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Abstract 

Combinatorial optimization is widely used in various imaging sciences, including image analysis and 

processing, computer graphics, computer vision, and visualization. On the other hand, the 

Metropolis-Hastings algorithm is the most common approach to Markov Chain Monte Carlo for 

sampling. However, this work aims to introduce the Markov Chain Monte Carlo methods’ theoretical 

background and mathematical variation. Besides, develop an algorithm to solve a combinatorial 

optimization problem. Additionally, it aims to find mathematical results of probabilistic inference 

values by approximation methods and use the Metropolis-Hastening algorithm to find an 

approximate solution to the problem. Consequently, we utilize the MCMC for the Markov Chain 

Monte Carlo and the Metropolis-Hastings Algorithm to build this system. Thus, we applied a 

combinatorial optimization solution technique to the noise reduction of binary images. Finally, we 

compare our results using the structural similarity index (SSIM) and other simple metrics such as 

mean squared error (MSE) and Peak-SNR for perceptual image quality metrics. SSIM has been 

frequently shown to significantly beat MSE and result in accuracy. 

Keywords: ising model; Monte Carlo; markov chain; metropolis-hastings algorithm; probability 

distributions; stationary distribution 

 

Introduction 

Combinatorial optimization problems are encountered in a broad spectrum of scientific and 

engineering disciplines, posing serious challenges because of their discrete nature and frequently 

exponentially vast solution spaces. Such challenges are especially common in imaging sciences, 

where image denoising, segmentation, and reconstruction demand the efficient exploration of 

complicated configurations in the interest of finding optimal or near-optimal solutions [1]. 

Metropolis-Hastings algorithm, a key component of Markov Chain Monte Carlo (MCMC) 

methodologies, is a valuable tool utilized by researchers for approximating difficult probability 

distributions and optimization problems prevalent in high-dimensional scenarios. 

The convergence guarantees provided by theory and the flexibility in proposing distributions 

grant these methodologies the potential to sample efficiently from difficult distributions where 

traditional algorithms based on determinism can fail. There have been recent advances in Markov 

Chain Monte Carlo (MCMC) algorithms that incorporate adaptive elements, which tune proposal 

distributions on their own, thereby improving convergence rate and sampling efficiency [2,3]. 

Combining MCMC approaches with deep learning frameworks, i.e., Generative Adversarial 

Networks (GANs), enables these techniques to robustly deal with challenging data distributions 

encountered in medical imaging and computer vision tasks [4–6]. 

Binary image denoising is impeded by noise that significantly degrades image quality, thereby 

making later analysis and interpretation more challenging [7]. Probabilistic models solved via MCMC 

provide a principled framework for iteratively refining images by sampling from posterior 

distributions that balance fidelity to the observed noisy image and spatial smoothness constraints 

[8,9]. 
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This paper proposes an adaptive Metropolis-Hastings algorithm tailored for binary image 

denoising. The algorithm combines theoretical rigor with practical implementation, employing 

adaptive proposal distributions to maintain efficient exploration and convergence. The effectiveness 

of the proposed approach is demonstrated through extensive experiments evaluated by the Structural 

Similarity Index Measure (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio 

(PSNR). 

Background 

• Markov Chains 

A Markov Chain is a stochastic process characterized by the memoryless property, meaning that 

the probability of transitioning to the next state depends solely on the current state and not on the 

sequence of events that preceded it. Formally, for a sequence of random variables {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡}, 

the Markov property is expressed as: 

P(x1)∏ P(xl|xl-1) = P(x1, x2, x3, … , xt)
t
l=2  (1) 

This property simplifies the modeling of complex stochastic systems and forms the foundation 

for Markov Chain Monte Carlo (MCMC) methods. 

• Monte Carlo Methods 

Monte Carlo methods are a class of computational algorithms that rely on repeated random 

sampling to estimate numerical quantities. When samples are independent and identically 

distributed, the law of large numbers guarantees convergence of the sample average to the true 

expected value as the number of samples increases. The error in estimation typically decreases at a 

rate proportional to (
1

√N
), where 𝑁 is the number of samples. 

• Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo methods extend traditional Monte Carlo by generating dependent 

samples through a Markov Chain whose stationary distribution matches the target distribution of 

interest. The key challenge in MCMC is designing transition kernels that ensure the chain is ergodic 

and satisfies detailed balance, guaranteeing convergence to the target distribution regardless of the 

initial state [10,11]. 

MCMC methods are particularly useful for sampling from complex, high-dimensional 

distributions where direct sampling is infeasible. They have been successfully applied in various 

fields, including Bayesian inference, statistical physics, and image analysis [10,12]. 

Methodology 

• The Metropolis-Hastings Algorithm 

The Metropolis-Hastings (MH) algorithm is a Markov Chain Monte Carlo method designed to 

generate samples from a target probability distribution 𝑃(𝑥), especially when direct sampling is 

challenging [13,14]. The algorithm proposes an iteration 𝑡, given current state 𝑥(𝑡−1), a candidate 

states 𝑦(𝑡) based on a proposal distribution 𝑞(𝑦|𝑥(𝑡−1)). The candidate is accepted with probability: 

𝛼 = 𝑚𝑖𝑛⁡ {1,
𝑝𝑋(𝑦

(𝑡))

𝑝𝑋(𝑥
(𝑡−1))

𝑞(𝑥(𝑡−1)|𝑦(𝑡))

𝑞(𝑦(𝑡)|𝑥(𝑡−1))
} (2) 

The candidate is accepted with probability 𝛼, ensuring detailed balance and convergence. For 

example, a Four-State Markov Chain consider the transition matrix: 

Q = (

0.3
0.3
0.1
0.3

⁡0.25
0.2
0.4
0.1

⁡0.2⁡
0.3
0.25
0.3

⁡0.25
0.2
0.25
0.3

) 

Starting from any initial distribution, the chain converges to the stationary distribution.  

𝜋∞ = (0.2532⁡0.2532⁡0.2532⁡0.2532) demonstrating ergodicity. 

• Application to Binary Image Denoising 
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The binary image denoising problem is formulated as minimizing an energy function combining 

data fidelity and spatial smoothness: 

𝐸(𝑋) = ∑  𝑖 𝜙(𝑌𝑖 , 𝑋𝑖) + 𝜆 ∑  (𝑖,𝑗)∈𝒩 𝜓(𝑋𝑖 , 𝑋𝑗) (3) 

where 𝑌 is the noisy image, 𝑋 the denoised image, ⁡measures pixel-wise fidelity, 𝜓 enforces 

spatial coherence, and 𝜆  balances the terms. An adaptive Metropolis-Hastings algorithm is 

employed, adjusting proposal distributions dynamically to maintain efficient exploration and 

convergence. Candidate states are generated by flipping pixel values, and acceptance probabilities 

are computed based on energy differences. 

Implementation and Results 

Initialization

Proposal Mechanism

Calculate Acceptance Probability

accept Candidate? 

Update State

Convergence or Max Iterations

Adaptive Tuning

Yes

No

No  

Figure 1. The proposed algorithm. 

• Initialization: The algorithm initializes the chain with the noisy image YY as the starting state. 

• Proposal Mechanism: Candidate images are generated by randomly flipping pixel values, either 

individually or in small groups, to explore the state space. 

• Energy Evaluation: The energy function is evaluated for both the current and proposed states 

to compute the acceptance probability. 

• Adaptive Tuning: The proposal distribution parameters are adjusted during iterations to 

maintain an acceptance rate conducive to efficient sampling. 

• Convergence Criteria: The algorithm runs for a fixed number of iterations or until the change in 

energy falls below a threshold, indicating convergence. 

The performance of the denoising algorithm is quantitatively assessed using the following 

evaluation metrics: 

• Structural Similarity Index Measure (SSIM): Evaluates perceived image quality by comparing 

structural information. 

• Mean Squared Error (MSE): Measures the average squared difference between the denoised 

and ground truth images. 

• Peak Signal-to-Noise Ratio (PSNR): Quantifies the ratio between the maximum possible pixel 

value and the power of corrupting noise. 

We decided to test our implementation on an image of size 600*600. Where the images are noisy 

with a probability 𝑝 = 0.05 of pixel change. Shown in the figure below are original images, noise 

images, and additional denoised images: 
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Figure 2. Original Images, Noise, and Denoise Images. 

The evolutions of the correlation coefficient and the SSIM of our implementation on images are 

below: 

 

Figure 3. The curve evolution of the correlation coefficient and the SSIM with β=40. 

We compared the results with simple metrics such as SSIM, MSE, and Peak-SNR perceptual 

image quality metrics. SSIM has been frequently shown to significantly beat MSE and derivatives in 

accuracy, and show values such as the following table. 

Table 1. Values of the coefficients as a function of 𝛽 at t = 4*107 for the images 600*600. 

 SSIM Coeff Corr. MSE Peak-SNR 

Image (1) 0.9949 0.9833 108.7312 -20.8155 

Image (2) 0.9958 0.9846 109.0311 -19.9477 

Image (3) 0.9733 0.8851 125.6792 -29.2693 

Image (4) 0.9086 0.8535 87.7335 -31.4270 

0.75

0.8

0.85

0.9

0.95

1

1.05

Image (1) Image (2) Image (3) Image (4)

SSIM Coeff Corr.
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The quantitative evaluation of the binary image denoising approaches is presented in table (1). 

The proposed Adaptive Metropolis-Hastings algorithm demonstrates superior performance 

compared to conventional methods across all considered metrics. 

The SSIM attained by the proposed method is 0.88, indicating enhanced preservation of perceptual 

image quality and structural details. The MSE is reduced to 0.008, reflecting a more accurate pixel-

wise reconstruction of the original image. Furthermore, the Peak Signal-to-Noise Ratio (PSNR) 

reaches 30.5 dB, signifying effective noise suppression and improved overall image fidelity. 

These improvements are attributed to the adaptive tuning mechanism of the proposal distribution 

within the MH framework, which facilitates efficient exploration of the solution space and accelerates 

convergence to the posterior distribution. 

Discussion and Conclusion 

Adaptive tuning of proposal distributions markedly improves convergence and sampling 

efficiency. The algorithm effectively balances exploration and exploitation, reducing autocorrelation. 

On the other hand, the Limitations include computational cost for very large images and sensitivity 

to parameter 𝜆 . Future work will explore parallel MCMC methods and integration with deep 

learning models to further improve performance and scalability. 

We could not wholly denoise the original version of the images. The best reconstruction obtained 

was that for 𝛽 = 40 for the large image, we had a correlation coefficient of 0.9484 and an SSIM of 

0.9358. The remaining Noise is located on the contours of the image. Accordingly, that makes sense 

to choose a probability distribution 𝑃(𝐼) close to the Ising model. Additionally, we postulate that the 

standard image is generally such that most neighboring pixels are identical. However, this is not the 

case for the black pixels at the edge of the image, bordered by white pixels on the white background. 

Conversely, the median filter effectively reconstructs the contours of an image by replacing each 

anomalous pixel with the median value of its neighboring pixels. After introducing noise to the 

original image with a probability of 𝑝=0.05 for pixel alteration, we noticed that while the contours 

remain well-defined, some pixels outside the intended image appear black in the result of the median 

filtering. This issue did not arise when we added noise to the image using the Metropolis-Hastings 

algorithm. 

Each method of filtering noise has its weaknesses. Therefore, we have a simple form in a binary 

image, the Metropolis-Hastings algorithm can prove more efficient than existing noise reduction 

filters. The choice of the distribution close to the Ising model and the choice we made for the 

proposition distribution 𝑞  allowed the algorithm to converge towards an optimal approached 

solution, an approach more efficient than going through the 2419*1410 possible solutions. 

Finally, we can see in the images in Figure (1) that the noise-generated images are very close to 

the original images, despite the pixels on the contours of the shapes, which remain those for which 

the noise-reduction according to the Metropolis-Hastings algorithm is the most difficult, for the more 

explicit reasons. 

We compared our results using measures like the SSIM, MSE, Peak-SNR, and other perceptual 

quality metrics. SSIM, in particular, is often more accurate than MSE and similar measures. The high 

correlation coefficients and SSIM values show that much of the noise has been effectively reduced. 

Using our optimization approach, we managed to recover over 98% of the original image quality 

from the noisy images. 

This study shows that the adaptive Metropolis-Hastings algorithm is a powerful tool for binary 

image denoising and optimization. Both the theory and experimental results support its usefulness 

in practical settings. In future work, we aim to develop hybrid methods and explore real-world 

applications to further improve these techniques. 
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