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Abstract: In mammals, Tripartite motif-containing (TRIM) proteins modulate the immune response
by coordinating pro-inflammatory related processes such as antiviral restriction, cellular autophagy
and inflammasome activation. In fish, TRIM proteins have been reported mainly in cyprinids (e.g.,
carp, zebrafish) and salmonids (rainbow trout). However, their molecular mechanisms and
functions are still being described these animals. Our study focused on characterizing novel TRIM
proteins involved in the innate immune response of gill cells from rainbow trout stimulated with
LPS or poly(I:C). Also, a fish trial was performed to detect TRIM proteins of rainbow trout after a
challenge with Flavobacterium psychrophilum, a salmonid bacterial pathogen. At in vitro level, the
results showed that, among several TRIM proteins, OmTRIM25 triggered an LPS-induced
expression of pro-inflammatory cytokines (TNF-a2 and IL-1P), suggesting a potential local
modulatory function. Moreover, in the fish trial, while OmTRIM25 and finTRIM?2 were up-regulated
in the gills two days post infection (dpi), IL-1p and TNF-a2 reached their peaks of expression at
four- and six-dpi. Finally, after delving into the function of OmTRIM25 by RNA interference (RNAi)
gene-silencing, we propose that TRIM proteins such as OmTRIM25 are needed to induce the pro-
inflammatory response in the gills of rainbow trout, which confirms their immunomodulatory
function.

Keywords: tripartite motif-containing proteins; Oncorhynchus mykiss; fish innate immunology;
PAMP’s signalling in fish; MAMP-triggered immunity in fish; LPS; poly(I:C);
Flavobacterium psychrophilum

1. Introduction

The immune response of teleost fish represents a crucial evolutionary stage for the development
of defences against pathogens in biological systems [1,2]. Indeed, the study of the cellular and
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molecular components involved in such responses using fish models has provided important insights
into the evolution of the immune system in higher vertebrates [3-5]. One of these molecular
components is the tripartite motif-containing (TRIM) protein family, a group with over 70 members
in mammals that is associated with several biological processes, including apoptosis, oncogenesis,
cellular proliferation, differentiation, development, and innate immunity [6,7]. TRIM proteins consist
of an N-terminal RING finger domain, followed by one or two B-box zinc finger domain and a coiled-
coil region, which is collectively known as the RBCC motif [8]. The RBCC motif is fairly conserved
among the members of the TRIM superfamily, with more evident differences and specific functions
linked to their less conserved C-terminal domain [9].

Accumulating evidence suggests that TRIM proteins have an important role in the innate
immune response [10,11], with a crucial impact in the modulation of particular pro-inflammatory
components [12], such as regulation of antiviral restriction [13], cellular autophagy [14], and
inflammasome activation [15]. For this reason, TRIM proteins could also be considered as
intracellular cytokines, and deciphering further information about their function and evolution in the
immune system may provide important insights into the molecular mechanisms that govern host
defence.

Over the last decade, greatest advancements have been made in the discovery and
characterisation of TRIM proteins involved in innate immunity in fish models [16,17]. Indeed, a
number of TRIM members found in mammals have already been confirmed to be expressed as
orthologues in different fish, including for example TRIM32 and TRIM47 in carp (Cyprinus carpio)
[18,19], and TRIM69 in zebrafish (Danio rerio) [20]. On the other hand, a large new subset of TRIM
genes has been specifically identified in rainbow trout (Oncorhynchus mykiss) and zebrafish as virus-
induced transcripts [21]. These TRIM-like proteins exclusively identified in the fish were called fish
novel TRIMs (finTRIMs). Nevertheless, although increasing data support the immunomodulatory
potential of fish TRIMs against microbial infections [17,22], the molecular determinants associated
with their antimicrobial mechanisms are still being investigated in cellular and animal models.

Therefore, the purpose of the present study was to explore and characterise the presence of novel
TRIM proteins involved in innate immunity in rainbow trout using in vitro and in vivo approaches.
In particular, we identified and sequenced novel TRIM transcripts in the rainbow trout gill cell line
RTgill-W1. In addition, their expression patterns were examined both in RTgill-W1 cells and rainbow
trout primary gill cell cultures following a stimulation with lipopolysaccharide (LPS), a cell wall
component of Gram negative bacteria, and polyinosinic:polycytidylic acid (poly(I:C)), a molecule
structurally similar to viral double-stranded RNA (dsRNA).

Furthermore, we examined the time-dependent expression of these TRIM transcripts in rainbow
trout gills after the challenge with the salmonid pathogen Flavobacterium psychrophilum. We correlated
the expression of these TRIM transcripts with the level of pro-inflammatory cytokines TNF-a2 and
IL-1B, as well as the immunomodulatory protein type I IFN in these cellular and animal models.
Finally, we determined that one of the TRIM-like proteins found in our study is critically necessary
to trigger the expression of LPS-induced pro-inflammatory cytokines, as revealed in a post-
transcriptional knock down assay. These data provide fundamental insights into the implications of
TRIM proteins in the antimicrobial defence of the fish, and shed light on the potential conserved
mechanisms that these intracellular cytokines may modulate the innate immune response in higher
vertebrates.

2. Results
2.1. Novel TRIM-like Sequences Identified in RTgill-W1 Cells

Considering the specific finTRIMs published by van der Aa et al (2009), we were able to isolate
the sequences corresponding to finTRIM1 and finTRIM2. However, we did not detect the expression
of finTRIM3 under the PCR conditions utilised in RTgill-W1 cells.

Using the non-specific PCR amplification method, we isolated and sequenced two TRIM-like
transcripts corresponding to human orthologues, named OmTRIM25 and OmTRIM16. Finally, the
EST contig sequence search allowed us to identify other two TRIM orthologues, named OmTRIMS
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and OmTRIM62. All the novel transcripts found (not including the finTRIMs already published) were
submitted and registered in the Nucleotide NCBI database as RTgill-W1 novel TRIM-like mRNA
sequences (Table 1).

Table 1. Novel TRIM-like sequences identified in the RTgill-W1 cell line.

Identified TRIMs in RTgill-W1 GenBank accession
OmTRIM25 KY073243
OmTRIM16 KY073245
OmTRIM62 KY073247

OmTRIMS KY073248

A multiple alignment of the predicted amino acidic sequences shows high conservation in the
N-terminus regions (Figure 1) along all OmTRIMSs and finTRIMs found. In addition, a search in the
Conserved Domains Database (NCBI) revealed that all the sequences display the presence of the main
domains composing the RBCC motif —the structural signature of the TRIM superfamily—-, including
the RING, B-box and coiled-coil.

After a phylogenetic analysis, data showed that OmTRIM8 and OmTRIM62 are grouped closely
to other homologue members, while OmTRIM16 and OmTRIM2b5 fit better within the finTRIM family
(Figure 2; see red box).
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Figure 1. Amino acid alignment between the TRIM-like proteins found in RTgill-W1. A multiple
alignment was performed using the software Clustal Omega, for the predicted amino acidic
sequences of the TRIM-like proteins identified in RTgill-W1 cell line. The main domains of the RBCC
motif are highlighted in colours: RING = orange; B-box 1 = red; B-box 2= purple; coiled-coil = blue.
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Figure 2. Phylogenetic tree grouping the TRIM-like proteins identified in RTgill-W1 cells. An
unrooted phylogenetic tree of TRIM proteins from fish and other species was produced using an
amino acid multiple alignment and the ML method within the software MEGAX. The percentage of
replicate trees in which the associated taxa clustered together in a bootstrap test (1000 replicates) is
shown next to the branches. Novel TRIMs are highlighted with red dots.
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2.2. Differential Expression of Novel TRIM-like Genes upon Stimulation by MAMPs

To evaluate the capacity of TRIM genes to respond in an immune-related context, RTgill-W1
cells and primary gill cultures were stimulated with the microbe-associated molecular patterns
(MAMPs) LPS or poly(L:C).

LPS was able to significantly induce the expression of TNF-a2 and IL-1f3 at 4; 8 and 24 hours
post-stimulation (Figure 3A). Most of TRIM-like genes were overexpressed at 8 hours of LPS
treatment with the exception of OmTRIM8 and OmTRIM62. Moreover, OmTRIMS8 was specifically
induced at 4 hours only. Interestingly, the expression of some TRIM transcripts positively correlated
between them, i.e. finTRIM 1 correlated with finTRIM 2, OmTRIM16 and OmTRIM®62. In addition,
finTRIM 2 significantly positive correlated with OmTRIM16, and OmTRIM16 with OmTRIM62
(Figure 3B). Nevertheless, OmTRIM25 was the only one to correlate its own expression between
RTgill-W1 cells and primary gill cultures.
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Figure 3. LPS induced the gene expression of cytokines and OmTRIM-like proteins in RTgill-W1 cells
and primary gill cultures in a time dependent manner. RTgill-W1 cells and primary gill cultures were
stimulated with 10 pg mL! LPS for up to 24 hours. A: The gene expression of the cytokines TNF-a2,
IL-1B and type I IFN, and OmTRIM-like proteins was quantitatively measured using RT-qPCR at 4;
8; and 24 hours post LPS treatment. Results are expressed as the mean + SEM of six experimental
replicates (*: p < 0.05 vs Control groups). B: Correlation between LPS-induced transcripts in RTgill-
W1 cells and primary gill cultures (*: p <0.05).

In contrast, poly(I:C) caused a significant modulation in the gene expression of TNF-a2 and type
I'IFN at all time points, while IL-1 was induced at 12 and 24 hours only (Figure 4A). In comparison,
the stimulus with poly(I:C) caused a higher expression of TRIM-like transcripts than LPS, but in the
later time points 12 and 24 hours. Notably, OmTRIM16 and OmTRIM62 were not induced at any time
point of stimulation with either LPS or poly(I:C). Analysis of correlation indicate that almost all the
molecules induced by poly(I:C) are positively correlated, but only few comparisons reached
significance, including finTRIM 1 with OmTRIM16 and OmTRIMS, and OmTRIM16 with OmTRIMS
(Figure 4B).

In the case of primary cultures, the poly(I:C) stimulation was significantly more prone to induce
a immune response than LPS. Indeed, poly(I:C) produced a significant overexpression of type I IFN
and TNF-a2 in every time point examined, while LPS only induce IL-1( after 24 hours of stimulation
(Figure 3A). In terms of TRIM expression, both LPS and poly(I:C) induced the expression of
OmTRIM25 only at 8 and 12 hours of stimulation respectively (Figure 3A and 4A). Only few
correlations were detected in primary cultures. IL-1p3 negatively correlated with finTRIM 1 under LPS
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stimulation, while poly(I:C) treatment produced the opposite effect, a positive correlation between
IL-1p and finTRIM1 (Figure 3B and 4B).
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Figure 4. Poly(I:C) induced the gene expression of cytokines and OmTRIM-like proteins in RTgill-W1
cells and primary gill cultures in a time dependent manner. RTgill-W1 cells were stimulated with 30
pg mL! Poly(I:C) for up to 24 hours. A: gene expression of the cytokines TNF-a2, IL-1{3 and type I
IFN, and OmTRIM-like proteins was quantitatively measured using RT-qPCR at 4; 8; and 24 hours
post poly(I:C) treatment. Results are expressed as the mean + SEM of six experimental replicates (*: p
<0.05 vs Control groups). B: Correlation between Poly(I:C)-induced transcripts in RTgill-W1 cells and
primary gill cultures (*: p <0.05).

2.3. Rainbow Trout Infected with a Bacterial Pathogen Showed a Time-Depending Expression of TRIMs in
Gill Tissue

To explore the expression patterns of TRIM proteins at in vivo level, we measured the levels of
TRIM transcripts in gills of rainbow trouts infected with the fish freshwater pathogen F.
psychrophilum at different time points during 30 days of infection. The analysis of cytokines
expression revealed that this bacterium significantly induced the expression of TNF-a2 at day 8,
while IL-1p was at days 4 and 6 of infection. However, the bacterial challenge did not alter the basal
levels of type I IFN (Figure 5A). Interestingly, TRIM transcripts showed different patterns of
expression. For instance, OmTRIM25 and finTRIM2 were significantly up-regulated earlier (after 2
days of infection), and then finTRIM 1 and OmTRIMS showed peaks of expression from the 4th day
post infection. Moreover, OmTRIM16 significantly increased its expression after 8 days, and this
increase was maintained later as well at day 10.

Finally, OmTRIMS62 presented their expression peaks in the last days of analysis at 15 and 30
days of infection (Figure 5A). Although basal levels of gene expression are positively correlated
between different molecules, we detected only a significant correlation between IL-13 and
OmTRIMS, and between finTRIM 1 and OmTRIM16 (Figure 5B).
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Figure 5. Infection with F. psychrophilum CC5 induced the gene expression of OmTRIM-like proteins
in rainbow trout. Animals were infected intramuscularly with a LDso of F. psychrophilum and gill tissue
samples were analysed in a period of 30 days. A: gene expression of the cytokines TNF-a2, IL-18 and
type I IFN, and OmTRIM-like proteins was quantitatively measured using RT-qPCR at different time
points. Results are expressed as the mean + SEM, n =3 (*: p < 0.05 vs Control groups). B: Correlation
between F. psychrophilum-induced transcripts in rainbow trout gills (*: p <0.05).

2.4. OmTRIM25 Is Required to Trigger the Expression of TNF-a2 and IL-1p in RTgill-W1 Cells during LPS
Stimulation

To investigate the potential role of OmTRIM25 in modulating the immune response of RTgill-
W1 cells during LPS stimulation, we blocked its transcription using siRNAs. After 8-hour treatment
with LPS, cells pre-incubated with siGFP displayed a significant increase of OmTRIM25, TNF-a2 and
IL-18 mRNA levels, but not for type I IEN (Figure 6) accordingly to our previous results (Figure 3A).
Cells pre-incubated with siOmTRIM25 showed adown-regulation in the expression of OmTRIM?25;
and moreover, the expression of TNF-a2 and IL-1§3 was significantly attenuated.
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Figure 6. LPS-induced inflammatory response in RTgill-W1 cells mediated by OmTRIM?25. A: RTgill-
W1 cells were incubated with 50 nM siOmTRIM25 for 14 hours, and then stimulated with 10 pg mL-!
LPS for 8 hours. The gene expression of OmTRIM25 and the cytokines TNF-a2, IL-1p and type I IFN
was quantitatively measured using RT-qPCR. Results are expressed as the mean + SEM of six
experimental replicates (*: p < 0.05). B: Schematic pathway representing the proposed mechanism of
action of OmTRIM?25.

3. Discussion

There has been increasing attention given to the fish immunology to understand the molecular
and cellular evolution of host defence systems in higher vertebrates [2,4]. In the present study, we
characterised novel transcripts of TRIM proteins in rainbow trout involved in immune response of
the gills using in vitro and in vivo models. Fish gills are a specialized tissue with respiratory function,
and for this reason it is an organ in continuous contact with the external environment and potential
pathogens. Thus, gills represent an important focus of attention for the study of the immune response
since it also has mucosa associated lymphoid tissues [23]. Indeed, we isolated and identified novel
human TRIM orthologues and already described finTRIMs (OmTRIMS, OmTRIM16, OmTRIM25,
OmTRIMS62, finTRIM 1, and finTRIM 2), as well as their expression patterns in the gill cell line RTgill-
W1, rainbow trout primary gill cultures and in gills from infected rainbow trout. In addition, we
demonstrated that OmTRIM25 has a crucial role in the regulation of the molecular immunology in
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the fish by modulating the expression of TNF-a2 and IL-1f3. Thus, our findings suggest the existence
of novel TRIM orthologues in rainbow trout with immunomodulatory capacity and highlight the
potential of fish models to elucidate the molecular signalling underpinning the conserved defence
systems across lower and higher vertebrates.

Notably, this is the first study where it has been described at transcriptional level the presence
of those TRIM orthologues in rainbow trout, and the first one to demonstrate that finTRIM 1 and
finTRIM 2 can be expressed in gills apart from immune-specialized tissue [21]. It is remarkable that
some of the TRIM orthologues found in this study have been previously linked to the immune system
in other organisms, including TRIMS [24,25]; TRIM25 [26,27]; and TRIM62 [28]. Indeed, we detected
that all TRIM and finTRIMs, but TRIM62, are overexpressed after the challenge with either LPS or
poly(I:C) in RTgill-W1 cells and primary gill cultures along with classical cytokines, such as TNF-a2,
IL-1p and type I IFN, which suggests that these TRIM members may be involved in the local immune
response of the gill. Nevertheless, the expression levels of these TRIMs were significantly higher in
cells treated with poly(I:C) than LPS, indicating a greater sensitivity for viral infection. Accordingly,
accumulating evidence suggest that several TRIM members have been proven to possess anti-viral
mechanisms, including inhibition of distinct steps in the viral life cycle [13], modulation of the retinoic
acid-inducible gene-I (RIG-I) [29], and regulation of the signalling cascade after TLR3 activation [30].
Although we found that some TRIM proteins correlate between them at gene expression levels, it
remains unclear whether this relationship is mutually dependent, synergic or independent in terms
of signalling and mechanism. Future studies are warranted to address potential interactions between
TRIM members in immune contexts.

We further investigated the immune reactivity of these TRIMs by exploring their gene
expression in gills from infected rainbow trout with F. psychrophilum, a Gram-negative bacterial rod
responsible of rainbow trout fry syndrome and bacterial cold water disease and rainbow trout fry
syndrome [31]. Indeed, we detected overexpressed TRIMs at different time points after the challenge.
A plethora of pro- and anti-inflammatory molecules are elevated during an infection, reaching peaks
of expression at distinct stages depending of their function [32,33], and TRIM proteins with
immunological activity may follow this assumption. In this experiment, OmTRIM25 and finTRIM2
were significantly elevated after only two days of infection, while other classic cytokines like IL-1f3
and TNF-a2 reached their peaks of expression at four- and six-days post-infection, respectively. This
result shed light into a potential involvement of OmTRIM25 and finTRIM2 in the regulation of
bacterial pattern recognition with direct effects on triggering the expression of IL-13 and TNF-a2,
and even for other TRIMs which we found expressed at later time points. This hypothesis can be
supported by previous literature pointing out the role of TRIM proteins in modulating immune
signalling pathways [34]. On the other hand, we detected expression peaks at the very end of the
experiment for OmTRIM62 (15- and 30-day post infection), suggesting potential implications for
adaptive and long-term immunity. Accordingly, the role of TRIM proteins in adaptive immunity has
been noted to be crucial for T cell differentiation and production of immunomodulatory cytokines
[35,36]; however, the capacity of TRIM62 to regulate adaptive immunity in higher vertebrates has not
been confirmed yet.

Considering the high correlation of the induction of OmTRIM?25 found in RTgill-W1 cells and
primary gill cultures after the challenge with LPS, and the early expression of this TRIM in gills from
infected rainbow trout with F. psychrophilum, we decided to examine more profoundly into its
potential interactions with immune signalling linked to bacterial defense. Thus, we silenced the
expression of OmTRIM25 at transcriptional level by using siRNA in RTgill-W1 cells stimulated with
LPS. We found a significant decrease in the mRNA levels of OmTRIM25 confirming the efficacy of
the gene knock down. Moreover, we detected that blocking OmTRIM?25 caused a significant reduction
in the expression of TNF-a2 and IL-1f as well, implying a modulatory function of OmTRIM25 over
the expression of these cytokines after an LPS stimulation and potential bacterial infection. The
precise mechanism of how this could happen was not investigated in this study, but open interesting
molecular options for future studies. TRIM proteins are known to possess E3 ubiquitin ligase activity
[37], and such activity has been demonstrated for TRIM25 [29,38]. For instance, it was reported that
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TRIMY is able to promote the activation of TLR4, a specific receptor for LPS recognition, through its
E3 ubiquitin ligase activity [39]. Other proteins can regulate I«kB levels and modulate the activation
of the nuclear factor NF-kB using the same enzymatic activity [40,41]. Additional experiments are
necessary to prove whether OmTRIM25 utilises some of the aforementioned mechanisms to
modulate the expression of TNF-a2 and IL-1(3 in vitro.

In conclusion, our present work confirmed that gill tissue expresses novel TRIM protein
transcripts not previously described in rainbow trout by using different molecular biology techniques
and validated through bioinformatic tools. We further demonstrated that these TRIM transcripts can
be induced by specific viral and bacterial pathogen-associated molecular pattern in gill using in vitro
models, and that they present specific time-dependent expression peaks in gills from infected
rainbow trout over a period of 30 days. In addition, our findings revealed that OmTRIM?25 is needed
to trigger LPS-induced expression of pro-inflammatory cytokines in RTgill-W1 cells, suggesting a
potential immunomodulatory function in the gill. Together, these data provide novel insights into
the role of TRIM proteins in rainbow trout immunology and potential molecular mechanisms
underpinning their function.

4. Materials and Methods
4.1. Chemical and Reagents

L-15 medium was obtained from Life Technologies. Foetal bovine serum (FBS) was obtained
from (Biological Industries). Penicillin/streptomycin was obtained from Gibco. Poly(l:C) was
purchased in Sigma. LPS from Pseudomonas aeruginosa was provided by Dr. Alejandro Dinamarca
(Universidad de Valparaiso, Chile). FuGENE® was obtained from Promega, and TRIzol® was
obtained from Invitrogen.

4.2. Culturing of RTgill-W1 Cells and Treatment

The gill epithelial cell line RTgill-W1 from rainbow trout (ATCC® CRL-2523™) was gently
provided by Dr. Brian Dixon (University of Waterloo, Canada), and cultured as previously described
by Alvarez et al. 2017 [42]. Briefly, RTgill-W1 cells were maintained in L-15 medium with 4 mM
glutamine and supplemented with 5% FBS, 200 U mL penicillin and 200 pg mL streptomycin at 20
°C in 6-well plates at a density of 6 x 105 cells per well. RTgill-W1 cells were treated with either 10 pg
mL1 LPS or 30 ug mL-! poly(I:C) in FuGENE® for 4, 8, 12 and 24 hours. Times and doses of LPS and
poly(I:C) were chosen according to the molecular inflammatory pattern observed in RTgill-W1 cells
[42].

4.3. Primary Culturing of Rainbow Trout Gill Cells

Adult rainbow trouts (40-50 g; obtained from Rio Blanco, Los Andes, Chile) were sacrificed
using an overdose of benzocaine. The gills were dissected out and incubated in a PBS-antibiotic mix
buffer solution (200 U mL- penicillin, 200 pg mL~" streptomycin, and 400 pug mL"' gentamicin) three
times for 15 min at 17 °C. The tissue was enzymatically dissociated with 1 mg mL" collagenase (type
I) in fresh PBS-antibiotic mix buffer. The cell suspension was passed through a 100 um? cell strainer
and centrifuged at 1200 x g for 5 min at 17 °C. The pellet was resuspended in L-15 media
supplemented with 5% FBS, 200 U mL! penicillin and 200 pg mL! streptomycin. The suspended cells
were maintained at 20 °C in 12-well plates at 2.5 x 105 cells per well. The following day, primary gill
cells were treated with either 10 ug mL-* LPS or 30 pg mL-! poly(I:C) in FuGENE® for 4, 8, 12 and 24
hours. Times and doses of LPS and poly(I:C) were chosen according to the molecular inflammatory
pattern observed in RTgill-W1 cells [42].

4.4. Fish Handling and F. psychrophilum Growth Conditions

Juvenile and healthy rainbow trout (weighing 6 +2 g, n =108) were procured from the Rio Blanco
fish farm, a hatchery with no disease history and certifications for being patho-gen-free as per Chilean
Lists 1, 2, and 3 [43]. These fish were kept in two separate 200 L plastic tanks containing aerated
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dechlorinated water at a temper-ature of 15 + 1 °C and were given a week to acclimate before
undergoing the bacterial challenge. The fish were fed daily ad libitum with a commercial feed
(Skretting, Chile), amounting to 1.5% of body weight, and were exposed to a 12:12 h light:dark
photoperiod, with the tank water being refreshed every alternate day to eliminate faecal and ni-
trogenous waste.

The study utilized Flavobacterium psychrophilum CC5, an isolate recovered from rainbow trout
in 2014 and authenticated as F. psychrophilum through conventional phenotyping and 16S rDNA-
based PCR [44,45]. The isolate's growth medium was TYES agar plates (comprising 0.4% tryptone,
0.05% yeast extract, 0.02% anhydrous calcium chloride, 0.05% magnesium sulphate heptahydrate,
and 1% bacteriological agar, with a pH of 7.2), and the isolate was aerobically incubated at 15 °C for
a duration of 3-5 days [46] . The medium was initially prepared in a solid state for the first growth,
ensuring not more than two sub-cultured growths from stock cultures, and subsequently in a liquid
state (omitting the bacteriological agar) with agitation set at 100 rpm, for generating the inoculum
that was administered to the fish. The stock cultures were preserved at -80 °C within Criobilles tubes
(AES Laboratory).

4.5. Experimental Design and Fish Sampling

To investigate and detail the existence of new TRIM proteins engaged in the innate immunity of
rainbow trout through in vivo methodologies, infectivity tests utilizing the CC5 isolate were
executed, anticipating a 10% mortality rate in fish. The methodology adhered to is congruent with
the one delineated in Mufioz et al. (2019) [47]. All experimental workflows and animal handlings
were orchestrated in compliance with the ethical guidelines for live animals stipulated by the Chilean
National Commission of Scientific and Technological Research (CONICYT) and the Ethics Committee
for Animal Experiments at the Universidad Andrés Bello.

Two distinct challenges were performed in duplicate (Experiments 1 and 2), and preceding
experiments 1 and 2, all fish were anesthetized using a 15 °C benzocaine solution (30 mg L-1). In
Experiment 1, 54 rainbow trout were divided into two groups of 27 and housed in 6-L plastic tanks
with aerated dechlorinated water at 15 + 1 °C. These were inoculated via intramuscular injection with
0.1 mL of 5.6 + 0.41x105 CFU fish-1. For Experiment 2, a separate group of 54 fish were injected with
only 0.1 mL of TYES broth per trout (TYES group). The duration of all tests was maintained up to 30
days, with bi-daily water changes in each tank to eliminate faecal and nitrogenous waste, and daily
monitoring for disease symptoms. Deceased fish, which were excluded from analysis samples, were
removed daily from each tank, and analysed by direct streaking of various samples (skin lesion,
kidney, liver, and spleen) onto TYES agar plates, incubated at 15 °C for 5 days. Biochemical and PCR
analyses were conducted on isolates to validate whether the injected bacterium was the mortality
cause. Additionally, to preserve tank density, an equivalent number of fish were randomly removed
from the non-infected tank whenever a fish inoculated with the CC5 isolate was removed.

Fish samples were swiftly netted from all groups at multiple post-infection days (1, 2, 4, 6, 8, 10,
15, and 30). At each sampling interval, three individuals were sampled (n = 6, 3 fish per tank). Before
sampling, all fish were first anesthetized using a benzocaine solution (30 mg L-1) and subsequently
euthanized with an overdose of the same solution (100 mg L-1). A section of the second gill tissue
was extracted, instantly frozen in liquid nitrogen, and stored at -80 °C for subsequent processing.

4.6. Molecular Cloning and Sequencing

PCR products were gel purified and sequenced as previously described [42]. Briefly, amplicons
were isolated with an E.Z.N.A.® Gel Extraction Kit (Omega Biotek) and cloned using the TOPO TA
with the pCR 2.1 TOPO® vector (Thermo Scientific). Plasmids were transformed into DH5a
Escherichia coli cells and purified using an E.Z.N.A.® Plasmid Mini Kit I (Omega Biotek). Plasmid
constructs were verified by PCR and the sequences were obtained by pyrosequencing under the
directions and services provided by Macrogen Inc., Seoul, Korea.


https://doi.org/10.20944/preprints202405.0606.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2024 d0i:10.20944/preprints202405.0606.v1

12

4.7. Identification of TRIM CDS in RTgill-W1

To obtain the TRIM coding DNA sequences (CDS) presented in this work, we followed three
different PCR strategies: 1) Specific PCR primers (Table 2) were designed to amplify the entire CDS
region of three virus-induced finTRIMs previously described in spleen of O. mykiss [21]. These
sequences were arbitrary named in this study as finTRIM1 (AF483536), finTRIM2 (AM887838), and
finTRIM3 (AM887799); 2) Degenerate PCR primers were produced to non-specifically amplify any
TRIM belonging to the C-IV family, currently the group of TRIM proteins with the highest number
of members associated with immunological activity in higher vertebrates [48]. Specifically, two
forward primers were designed in the RING/B-box N-terminal domain, and two reverse primers
were designed in the PRYSPRY (B30.2) C-terminal domain (Table 3); 3) Additional TRIM CDS were
obtained through an EST contig sequence search in O. mykiss using the GenBank database.

Table 2. Specific PCR primers to amplify O. mykiss finTRIM CDS. F: forward, R: reverse.

Name GenBank Primers PCR product size
, F: ATGGCTCAACAGGGAGTTCT 606 bp
AnTRIM1  AF483536  p 1A CTGCCTCTGTTTCTCAGTC
, F: ATGGCTCAACAGGGAGTTCT 1227 bp
AnTRIM2  AMB887838 ¢ 1A ATGACTCTTTCTGTTCCCTT
GUTRIM3  AMsg7799 | ATGGCTCAGCAGGGAGTTT 1656 bp

R: CTACAGTTTAACCAGCTCAGCAGTAC

Table 3. Degenerate primers to amplify potential C-IV TRIM members.

Primer Forward (RING) Reverse (B30.2)
Setl TGTGGACACASTTACTGYA AGTYCAGACCACATTCACTSA
Set2 GGMTGCTGGGAYCAGGA CAGACCACATTCACT

4.8. RNAi Gene-Silencing Assay

To verify the involvement of OmTRIM3 in the immune response of rainbow trout against LPS
in vitro, we established a RNA-mediated interference (RNAi) platform to silence its gene expression
as previously demonstrated [49,50]. Small interfering RNA (siRNA) were designed using the Custom
Dicer-Substrate  siRNA  Tool provided by Integrated DNA  Technologies, Inc.
(https://www.idtdna.com), and ordered to the same company. Briefly, RTgill-W1 cells were pre-
incubated with either 50 nM of two sets of OmTRIM25-siRNA or GFP-siRNA (technique control)
using FuGENE® for 14 hours (Table 4). The L15-media was replaced with fresh media containing 10
pg mL1 LPS and maintained 8 hours. The dose and duration of treatment of siRNA were chosen
based on previous publications using RNAi platforms in different fish cell lines [51,52].

Table 4. Designed siRNAs to silence OmTRIM25 gene expression.

siRNA Sense sequence Antisense sequence
rArCrArArCrArGrCrCrArCrArArCr rArUrGrArUrGrUrArCrArCrGrUrUrGr
siGFP GrUrGrUrArCrArUrCAT UrGrGrCrUrGrUrUrGrUrArG
SITRIM25-1 rGrCrArGrCrArGrArGrArGrGrArCr rUrCrUrGrUrUrUrCrUrCrArGrUrCrCr
UrGrArGrArArArCrAGA UrCrUrCrUrGrCrUrGrCrArG
SITRIM25-2 rGrGrArGrGrArCrArGrUrGrArUrCr rArGrUrArArArGrArUrCrUrGrArUrCr
ArGrArUrCrUrUrUrACT ArCrUrGrUrCrCrUrCrCrArC

4.9. Total RNA Extraction, cDNA Synthesis and Reverse Transcription Quantitative Real-Time PCR (RT-
gPCR)

Total RNA was isolated using the TRIzol® reagent and the RNA E.Z.N.A.® Total RNA Kit I
(Omega Bio-Tek). Briefly, cells/tissue were lysated using TRIzol®, and transferred into the kit filter
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tubes to proceed with the manufacturer directions. RNA concentration was assessed using a ND-
1000 spectrophotometer. Subsequently, isolated RNA was reverse transcribed into cDNA using the
AffinityScript cDNA Synthesis kit (Agilent). The GOTaq polymerase (Promega) and an ESCO®
Aerins™ thermal cycler were used for agarose gel electrophoresis PCR. For RT-qPCR, cDNA
amplification was performed using the Brilliant Il SYBR® Green QPCR Master Mix (Agilent) and the
mRNA expression levels were measured using a Mx3000P qPCR System (Agilent). Each sample was
analysed in duplicate for both target gene and reference gene, and the expression rations were
calculated using the 2-4A¢t method [53]. Specific qPCR primers were design to detect the expression
of the TRIM transcripts found in this study (Table 5).

Table 5. Specific primers designed for this study for quantitative RT-qPCR.

Gene Forward Reverse

finTRIM 1 CTACTGAAGGAGCCGGTGG CAGTGCAGACATCACACGC
finTRIM 2 CTGGACCTGGAAATGTGACA TGCAGGAAATTCATAGTGAGGTTT
OmTRIM25 TCACCAACTGGTACCAGTITACA AGAGCACTGGAAACTCCAGGACTT
OmTRIM16 AAAGGTGACCTGTACACACCTCT TCTCTGTTCTGCTGATGTCTTTA
OmTRIM62 GATTTCCCGACCTCCAAGTACA GCAGGTTACCATAGGCTACGAT
OmTRIMS GGAAGTGGAAGTGGCTCTCTAA TCCATGGTACACACCAGGATCT
EFla TGGAGACTGGCACCCTGAAG CCAACATTGTCACCAGGCATGG
GAPDH CCTGCAGAAGGGAATCAAAGTCGT TCTCATGGGGCTTCATACACTGGA
TNF-a2 GTGTGGCGTTCTCTTAATAGCAGC ATTCCGTCCTGCATCGTTGC

IL-1B GTCACATTGCCAACCTCATCATCG GTTGAGCAGGTCCTTGTCCTTGA

Type I IFN GATGCTGAGTTTGAGGACAAAGTC  GTTTCATGGCAGGTGATACACAGGA

4.10. Bioinformatics

A Dbioinformatic approach was performed to determine the identity at protein level of each
sequence using the protein database UniProt. To confirm the presence of the main domains of TRIM
proteins, the Conserved Domain Database (NCBI) was used along with a prediction of the secondary
structure using the server JPred4 [54]. Comparison between sequences were performed by generating
multiple sequence alignments with Clustal Omega, and analysed with Jalview [55]. Finally,
phylogenetic trees were produced by using the Maximum-Likelihood (ML) method provided by the
MEGA (X) and were bootstrapped 1000 times. Three-dimensional structures were obtained from the
Protein Data Bank database. For correlation analysis of gene expression, the R package “corrplot”
(https://github.com/taiyun/corrplot) was used in Rstudio to analyse and generate the correlation
matrices.

4.11. Statistical Analysis

Statistical analysis and heatmaps were performed using GraphPad Prism 8.01 software. Data
from cytokines and TRIM gene expression were analysed by multiple t-test against the experimental
control group (within each time point). In addition, for the knock-down experiment, results were
analysed using one-way ANOVA and Tukey’s multiple comparison test. A p-value < 0.05 was
considered statistically significant.
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