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Abstract: Extracellular vesicles (EV), including exosomes and microvesicles, are released from var-
ious cells and alter recipient cell phenotypes and fates by their biomolecules. Here we review cur-
rent knowledge about tumor EVs and how they prompt malignant cell communication with tumor-
associated cells, such as cancer-associated fibroblasts, tumor endothelial cells, and immune cells. 
We delineate the major pathways and molecular players that influence each step of cancer initiation, 
progression, and resistance. Of note, cancer exosomes involve immunosuppression by tumor-asso-
ciated macrophages, myeloid-derived suppressor cells, and regulatory T cells. Moreover, tumor ex-
osomes can induce the apoptosis of killer T cells and immune checkpoint of dendritic cells and at-
tenuate natural killer cells. An in-depth understanding of EV biology is essential to ensure the clin-
ical development of exosome/EV-based therapeutic products, which will be of benefit to exosome 
manipulation in cancer management. 
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1. Introduction 
Communication of cancer cells with neighboring and distant cells is crucial for tumor 

growth and progression. Extracellular vesicles (EVs) are lipid membrane-surrounded ves-
icles released from cells under physiological and pathological conditions. EVs contain a 
variety of molecular cargos such as proteins, long and small RNA, DNA, lipid, glycan, 
minerals, and metabolites [1–9]. Earlier studies classified EVs into exosomes (40–150 nm), 
microvesicles (100–500 nm), and apoptotic bodies (1–10 μm) based on their mechanisms 
of biosynthetic pathways and release, while additional types of EVs have been named 
based on the history of discovery or conceptually, such as oncosomes [10–12], large on-
cosomes (1–10 μm) [10], stressome, including damaged membrane vesicles [13], matrix 
vesicles [14], migrasomes [15], exopheres [16] (generated upon neurotoxic stress, ~4 μm), 
and exomeres (~35 nm) [17,18]. Recent studies have defined the EVs according to the size 
of vesicles, such as small EVs (sEV), medium EVs (mEV), and large EVs (L-EV). Further, 
exosomes have been recently classified based on their size: small exosomes (Exo-S) and 
large exosomes (Exo-L). EVs play trash bag-like roles as cells discard redundant disad-
vantageous factors, while EVs also mediate trans-cellular communications as their cargos 
stimulate and reprogram recipient cells through cell signalings or molecular transfer 
[6,19–22]. Thus, EVs and their cargos are essential for autocrine, paracrine, juxtacrine, and 
endocrine signals. EVs, including exosomes, are contained in bodily fluids that are sources 
of biomarkers, such as blood, saliva, cerebrospinal fluid, lymph fluid, sweat, tears, urine, 



 

 

milk, and seminal fluid. Therefore, EVs can play key roles in cell-to-cell communication 
in local tissue and between distant organs, individuals, and species [23,24]. 

2. Exosomes biogenesis and composition  
Endocytosis is a dynamic process by which cells internalize macromolecules and sur-

face proteins. Exosomes are endosomal origin vesicles, which take part in paracrine inter-
actions between the cells [25],  initially formed as internal luminal vesicles (ILVs) in mul-
tivesicular bodies (MVBs) by ESCRT-dependent or ESCRT-independent mechanisms. 
First, the proteins are transported from the trans-Golgi network (TGN) (e.g., MHC class-
II molecules) or internalized from the cellar surface (e.g., activated growth factor recep-
tors). Second, these proteins are ubiquitylated at their cytosolic domains; however, not all 
proteins require ubiquitinylation to be targeted into the vesicles. After vesicle accumula-
tion, the MVBs have several fates; (i) be directed to the lysosome for degradation (e.g., 
EGF), (ii) be recycled to the TGN, (iii) or be fused with the plasma membrane resulting in 
the release of the ILVs known as exosomes [26].  

Exosome membranes are enriched in lipids, such as cholesterol, sphingomyelin, and 
ceramide. The EV contents vary greatly depending on the originating cell. Classical exo-
some markers, such as tetraspanins (TSPANs; CD9, CD63, CD81, and CD82), heat shock 
proteins (HSPs), Rabs, Alix, and Annexins, are often lost from exosomes in some patho-
physiological conditions but found in other EV types, such as large EVs [3,9,27–30]. DNA 
and RNAs, including mRNAs, microRNAs, and long noncoding RNAs (lncRNA), are also 
present in the exosome and other EV types and are crucial players in EV biology [3,8,9,31–
36]. Exosomes are internalized by other cells through direct membrane fusion, endocyto-
sis, or cell-type-specific phagocytosis. Exosomes released by tumor cells frequently in-
clude oncoproteins linked to different cancer types. The list of proteins found in exosomes 
is continuously expanding on ExoCarta, a database of exosomal proteins, RNA, and lipids 
[37] (Table 1). 

EV production often correlates with tumor cell transformation, such as epithelial-to-
mesenchymal transition (EMT) [13,38–41] and cancer stemness [42,43]. Moreover, recent 
studies suggest that the EMT progression is correlated with higher PD-L1 expression, im-
munosuppression, and immune evasion by M2 macrophages, myeloid-derived suppres-
sor cells (MDSC), and regulatory T cells (Treg), whereas the epithelial tumors with lower 
PD-L1 expression, less Treg and MDSC are susceptible to immune attack by M1 macro-
phages and killer T cells [44]. 

Table 1. Top 10 proteins identified in exosomes as indicated in the ExoCarta database. 

Gene name Protein name Number of times identified 
CD9 CD9, tetraspanin 29 98 
HSPA8 HSC70, Heat shock cognate 71 kDa protein 97 
PDCD6IP Programmed cell death 6-interacting protein 96 
GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 95 
ACTB Actin Beta 93 
ANXA2 Annexin A2 83 
CD63 LAMP-3, CD63, tetraspanin 30  82 
SDCBP Syndecan Binding Protein 78 
ENO1 Enolase 1 78 

HSP90AA1 HSP90α, Heat Shock Protein 90 Alpha 
Family Class A Member 1 77 

3. Cancer exosomes transfer oncogenic factors to tumor-associated cells 
EVs could cause cellular reprogramming and genetic alterations by transferring their 

cargo contents, such as oncoproteins, lipids, mRNAs, and noncoding RNAs, defined as 
“oncosomes.” Increasing evidence elucidated that tumor cells release exosomes to repro-



 

 

gram normal and stromal cells in the tumor microenvironment to provoke tumor initia-
tion, progression, metastasis, and drug resistance. For great examples, mutant KRAS [45] 
and mutant EGFR [24,45] were found in exosomes and transferred to recipient cells lead-
ing to cancer progression [12,46]. Tumor oncosomal MMP3 is transferred to recipient cells 
and alters transcriptional programs, such as cellular communication network factor 2 
(CCN2) expression, in the tumor microenvironment [47,48]. 

4. Tumor exosomes develop the resistant microenvironment 
Individual residence cells in the tumor microenvironnement (TME), each with diffe-

rent biological contributions, interact dynamically to create a unique microenvironment 
for neoplastic cells. One method of communication between the tumor-associated cells 
(TACs) delivers exosomes to each other in the TME, which induces phenotypic modifica-
tions and remodeling of TACs, causing cancer propagation. Several studies have proved 
the involvement of cancer exosomes in the modulation of 39. Along with mediating cell-
to-cell communication, tumor exosomes develop cancer therapy resistance [49] (Fig. 1). 

 

Figure 1. Cancer cells secrete various exosomes/EVs with different cargo, which plays pivotal roles in shaping the tumor-associated 
cells. Cancer exosomes induce normal fibroblast cells into CAF (A) and polarization of macrophages into M2-type macrophages 

with an immunosuppressive phenotype (B), ultimately favoring tumor progression and chemoresistance. Cancer exosomes and M2 
macrophage-derived exosomes (C) alter the T cell phenotype to immunosupressive Treg cells, which suppress the maturation of 

DCs and killer T cells. 

4.1. Exosomes mediate Tumor-CAF communication to develop chemoresistance 
Fibroblasts are major components of tumor stroma, while recent studies evoked the 

existence of cancer-associated fibroblasts (CAFs). CAFs include myofibroblasts and are 
differentiated from mesenchymal stem cells (MSCs). Myofibroblasts are a major compo-
nent of the tumor stroma and mediate angiogenesis, which can be modulated by the can-
cer exosomes [50,51]. It is worth noting that tumor stroma rich in myofibroblastic cells can 
maintain tumor growth, vascularization, and metastasis. Webber et al. demonstrated that 
exosomal TGF-β promotes the differentiation of fibroblasts into myofibroblasts through 



 

 

the SMAD signaling pathway [26,52]. Cho et al. suggested that breast cancer-derived ex-
osomes stimulate the differentiation of MSCs in adipose tissue into a myofibroblast-like 
phenotype with a significant increase in α-SMA and other protumorigenic factors, such 
as VEGF, SDF-1, TGF-β, and CCL5 [53]. Chowdhury et al. proposed that prostate cancer-
derived exosomes provoke the MSC differentiation into myofibroblastic cells with an in-
crease in VEGF-A, resulting in proangiogenic functions [54]. Moreover, EGFR-positive tu-
mor-derived exosomes promote angiogenesis by reprograming the tumor endothelial 
cells (TECs) into VEGF-secretion phenotype [46]. These studies indicated that tumor exo-
somes play key roles in augmenting CAFs, myofibroblasts, MSCs, and TECs. CAF-derived 
exosomal microRNA (miRNA, miR) signature supports the communication between tu-
mor cells and other stromal residents in the TME, which promotes cancer progression and 
therapeutic resistance [55–57]. In esophageal cancer, cisplatin resistance was correlated to 
exosomal miR-27a/b and its target TGF-β [58]. miR-522 overexpression in CAFs was cor-
related with cisplatin/paclitaxel resistance of gastric tumor through activation of ubiqui-
tin-specific protease 7 (USP7) / hnRNPA1 axis, inhibiting arachidonate lipoxygenase 15 
(ALOX15) and ultimately decreased chemosensitivity [59]. Exosome-enriched miR-196a 
is transferred from CAF to adjacent tumor cells inducing platinum resistance [60]. Addi-
tionally, miR-164a and SNAI1 are delivered directly from CAF to pancreatic cancer cells 
via exosomes, leading to gemcitabine (GEM) resistance of tumor cells. The resistance can 
be reversed by treatment with GW4869, an inhibitor of exosome release [61,62]. miR-106b 
from CAFs was also transferred to cancer cells, which conferred GEM by targeting 
TP53INP1 (Tumor protein p53 inducible nuclear protein 1) [63]. Besides, miR-21 was re-
ported in GEM-induced chemoresistance [64]. Further, miR-21-rich exosomes released 
from cancer-associated adipocytes significantly reduced tumor cells' sensitivity to 
paclitaxel by targeting apoptotic protease activating factor-1 (APAF1) in the ovarian neo-
plasm microenvironment [65]. Besides, exosome-enriched lncRNA H19 was transferred 
from CAFs to adjacent colorectal cells, activating the Wnt/ß-catenin signaling pathway 
and inducing chemoresistance [66,67] (Fig. 1). 

4.2. Cancer stem cell-derived exosomes arrange the tumor microenvironment toward tumor 
progression and immunosuppression 

Stem cells were first found in hematopoietic cells and thus designated hematopoietic 
stem cells (HSCs) [68]. Unequivocal proof of HSCs has given way to the prospective iso-
lation of tissue-specific stem and progenitor cells [69]. Tumors may often originate from 
the transformation of normal stem cells, and cancer cells may include sub-populations 
with stem cell phenotypes called cancer stem cells (CSCs), cancer-initiating cells (CICs), 
or tumor-initiating cells (TICs). Paradoxically, teratoma formation in experimental ani-
mals is one of the features of induced pluripotent stem (iPS) cells [70]. Indeed, an increase 
in the expression of pluripotent stem cell (PSC) markers has been found in CSCs [42,71–
73]. Currently defined characteristics of CSCs are cellular aggregation, spheroid for-
mation, tumor initiation, slow cell cycle, entrance into dormancy, chemoresistance, SC 
marker expression, and pluripotency [42,43,74–76]. Dormant cancer cells within subclones 
can survive chemotherapy while proliferating subclones are relatively more chemosensi-
tive [73]. Thus, tumors can relapse due to cells surviving after treatment and re-estab-
lished subclonal diversity [74]. The parental tumors are a source of molecular cargos ex-
ported in exosomes and carry various CSC-specific proteins. For instance, in many malig-
nancies, the Wnt/ß-catenin pathway is a key regulator of the CSC phenotype [77,78]. Sev-
eral studies postulated the possibility of Wnt activation in surrounding tumor cells via 
absorption of β-catenin-rich exosomes [79,80]. Sheta et al. have postulated the significant 
role of FGF2 / FGFR signaling in favoring the transformation of normal stem cells into 
CSCs [81]. Besides, FGF2 in exosomes was proven to regulate stromal function [82,83], 
suggesting that the exosome released from the surrounding TME may lead to the devel-
opment of CSCs. Similarly, various CSC-specific molecules are secreted with exosomes 

[84,85], which include (i) surface receptors (CD133, CD44, CD326/EpCAM), (ii) functional 



 

 

enzymes (ALDH, MMPs), and (iii) pluripotency/stem cells factors (Oct4), which facilitate 
communication between cancer cells and the TME [38,48,76,86,87]. The dependency of 
such stromal cells highlights the involvement of miR-155-rich exosomes in reprogram-
ming normal adjacent fibroblasts into CAFs [88]. Uptake of miR-155 by fibroblasts may 
account for the dramatic repression of Tumor Protein P53 Inducible Nuclear Protein 1 
(TP53INP1) in pancreatic stromal cells. Further, gastric cancer-derived exosomes usually 
carry TGF-β[89] that activates the Smad pathway conducive to generating functional 
CAFs [89]. Further, CSCs-derived exosomes can induce immunosuppression. EGFR+ and 
HER2+ exosomes are often released from CSCs [90,91]. These receptors can stimulate the 
monocyte MAPK signaling pathway, which promotes the development of TAMs [92,93]. 
CSCs-derived exosomes have been found as carriers of miRNAs associated with ECM re-
modeling. miRNA-105, found in exosomes from breast cancer stem cells, directly alters 
endothelial tight junctions and raises the permeability of tumor blood arteries by targeting 
endothelial tight junction protein ZO-1 [94]. Besides, tumor endothelial cells (TECs) move-
ment and the creation of early vascular lumens are induced by the interaction between 
the miR-92a found in exosomes produced by K562 tumor cells and the proangiogenic pro-
tein integrin-α5 [95]. From here, CSC-exosomes are engaged in regulating the tumor mi-
croenvironment (Fig. 2). 

 
Figure 2. Potential roles of CSCs-derived exosomes/EVs in tumors. HER2 and EGFR are abundant 
in CSC-exosomes and activate the MAPK signaling pathway in monocytes, which in turn induce 
the development of TAMs and promote immunosuppression. Exosomes rich in TGFβ and miR-155 
promote the production of CAFs, which aid in the development of the TME. Exosomes containing 
miR-105 reduce ZO-1 expression in TECs, increasing tumor blood vascular permeability in the TME. 
Additionally, exosomes that carry miR-92a interact with the proangiogenic protein integrin-α5 to 
promote the migration of TECs and the early formation of vascular lumens, thereby encouraging 
angiogenesis. 

 



 

 

4.3. Tumor exosomes induce endothelial cells angiogenesis, extravasation, and intravasation  
Tumor endothelial cells (TECs) line tumor-associated blood vessels and assuring the 

passage of nutrients into tumor tissues [96]. TECs are abnormal in morphology, function, 
and gene expression [97]. TECs support tumor cells disseminating to the distal sites via 
extravasation and preserve them from anoikis, thereby promoting tumor metastasis [98]. 
TECs can also release angiocrine factors, such as VEGF, to support tumor progression 
[99,100]. Abnormal characteristics of TECs are caused by the tumor microenvironment, 
such as hypoxia that promotes the production of VEGF and increases vascular permeabil-
ity and genetic instability in TECs [101]. While TECs adhere to the endothelia of venules, 
they will enter circulation, exit the bloodstream, position themselves upon distance endo-
thelium surfaces, and subsequent metastatic growth [102,103]. Phosphatidylserine, the in-
ner bilayer of the intact cellular membrane, and P-selectin glycoprotein ligand-1 (PSGL1) 
are considered to work together, promoting the exosome to adhere to the endothelium 
[103]. The phenotypic alterations of TECs were led by EVs that contain growth factors and 
receptors, such as VEGF and its receptor VEGFR1 [104,105], SDF1 / CXCL12 [106,107], 
FGF-4 [108], EGF [109], adrenomedullin [110], and TSP-1 [111]. CXCR4, a receptor for 
SDF1, is overexpressed in TECs, while a CXCR4 antagonist (plerixafor, also known as 
AMD3100) induced tumor angiogenic inhibition-triggered necrosis (TAITN) in head and 
neck squamous cell carcinoma (HNSC) [106]. TAITN reduced TECs that supplies oxygen 
to tumor cells, whereby the loss of TECs induced hypoxia [106]. Thus, chemokine signal-
ing plays a key role in tumor angiogenesis, a novel therapeutic target. Tumor-derived ex-
osomes are related to tumor growth and metastasis of HNSC and induce angiogenesis by 
reprogramming TECs [107]. Exosomal WNT4 from colorectal cancer stimulated β-catenin 
nuclear translocation in endothelial cells, which improved tumor growth and angiogene-
sis [112,113]. On the other hand, human liver stem cells (HLSC) derived EVs inhibited 
tumor angiogenesis since the HLSC-EVs possessed specific microRNAs, which targeted 
and downregulated proangiogenic genes. LncRNAs contained in exosomes can promote 
tumor angiogenesis. Exosomes released by CD90+ liver cancer cells promoted angiogene-
sis and adhesion of endothelial cells by providing lncRNA H19 [114]. LncRNA H19 also 
promoted angiogenesis in glioblastoma [115]. Exosomes derived from lung cancer cells 
contained the lncRNA growth arrest-specific 5 (lncRNA GAS5), up-regulating PTEN ex-
pression and inhibiting the PI3K/AKT phosphorylation, thereby increasing angiogenesis 
[116]. These studies indicate that tumor exosomes stimulate TECs to promote angiogene-
sis and metastasis. 

4.4. Tumor-macrophage communication via exosomes for acquiring immunosuppression and 
chemoresistance 

Macrophages are generally divided into the pro-inflammatory M1-type and immu-
nosuppressive M2-type. M1-polarized macrophages possess antitumor activity, whereas 
M2-polarized macrophages promote tumor growth [117]. Tumor-associated macrophages 
(TAMs) are often M2-like phenotypes and are considered key participants in cancer pro-
gression via the production of numerous growth factors, cytokines, and extracellular ma-
trix (ECM) remodeling molecules for stimulating cancer growth, migration, and angio-
genesis [118]. Indeed, tongue cancer EVs stimulate macrophage polarity into M2-type, 
while HSP90 partially mediates the TAM polarization in HNSC [38]. Breast cancer-de-
rived exosomal glycoprotein 130 (gp130) activates the IL-6 / STAT3 pathway in macro-
phages [119], consequently increasing macrophage survival and inducing the expression 
of several genes associated with tumorigeneses, such as IL-10, CXCR4, and CCL2 
[119,120]. Each cytokine has a specific role in regulating tumor immune surveillance. IL-
10 induces immunosuppressive effects by modulating dendritic cells and cytotoxic T cells 
[121], while CXCR4 is associated with proangiogenic and immunosuppressive pheno-
types [120]. IL-6 and CCL2 (also called MCP-1: monocyte chemoattractant protein 1) are 
associated with TAM polarization [122]. These immunosuppressive effects are inhibited 
by adding a GP130 inhibitor to the cancer-derived exosomes [117]. Zheng et al. showed 



 

 

that macrophage-derived exosomal miR-21 enhanced the PI3K/Akt signaling pathway, 
inhibited apoptosis by downregulating PTEN, and induced resistance to cisplatin in gas-
tric cancer cells [123]. Likewise, Binenbaum et al. demonstrated that miR-365 transferred 
by M2 macrophage-derived exosomes increased the tri-phospho-nucleotide pool in pan-
creatic cancer cells and activated cytidine deaminase, which eventually conferred GEM 
resistance and supported tumor cells proliferation [124] (Fig. 1).  

4.5. Cancer exosomes induce immunosuppressive Tregs and apoptosis of killer T cells 
It has been suggested that tumor-infiltrating lymphocytes (TILs) include tumor-reac-

tive lymphocytes and tumor antigen-specific lymphocytes. A therapy in which tumor-
reactive T cells in TILs are expanded, cultured, and infused is being attempted. At the 
same time, it is suggested that many cells negatively regulate the antitumor immune re-
sponse, such as regulatory T cells (Tregs), in TILs. Killer T cells, also called cytotoxic T 
lymphocytes (CTLs), are a group of CD3+ CD8+ T cells that exhibit cytotoxicity specifically 
to cells presenting antigen peptides on MHC class I molecules on the target cell surface. 
Killer T cells recognize antigen peptides and secrete cytotoxic granules that contain per-
forin and granzymes. Perforin polymerizes on the target cell membrane to form pores, 
and granzymes, which belong to serine proteases, invade the target cells through the 
pores and induce apoptosis of the target cells. Activated killer T cells are considered the 
master regulator of the antitumor immune response. A growing body of studies has re-
ported the significance of CD4+ helper T cells in the generation and maintenance of effec-
tive cytotoxic and memory CD8+ T cells, known as CD4+ T-cell help. This phenomenon 
optimizes the expansion, trafficking, and effector function of CD8+ T cells, thereby poten-
tiating immune-mediated tumor destruction [125–127]. Cancer cell-derived exosomes 
suppress these T cells, which are more sensitive to the suppressive effects of tumor exo-
somes than other immune cells. These immunosuppressive effects of cancer exosomes in-
volve the induction of apoptosis, inhibition of proliferation and differentiation, and dys-
functionality of T cells. Yang et al. demonstrated that exosomes from ovalbumin peptide 
(OVA)-expressing melanoma suppressed OVA-specific immune response [128]. Several 
studies showed tumor exosomes induce T cell apoptosis through FasL, TNF, and galectin-
9, located on the EV surface [129–132]. Furthermore, PTEN of tumor exosomes appeared 
to regulate the PI3K/AKT pathway, leading to AKT dephosphorylation and increasing the 
expression of pro-apoptotic BAX and decreasing anti-apoptotic Bcl-2, Bcl-xL, and MCL-1 
(myeloid leukemia cell differentiation protein) in activated killer T cells [133–135]. Addi-
tionally, administration of GL26 glioblastoma exosomes to mice was associated with a 
reduction in the number of killer T cells and a decline in the IFN-γ and granzyme expres-
sion [136]. Clayton et al. reported that extracellular ectonucleotidases CD39 and CD73 
contribute to rising adenosine levels in the tumor microenvironment by dephosphory-
lating exogenous ATP and 5′AMP to form adenosine and hence attenuating the T cell 
function [137]. Regulatory T cells (Tregs) are an immunosuppressive subset of CD4+ T cells 
and negatively impact the immune response. TGF-β1 and IL-10 in exosomes stimulate the 
differentiation of CD4+ CD25− T cells into Tregs and foster the Tregs proliferation by in-
creasing the phosphorylated SMAD2/3 and STAT3 [138]. These studies demonstrated that 
cancer exosomes suppress killer T cells through activating pro-apoptotic signals and pro-
moting differentiation of T cells into Tregs,  immunosuppressive T cells (Fig. 2). 

4.6. Tumor exosomes potentiate immunosuppressive roles of MDSCs 
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of imma-

ture myeloid cells unable to differentiate into dendritic cells (DCs), macrophages, or gran-
ulocytes. MDSCs are one of the main drivers of immunosuppression in the tumor micro-
environment, as they exhibit a strong suppressive capacity against T cells and NK cells 
antitumor activity, recruiting immunosuppressive Tregs and creating a microenviron-
ment favorable for immunosuppression and tumor progression. Therefore, an increased 
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MDSCs frequency and activity were positively correlated with tumor progression and re-
currence and negatively correlated with the immunotherapy efficacy and clinical out-
comes [139]. Xiang et al. reported that tumor exosomes stimulated MDSC differentiation 
through TGF-β and prostaglandin E2 (PGE2) in vivo. Tumor exosomes also induce the 
expression of Cox2, IL-6, VEGF, and arginase-1 in the accumulating MDSCs. Blocking the 
tumor exosomal PGE2 and TGF-β activities disrupted the stimulatory effect of these exo-
somes on MDSC and attenuated MDSC-mediated immunosuppression [140]. It was re-
cently shown that a chemokine CCL bound to cancer exosomes determines uptake by 
CXCR-expressing cells [141], and resident stroma-secreted chemokine CCL2 recruits 
MDSCs in the tumor microenvironment [142]. These findings suggested that tumor exo-
somes potentiate the immunosuppressive roles of MDSCs in regulating NK cells and T 
cells, whereas blocking immunosuppressive cytokines on the tumor exosomes attenuates 
the unfavorable immunosuppression by MDSCs.  

4.7. Tumor exosomes downregulate a killing factor on natural killer cells  
Natural Killer (NK) cells have abilities to kill tumor cells and virus-infected cells 

without prior sensitization. NK group 2 member D (NKG2D) protein is a type-II trans-
membrane receptor expressed on NK cells and killer T cells. In NK cells, NKG2D mediates 
the direct killing of target cells, whereas, in CD8+ killer T cells, it acts as a costimulatory 
receptor leading to activation of the T-cell receptor (TCR) and T-cell effector function 
[143,144]. Lundholm et al. found that exosomes from human prostate cancer express lig-
ands for NKG2D on their surface, which selectively decreases the expression of the recep-
tor NKG2D on NK and CD8+ killer T cells in a dose-dependent manner, leading to impair-
ing the cytotoxic function of these killer cells and promoting the tumor immune escape 
[143]. Clayton et al. demonstrated that human prostate cancer cell exosomes (derived from 
PC-3 and DU-145 cell lines) express NKG2D ligands on their surface that downregulated 
NKG2D expression in effector lymphocytes [145]. Exosomal TGF-β might be involved in 
NKG2D downregulation because cell activity and NKG2D expression were restored by 
using TGF-β neutralizing antibody [146]. These studies indicated that NKG2D on the sur-
face of NK cells is crucial for killing tumor cells, whereas tumor exosomes often express 
NKG2D-ligand that downregulates NKG2D on NK cells. 

4.8. Tumor exosomes involve the immune checkpoint by stimulating dendritic cells to express 
PD-L1 

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) derived from 
bone marrow and play a central role in initiating the immune response. Upon capturing 
the antigens with their recognition receptors, DCs undergo maturation and travel to 
lymph nodes, where DCs present the captured antigens to naïve T cells for their activation 
and polarization, establishing links between innate and adaptive responses [147–149]. A 
recent study indicated that exosomes from Lewis lung carcinoma (LLC) cells inhibited the 
DCs maturation and cytokine production, suppressed the differentiation of bone marrow 
precursors into CD11c+ DCs, and induced apoptosis in DCs [150]. The LLC-derived exo-
somes up-regulated PD-L1 expression on DCs; thus, PD-L1 blockade immune checkpoint 
inhibitors (ICI) such as Nivolumab (marketed as Opdivo) significantly reversed the im-
munosuppressive effect of LLC exosomes on DCs. Moreover, Yang et al. showed that 
treating the DCs with tumor exosomes induced TGF-β production in DCs [128]. Thus, 
tumor exosomes involve the immune checkpoint by stimulating dendritic cells to express 
PD-L1. 

5. Exosomal oncoproteins and oncolipid that enhance tumor progression and metasta-
sis 

The tumor microenvironment comprises a diverse range of cells, such as endothelial 
cells, fibroblasts, and immune cells. Direct interaction between tumor cells and their envi-
ronment is necessary for cancer progression by enhancing angiogenesis, metastasis, and 



 

 

suppressing tumor immunity [102]. Growing evidence indicates that cancer cell-derived 
exosomes transfer oncogenic proteins and nucleic acids that modulate the activity of re-
cipient cells and promote tumor initiation, invasion, and metastasis. Matrix / moonlight-
ing metalloproteinases (MMPs), especially MMP3 and MMP9, are protumorigenic cargos 
of EVs in cancer [151]. Notably, MMP3 in colon cancer EVs plays key roles in tumorigen-
esis and metastasis [47,48,76]. MMP3 in exosomes are transferred into recipient cell nuclei 
and trans-activate protumorigenic genes, such as cellular communication network factor 
2 (CCN2) and HSPs [48,152–154]. A part of small EV subpopulations, exomeres, contains 
beta-galactoside a2, 6-sialyltransferase 1 (ST6Gal-I), and amphiregulin (AREG) [155]. 
ST6Gal-I is transported from exomeres to recipient cells, triggering metastasis [156,157]. 
Besides, exosomes enriched in HSPs can play cytoprotective and anti-apoptotic roles in 
tumors and tumor-associated cells [13,151,158]. Metastatic tongue cancer exosomes abun-
dantly contained members of the HSP family, such as TRAP1, HSP90α, HSP90β, HSP105, 
and HSP70s [27]. Besides, HSP90α is released in EV-free forms upon hypoxia and can 
promote tumorigenesis [87]. Cell division control 37 (CDC37) is an intracellular cochap-
erone of HSP90 and plays protumorigenic roles in cancer [27,128,159]. The triple targeting 
of CDC37, HSP90α, and HSP90β inhibited protumorigenic exosomes in tongue and pros-
tate cancer [38]. Nevertheless, extracellular HSPs can play immunogenic and immuno-
suppressive roles depending on the immune cells and their receptors that detect HSPs 
[160,161]. Redundant lipids are released from cells through the release of exosomes and 
cholesterol efflux pump proteins. One of such pumps overexpressed in metastatic cancer 
cells was adenosine triphosphate (ATP)-binding cassette G1 (ABCG1), which co-overex-
pressed with ABCG2, a drug efflux pump found in CSCs [43]. The targeted silencing of 
ABCG1 led to exosome lipid accumulation and triggered tumor cell death. These facts 
suggest that cancer cells can often release redundant toxic lipids, whereas loss of the 
ABCG1 pump could trigger the accumulation of redundant toxic lipids leading to tumor 
cell death. Macrophages play key roles in cholesterol transport from peripheral blood ves-
sels to the liver. Therefore, TAMs may play key roles in metabolizing redundant and toxic 
lipids released by tumor cells. 

6. Prognostic biomarkers in exosomes 
Given the presence of special contents in exosomes reflecting the unique qualities 

and condition of the cells or tissues from whence they originated, there is a great interest 
in identifying exosome contents using transcriptomics and proteomics techniques [162–
165]. Consequently, exosomes can be evaluated as potential sources of cancer diagnostic 
markers. For instance, Ahadi and co-workers profiled the lncRNAs content of exosomes 
derived from five different prostate cancer cell lines and identified a list of statistically 
significant expressed lncRNAs enriched within prostate cancer exosomes [166,167]. By 
comparing the proteomic contents of metastatic versus non-metastatic breast cancer, 
Vardaki et al. identified periostin as a candidate marker of localized disease or lymph 
node metastasis [167]. Metastatic tongue cancer cells-derived EVs abundantly contained 
members of HSPs such as TRAP1, HSP90α, HSP90β, HSP105, and HSP70s compared to 
less metastatic parental cells [27]. Further, Proteoglycan glypican-1 (GP1)-localized to ex-
osome membranes was a possible marker for patients with pancreatic disease [168]. Also, 
miRNAs enriched in exosomes serve as tumor markers. For a great instance, in patients 
who experienced ovarian cancer, eight microRNA types (miR-21, miR-141, miR-200a, 
miR-200b, miR-200c, miR-203, miR-205, and miR-214)-positive exosomes were signifi-
cantly distinct from profiles observed in healthy control patients, suggesting an effective 
way to screening asymptomatic ovarian cancer patients [169]. The effectiveness of exo-
somes as biomarkers depends on the enrichment of the markers within the exosome that 
would otherwise make up a very small amount of the secretome [170]. Salivary exosomes 
enriched with miR-1246 and miR-464 were investigated as candidate biomarkers for pan-
creaticobiliary tract cancer [171]. Along the same line, circulating exosomes from glioblas-
toma patients showed unique signatures of EGFRvIII mRNA, which can serve the role of 



 

 

a “liquid-biopsy (such as blood collection)” rather than a “surgical tissue-biopsy” for gli-
oblastoma detection [2]. This evidence implies that exosomes produced from bodily fluids 
could be a very informative and least noninvasive cancer detection tool. However, there 
are still challenges with using exosomes as biomarkers. For instance, (a) The heterogeneity 
/ diversity of exosome population in biofluids is the first issue 172. Different protein / RNA 
expression patterns and profiles may result from heterogeneous exosomes, leading to 
false negatives or positive errors in prognosis and diagnosis. (b) The second problem is 
the lack of a universal, verified biomarker for all malignancies, leading to co-isolation and 
impurity of harvested exosomes. (c) The third challenge is the difficulty of isolating and 
purifying exosomes [172,173]. Therefore, there was a huge disparity across clinical studies 
for identifying tumor-derived exosome biomarkers, and more research is required to eval-
uate the viability of using exosomes to diagnose cancer. 

7. Therapeutic application of exosomes as delivery systems 
As demonstrated by an expanding body of investigations, exosomes possess special 

characteristics, which make them ideal for delivering anticancer agents over conventional 
drug delivery vectors like liposomes, e.g., in vivo circulatory stability, high efficiency 
[174,175], and actively cross biological barriers [176]. Therefore, researchers have tried two 
strategies of loading exosomes with therapeutic compounds [177]: a direct loading of se-
lective agents on the lumen or surface of exosomes and another indirect loading technique 
that uses co-culture with therapeutic agents to load agents into exosomes via the endoso-
mal pathway or plasma membrane shedding, or genetic manipulation of the cells to ex-
press active molecules on their exosomes. Exosomal protein composition and lipid content 
might affect their propensity to target particular organs [178]. For instance, different types 
of integrins can modify the pharmacokinetics of exosomes and enhance their organ-tropic 
accumulation in the brain, lungs, or liver [179]. In addition, it was shown that pancreatic 
cells preferentially ingested exosomes harboring tetraspanin-8 in association with integ-
rin-α4 [180]. EV lipids can also influence how well they are absorbed, e.g., phosphatidyl-
serine has been linked to the absorption of EVs by macrophages [181]. In clinical trials for 
the tissue-specific delivery of biotherapeutics, exosomes are a potential delivery vector. 
Despite advantages, it has been shown that some obstacles are related to the drug delivery 
efficiency of exosomes [182–184], such as the lack of standards for isolation and purifica-
tion and difficulty in preservation. Additionally, producer cell engineering methods for 
cargo loading might further customize exosomes for targeted distribution, which presents 
some challenges in terms of selecting dependable and secure source cells with a high level 
of exosomes production potential as well as selecting an efficient and cautious administra-
tion method for delivering exosomes into the site of tumor cells. 

8. Conclusion 
We presented evidence for EVs / exosomes involving cancer progression, metastasis, 

and therapy resistance. Of note, tumor exosomes involve immunosuppression and im-
mune evasion by acting on M2 macrophages, MDSC, and Tregs. Moreover, cancer exo-
somes induce the apoptosis of killer T cells and immune checkpoint of dendritic cells and 
attenuate NK cells. EVs from tumors include a diverse range of biomolecules that influ-
ence local and distant tissue function, establishing cancer pathology via exosome cargo. 
Besides, due to their nanoscale size and non-proliferative nature, EVs are safe and practi-
cal for the development of new therapies. While more research is needed to develop lo-
gistical clinical diagnostics and therapeutics, exosomes appear to be important mediators, 
carrying promising biomarkers, and potential medicinal agents in cancer management. 
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ESCRT Endosomal sorting complexes required for transport 
EV Extracellular vesicle 
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HNSC Head and neck squamous cell carcinoma 
IFN Interferon 
IL Interleukin; 
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PKB/Akt Protein kinase B 
PTEN Phosphatase and tensin homolog 
SDF-1 Stromal cell-derived factor 1 
STAT Signal transducer and activator of transcription 
TAC Tumor-associated cell 
TAITN Tumor angiogenic inhibition triggered necrosis 
TAM Tumor-associated macrophage 
TEC Tumor endothelial cell 
TIL Tumor infiltrating lymphocytes 
TGF-β Transforming growth factor-beta 
TME Tumor microenvironment 
TNF Tumor necrosis factor 
VEGF Vascular endothelial growth factor 
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