଵݔ)ܲ = ൝ 1, (௡ାଵݔ)݂	 > eି൬୤(୶౤)ି୤(୶౤శభ)୩୘(௡ݔ)݂ ൰,				݁ݏ݅ݓݎ݄݁ݐ݋ 

P is the probability of transfer to the new state ݔ௡ାଵ . The 
function f is the fitness function of a variable x. T is 
temperature and k is the Boltzmann constant. In the 
context of redundancy allocation problem, x is the 
number of redundant components of each subsystem. 
The fitness function f is the reliability of the system for a 
given x. We initialize T to be a large arbitrary value and 
when we set k to be a small value, which is also arbitrary.  

The array of the number of components can be thought 
of a vector whose dot product with the cost vector must 
be less than or equal to the maximum available 
resources. In other words, the number of components 
vector is a direction is hyper dimensional space, scaled up 
to some constant k, such that the dot product of these 
vectors is less than equal or to the max cost. ݇	 ො݊. Ԧܿ 	൑ 	ܥ	
For the simulated annealing algorithm, we pick a random 
unit vector. Then we calculate the constant k using the 
above formula. We then scale ො݊ by k and round down 
each entry to the nearest integer. The result is a count 
vector whose dot product with the cost vector is less than 
the maximum allowed cost but very close to it. We can 
now evaluate the fitness of this vector and run it through 
the simulated annealing algorithm. 

 

Figure 9: Reliability vs. Iterations of SA, T = 100, k = .01 

From figure 10 we can empirically tell that our 
implementation of SA has a linear convergence. The 
answer given by this simulated annealing algorithm 
matches with the answers given by our algorithms usually 
up to three or four digit precision.  

 

Figure 10: SA has a linear convergence. 

2.3 Comparison with Genetic Algorithm 

Genetic algorithm was originally introduced in 1975 by J. 
H. Holland [17]. Many researchers already have tried 
using GA on this problem with many creative approaches 
and achieved great results. [12] has used a combined 
neural network and genetic algorithm approach to solve 
the problem. [13] has studied a bi-objective RAP, which is 
related to a system of s independent k-out-of-n 
subsystems in series.  

In GA it is a common practice to use single uniform 
crossover operator. [14] has applied this method. 
However, experimentally we found that it does not 
perform as well as the method which we are going to 
describe. Since, we are thinking of the redundancy count 
as a vector, uniform crossover does not lead to a vector 
that resembles the parents in terms of phenotype.  
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In figure 11 we have the numbers next to the green 
vectors indicating the number of components and the 
reliability of the system. The example is only for two 
dimensions but we can extend the idea to higher 
dimensions. We can see that all the vectors with the 
highest reliability are bunched together. Therefore in 
order to improve reliability, the child must closely 
resemble the parents. In our crossover function, we 
interpolate between the parents by a random factor t, in 
the hope that the child vector would be closer to the 
solution vector and therefore would have higher fitness 
than its parents. 

[19] had proposed the use of penalty functions in GA, 
however we do not use it. Instead we just normalize and 
rescale the vector as done in SA. The GA algorithm does 
not take into account the length of the vector, only 
direction is taken into consideration. So it can never 
exceed the maximum available resources.  

 

Figure 11: The direction of the green vectors represents 
the number of redundancy of each subsystem 1 and 2. 
The length represents reliability. The red curve is the first 
quadrant of a unit circle. Initially the reliability of 
component 1 and 2 are .7 and .75 respectively. The cost 
of each component is 2 and 3 respectively and the total 
available resource is 20. 

 

Figure 12: Reliability vs. Iterations graph of GA 

In our mutation function, we apply a random force to 
each component of the vector in the hope of getting out 
of any local minima. 

 

Figure 13: Convergence vs. Iterations of GA. Linear 
convergence is exhibited for most of the iterations. 

Conclusion and Future Work 

This paper mainly deals with the implementation of 
redundancy allocation using greedy technique and based 
on the graphical representations, it reveals the fact that 
convergence criteria is obtained as a comparative study 
with genetic algorithm and simulated annealing. 

The cost bounded approach increases the redundancy 
one unit at a time. This is rather inefficient when 
maximum resource is large and cost of each component 
is rather small. A more intelligent approach can be 
devised to solve this problem more efficiently. 

The source code used for this research can be found on 
Github. (https://goo.gl/6DZcdG) 
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