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Abstract

We present a very computationally light and fast
approximation algorithm and then verify it with genetic
algorithm and simulated annealing. We show that our
algorithm is on par with GA and SA in terms of output
produced while having a tightly bounded time
complexity. Our algorithm works best when there is a
strong positive correlation between the reliability of a
component and its cost. We present two algorithms with
the same essence. One of them is system cost bounded
and the other is target reliability bounded. Our proposed
algorithm works on a subsystem level redundancy
instead of component level redundancy.
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1.0 Introduction

Machines, factory lines, vehicles etc have a large number
of components. Each component can fail at any given
time. Reliability of a component is defined to be the
chance that a component will be working at a given time.

When a component fails, the whole system may fail. The
component then has to be replaced. This is called standby
redundancy. In certain situations, say in satellites and
probes, we cannot replace a component. Even in power
systems and data servers, we cannot afford to bring the
entire system down for maintenance. In those cases we
use active redundancy. In active redundancy, a server
always runs along with all the other servers, when a
server fails, it immediately takes over. The model we use
in our paper is called binary system reliability framework,
which simply means that either the component is

Correspondence: souradeep.nanda2014@vit.ac.in

completely working or it has completely failed. There are
no intermediate stages.

In either case, we have to have some components or
subsystems in our inventory to replace the failed
components. The number of components we can have in
our inventory can be limited by factors like budget or
storage space. The redundancy allocation problem is thus
finding a way to maximize reliability while minimizing the
cost. This problem has been proved to be NP-Hard by MS
Chern [15].

The graph of failure rate of a component over time is said
to be bathtub shaped. In most of the component’s
lifetime, the failure rate remains constant. Therefore we
assume the reliability of the component to be constant.
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Figure 1: Bathtub shaped failure rate curve

In order to find the total system reliability, we multiply
the reliabilities of each subsystem in series. Here R; is the
reliability of each subsystem in series.

n
R = HRL
i=0
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Redundancy at component level is better than
redundancy at subsystem level[1] for active redundancy.
However it is not true for standby redundancy. [2] In our
paper we go for subsystem level redundancy.

Subsystem 1 Subsystem 2
r— ) - N

Redundancy Redundancy

Redundancy Redundancy

Redundancy Redundancy

Figure 2: Series parallel redundancy allocation problem

Each subsystem can have different types of components.
In this paper we pre-calculate the reliability of all the
different types of components and merge it into a single
subsystem. Then we go for subsystem level redundancy.

Say we install n; redundant spares for the subsystem r;.
Then the reliability of this subsystem after installation of
redundancies is given as follows.

Ri = 1—(1 - Ti)ni

The n vector represents how many redundant spares of
each subsystem we have to buy. The total cost of the
system then becomes.

C=Yiocin;

This problem can be solved using dynamic programming
however both space complexity and computational
complexity of the DP scheme grow with 0(]_[3:0 be) .
Where b, is the bound of the resource q. [3]

In order to solve the problem faster with less auxiliary
space, many scholars have tried using different meta-
heuristics. Some scholars have experimented with fuzzy
systems [8] and fruit fly optimization techniques [4]. Ant
[7] and bee [18] colony optimization techniques can also
be used to solve this problem. Artificial immune system
algorithms, [9] improved surrogate constraint methods
[10] and Tabu search [16] have been successfully
implemented as well. [21] have taken into account, the
variability data of reliability of components, gathered
through field tests. [22] have used an electromagnetism
like mechanism to solve the redundancy allocation
problem. [23] used a Non-dominated Sorting Genetic
Algorithm(NSGA I1) after optimizing its operators rate by
using Response Surface Methodology (RSM).

In this paper we present a faster method which gives
reasonably close results and requires no auxiliary space.
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2.0 Cost bounded approach

We claim that the reliability of the system is being limited
by the least reliable subsystem. Our claim is in
accordance with the law of limiting factors. The concept
of limiting factors is based on Liebig's Law of the
Minimum, which states that growth is controlled not by
the total amount of resources available, but by the
scarcest resource. We represent this in mathematical
terms using Theorem 1.

Theorem 1: When we multiply n numbers between 0 and
1, the result is always lower than the lowest number.

Proof: We prove it by induction. Let there be n numbers

1_1+1+ +1
k™ ke ky Tk,

First, let us prove it for two numbers.

1 1 + 1
k™ ki ky
k k
k=—2-=k (1 + k—l)
*2 2
1+ x,
k2
Ifkl > k2 then Tz_:< k
Similarly we can show for k, > k4
Using induction, we get
1 1 1
=—+—+1

ki k@  kn
ke < min(key, knst)
ki < min(min(km-1y, kn), kni1)
ke < min(ky, ko, ... knyq)

Now, we establish the importance of this law in this
context. To minimize the cost, we have to minimize the
addition of the numbers in n multiplied by some
constants. We maximize the reliability of R by increasing
R; for all i. Increasing n; would increase R;. Since n; is
dependent on R;, we can say that minimizing the
summation of R;will result in minimizing the summation
of n;. r; is a constant.

Theorem 2: In order to maximize the multiplication of n
numbers while keeping their summations to a minimum,
the n numbers must be equal.
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Proof: This can be proved using Cauchy’s Mean Theorem

Let there be two numbers x and y. We can write

4xy = (x+y)*- (x —y)?

We can see that xy is maximum when x —yisOi.e.x =
y.

Now we extend this proof to n numbers. Let there be two
numbers aand binnnumberssuchthata > Mandb <
M for a mean M of the n numbers. Using the above
equation we can show that the product of a and b is
maximum when a = b. Since we have chosen a and b
arbitrarily, we can repeat the process until all numbers
are equal to mean.

In this problem, we are multiplying the reliabilities of
each subsystem in series. To have the biggest increase in
reliability, we increase the reliability of the least reliable
subsystem.

Theorem 3: If we were to maximize the product, we can
have the biggest impact by increasing the lowest number
in the chain.

Proof: In Theorem 2 we proved that we have to minimize
(x —y)% forall xand y in n. Say x > y, now in order to
minimize this equation we have to lower x or raise y.
Lowering the reliability of a subsystem is not what we are
going for, so instead of that, we will increase y to match
x. The value of (x —y)? grows quadratically as the
difference increases. So, we can have the biggest impact
on the geometric mean by increasing the reliability of the
least reliable subsystem.

The empirical proof of this claim can be verified by
looking at Figure 3 and 4. When we increase the
redundancy of the least reliable components, the
reliability rapidly increases. After a certain point, the
reliability plateaus out.

In the cost bounded approach, we naively increase the
redundancy of the least reliable subsystem by one unit.
Then we recalculate the reliability of each subsystem
including redundancies and the total reliability. This
process is repeated until we have exhausted all our
available resources. From this process we can see that
the less reliable components will be bought more than
the more reliable components. Therefore, if the cost of
the less reliable components is less than the cost of more
reliable components then the resources will be
distributed effectively. So our algorithm must take an
assumption that the cost and reliability is strongly
correlated.

3o0f7
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Figure 3: Reliability with respect to number of iterations
when there is a strong positive correlation between
reliability and cost
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Figure 4: Reliability with respect to number of iterations

when there is a strong negative correlation between

reliability and cost

Comparing figures 3 and 4 we can see that when there is
a strong negative correlation, the algorithm stops faster
as it has exhausted all its resources.

The algorithm is not as fast as the target bounded
approach as it consumes the resources linearly as
demonstrated from figure 5.
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Figure 5: Increase of cost with iterations
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During every iteration, we calculate the reliability of the
system. This takes time ©(n). Then we find the
component with lowest reliability, this also takes ©(n). In
the worst case, we have C iterations where C is the cost
bound. Therefore the time complexity of this algorithm is
O(cn). From empirical analysis (Figure 5) we can say that
the convergence rate of this algorithm is super linear.
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Figure 6: Convergence rate of cost bounded algorithm
2.1 Target reliability approach

Sometimes, we are more interested in achieving a set
level of confidence in terms of reliability rather than
exhausting all the available resources. The following
algorithm is for those cases.

We fix a target reliabilityR,. It is the target reliability of
the entire system. In Theorem 2 we have already proved
that all the R; must be equal. Let us call it R,.

n
Rt = 1_[ Ri
i=0

R, = R

We can now compute’y/R; , it is the target reliability of
each subsystem. Let us call it k. When we equate it with
R;, we get

1- (1 - rl-)"i

1-(1-k)

(1-4k)

1 —mm
Taking log on both sides
nin(l—-nr) = In(1—-k)

_Im(1-k)

o= n(1-m7)

Since ni is integer, we round it up.
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n; = round <ln(1 — k)>

In(1-r7)

This process can be thought as an approximation for
integer programming where instead of integer
programming, we do linear programming and just round
the result. Since the cost has no upper bound in this case,
the result is always within the solution space albeit it can
be suboptimal, hence it is an approximation. [5] have
implemented integer programming techniques to solve
problems related with systems reliability design.

This method is similar to using Lagrange Multipliers,
implemented by [6].

Just like the cost bounded approach, this works best
when the reliability and cost are strongly correlated.
Components with less reliability would be bought in far
greater quantity then the ones with more reliability.

In figure 7 and 8 we can see that the function converges
much faster than the cost bounded approach. This
algorithm also has a super linear rate of convergence.
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Figure 7: Reliability vs. number of iterations.
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Figure 8: Convergence rate vs. iterations
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Calculating n; takes constant time. We have to repeat this
process for each subsystem. Therefore the time
complexity of this algorithm is ©(n).

2.2 Comparison with Simulated Annealing

Simulated annealing is a probabilistic algorithm. It can be
used in a wide variety of applications. The idea behind
simulated annealing is derived from the crystallization of
metals on cooling. As the crystals cool down, they align
into a rigid formation. Simulated annealing interprets
slow cooling as a slow decrease in the probability of
accepting worse solutions as it explores the solution
space. Accepting worse solutions is a fundamental
property of meta-heuristics because it allows for a more
extensive search for the optimal solution. the method
was independently described by Scott Kirkpatrick, C.
Daniel Gelatt and Mario P. Vecchi in 1983. [11]

1, fny1) > fxy)
P(xn41) = _(f(xn)—f(xn+1))
e KT , otherwise

P is the probability of transfer to the new state x,,, 1 . The
function f is the fitness function of a variable x. T is
temperature and k is the Boltzmann constant. In the
context of redundancy allocation problem, x is the
number of redundant components of each subsystem.
The fitness function f is the reliability of the system for a
given x. We initialize T to be a large arbitrary value and
when we set k to be a small value, which is also arbitrary.

The array of the number of components can be thought
of a vector whose dot product with the cost vector must
be less than or equal to the maximum available
resources. In other words, the number of components
vector is a direction is hyper dimensional space, scaled up
to some constant k, such that the dot product of these
vectors is less than equal or to the max cost.

kac < cC

For the simulated annealing algorithm, we pick a random
unit vector. Then we calculate the constant k using the
above formula. We then scale 7 by k and round down
each entry to the nearest integer. The result is a count
vector whose dot product with the cost vector is less than
the maximum allowed cost but very close to it. We can
now evaluate the fitness of this vector and run it through
the simulated annealing algorithm.
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Figure 9: Reliability vs. Iterations of SA, T =100, k = .01

From figure 10 we can empirically tell that our
implementation of SA has a linear convergence. The
answer given by this simulated annealing algorithm
matches with the answers given by our algorithms usually
up to three or four digit precision.
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Figure 10: SA has a linear convergence.
2.3 Comparison with Genetic Algorithm

Genetic algorithm was originally introduced in 1975 by J.
H. Holland [17]. Many researchers already have tried
using GA on this problem with many creative approaches
and achieved great results. [12] has used a combined
neural network and genetic algorithm approach to solve
the problem. [13] has studied a bi-objective RAP, which is
related to a system of s independent k-out-of-n
subsystems in series.

In GA it is a common practice to use single uniform
crossover operator. [14] has applied this method.
However, experimentally we found that it does not
perform as well as the method which we are going to
describe. Since, we are thinking of the redundancy count
as a vector, uniform crossover does not lead to a vector
that resembles the parents in terms of phenotype.
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In figure 11 we have the numbers next to the green
vectors indicating the number of components and the
reliability of the system. The example is only for two
dimensions but we can extend the idea to higher
dimensions. We can see that all the vectors with the
highest reliability are bunched together. Therefore in
order to improve reliability, the child must closely
resemble the parents. In our crossover function, we
interpolate between the parents by a random factor t, in
the hope that the child vector would be closer to the
solution vector and therefore would have higher fitness
than its parents.

[19] had proposed the use of penalty functions in GA,
however we do not use it. Instead we just normalize and
rescale the vector as done in SA. The GA algorithm does
not take into account the length of the vector, only
direction is taken into consideration. So it can never
exceed the maximum available resources.
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Figure 11: The direction of the green vectors represents
the number of redundancy of each subsystem 1 and 2.
The length represents reliability. The red curve is the first
quadrant of a unit circle. Initially the reliability of
component 1 and 2 are .7 and .75 respectively. The cost
of each component is 2 and 3 respectively and the total
available resource is 20.
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Figure 12: Reliability vs. Iterations graph of GA
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In our mutation function, we apply a random force to
each component of the vector in the hope of getting out
of any local minima.
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Figure 13: Convergence vs. lterations of GA. Linear
convergence is exhibited for most of the iterations.

Conclusion and Future Work

This paper mainly deals with the implementation of
redundancy allocation using greedy technique and based
on the graphical representations, it reveals the fact that
convergence criteria is obtained as a comparative study
with genetic algorithm and simulated annealing.

The cost bounded approach increases the redundancy
one unit at a time. This is rather inefficient when
maximum resource is large and cost of each component
is rather small. A more intelligent approach can be
devised to solve this problem more efficiently.

The source code used for this research can be found on
Github. (https://g00.g1/6DZcdG)
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