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Abstract: Chemical vapor deposition (CVD) is a vital process for depositing thin films of various
materials with precise control over thickness, composition, and properties. Understanding the heat
and mass transfer mechanisms during CVD is essential for optimizing process parameters and
ensuring high-quality film deposition. This review provides an overview of recent advancements
in the heat and mass transfer modeling for chemical vapor deposition processes. It explores
innovative modeling techniques, recent research findings, emerging applications, and challenges in
the field. Additionally, it discusses future directions and potential areas for further advancement in
CVD modeling.
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1. Introduction

Chemical Vapor Deposition (CVD) is a widely used technique for fabricating high-quality thin
films and coatings, crucial in industries like semiconductors, photovoltaics, and advanced materials
[1]. It involves the chemical reaction of vapor-phase precursors on a heated substrate, forming a solid
thin film [2]. The versatility and precision of CVD make it essential for producing thin films with
excellent uniformity, purity, and adhesion.

CVD’s importance in thin film deposition is especially pronounced in the semiconductor
industry, where it is crucial for manufacturing integrated circuits and other microelectronic devices
[3]. Thin films created through CVD are crucial for forming active layers, insulating barriers, and
conductive pathways in these components. The precise control of film thickness at the nanometer
scale and the ability to achieve excellent step coverage over complex topographies are vital for the
miniaturization and performance enhancement of semiconductor devices [4].

Beyond semiconductors, CVD is widely used in the production of photovoltaic cells [5], where
thin films of materials like silicon, cadmium telluride, and copper indium gallium selenide are
deposited to create efficient solar cells. In optics, CVD is used to deposit antireflective coatings,
optical filters, and waveguides [6]. Additionally, the aerospace and defense industries utilize CVD to
produce wear-resistant and corrosion-resistant coatings, enhancing the durability and performance
of critical components [7].

The widespread use of CVD across various high-tech industries highlights its significance. The
ability to precisely control the chemical composition and microstructure of thin films through process
parameter adjustments allows for the creation of materials with properties tailored to specific
applications. This flexibility makes CVD a valuable tool for technological advancement and
innovation [8].

The effectiveness of CVD processes heavily depends on the dynamics of heat and mass transfer.
Accurate modeling of these phenomena is crucial for optimizing the deposition process, ensuring
uniform film thickness, and achieving desired material properties [9].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Heat transfer in CVD involves conduction, convection, and radiation of thermal energy to and
from the substrate and reactor walls [10]. Maintaining the substrate at an optimal temperature is
essential for promoting the desired chemical reactions while avoiding thermal degradation or stress
[11]. Inconsistent temperature distribution can lead to non-uniform film growth, defects, and reduced
material performance [12]. Therefore, understanding and controlling heat transfer is fundamental to
producing high-quality thin films.

Mass transfer involves the transport of gaseous precursors to the substrate surface and the
removal of by-products from the reaction zone. Efficient mass transfer ensures uniform delivery of
reactants to the substrate, promoting consistent deposition rates and film composition [13]. Factors
such as gas flow dynamics, precursor concentration, and reactor design significantly impact mass
transfer. Poor mass transfer can result in precursor depletion, incomplete reactions, and non-uniform
deposition [14].

This review article provides a thorough examination of recent advancements in heat and mass
transfer modeling for CVD processes. The intricate interplay between heat transfer, mass transfer,
and chemical reactions within the CVD environment necessitates sophisticated modeling to
accurately predict film growth and properties. The review covers a broad range of CVD systems,
including thermal CVD, plasma-enhanced CVD (PECVD), and metal-organic CVD (MOCVD). Each
system presents unique challenges and opportunities regarding heat and mass transfer, and the
review highlights specific modeling techniques and solutions developed for each. In addition to
fundamental aspects of heat and mass transfer, the review explores various modeling methodologies,
ranging from analytical models and empirical correlations to advanced numerical simulations. It
discusses the advantages and limitations of different approach and their applicability to different
CVD processes and materials. Computational models incorporating fluid dynamics,
thermodynamics, and kinetics can simulate different reactor designs, precursor chemistries, and
operating conditions, aiding researchers and engineers in optimizing processes. These models help
predict deposition rates, film uniformity, and material properties, reducing the need for extensive
experimental trials.

Advances in numerical methods, such as finite element analysis, computational fluid dynamics
(CFD), and multi-scale modeling techniques, are highlighted for their role in enhancing model
accuracy and efficiency. These models account for gas-phase reactions, surface kinetics, and
thermodynamic properties, providing a comprehensive understanding of the deposition process. The
review also explores the latest developments in computational tools, focusing on the integration of
CFD, multi-physics simulations, and machine learning techniques to improve model accuracy and
predictive capabilities. Case studies and recent research examples illustrate the practical
implementation of these models and their impact on process optimization.

By synthesizing existing knowledge and identifying gaps in current research, the review aims
to provide a roadmap for future studies and innovations in the field. It serves as a valuable resource
for researchers and engineers looking to improve the modeling of heat and mass transfer in CVD
systems.

2. Fundamentals of CVD

To apply thin ceramic coatings that enhance wear resistance under friction conditions, two
entirely different vapor phase deposition processes are typically used [15]: Chemical Vapor
Deposition (CVD) and Physical Vapor Deposition (PVD). In the CVD process, a coating of reaction
products is generated on the substrate through a chemical reaction occurring in the gas phase, usually
carried out at atmospheric pressure. Coatings produced by CVD are uniform, even on the surfaces of
complex-shaped products [16]. The substrate temperature is higher in CVD processes compared to
PVD [17]. For instance, when producing a TiN layer using chemical deposition, the temperature is
approximately 1000°C, whereas in the physical process it is around 500°C. In chemical vapor
deposition, layers are formed on the surface of a heated material as a result of a chemical reaction in
the gas phase. Therefore, the production of CVD layers is a continuation of thermochemical treatment
processes in a gas atmosphere, especially diffusion metallization.
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During the CVD process, reactive gaseous substrates, usually with a carrier gas, flow around the
substrate, and the coating is formed by the decomposition of the reactive gas mixture on the treated
surface and the incorporation of released metal atoms or chemical compounds into the layer [18].
There are three main stages in the process [19]:

— production of a chemical compound of the applied element with high volatility (easily
evaporating),
— transport of gas (vapor) from the forming compound to the place of deposition without its
disintegration,
— the chemical reaction necessary to produce a coating on the surface of the product.
Chemically, vapor deposition layers are the of a chemical reaction on the surface of a heated
substrate. Therefore, the basic condition of the process is the availability of a chemical compound of
the applied element that vaporizes at a reasonably low temperature and decomposes upon contact
with the substrate, leading to the formation of the element or chemical compound [20]. Figure 1
shows the transport and reaction processes that take place during CVD.

Main gas flow region

[ > O Desorption of

volatile surface

Gas phase reaction products
reactions \ .
Transport . Redesorption Nucleation and
Surface ]
of precursors island growth Step growth

Adsorption of precursors Surface reaction

Figure 1. CVD scheme (transport and reaction processes).

The CVD process is used to produce layers from metallic and non-metallic materials as well as
their compounds, including carbides, nitrides, borides, and oxides [21,22].

The charge is placed on graphite or nickel trays. The reducing and diluting gas, usually dry
hydrogen, is introduced into the reactor simultaneously with the start of heating the charge. After
the charge reaches the process temperature, reactive components are supplied to the chamber. During
the process, the gaseous components introduced into the reactor react on the surface of the workpiece,
forming a coating and gaseous reaction products. In many CVD processes, gases such as HF or HCl
are formed during the reactions, which are neutralized by passing them through chemical or
cryogenic traps. The CVD coating deposition cycle, including heating and cooling of the products, is
long and can take up to 12 hours. Therefore, it is practical to install a separate reactor for each type of
coating composition, e.g., one for TiC/TiN and another for TiC/AI203. This way, contamination of
the chamber with substances other than those used for producing the specific type of layer is avoided.

The reactions occurring in the gaseous substrates that lead to the formation of coatings require
an energy source. Different variants of the CVD process differ in the type of energy source used,
resulting in variations in the properties of the produced coatings. Typical energy sources include the
hot surface of the coated products, direct or alternating current plasma at radio frequency or
microwave frequency. Sometimes, the heat of combustion of process gases serves as the energy
source, such as the combustion of acetylene during the CVD process for producing diamond-like
coatings [23]. The chemical reactions occurring in the thermal CVD process on the surface of the
product between gaseous reagents are thermally activated. Therefore, to ensure the process proceeds
at a satisfactory rate, a temperature usually higher than 900°C is required. The plasma CVD process
allows a significant reduction in temperature to the range of 300-700°C. The use of metal-organic
compounds, on the other hand, allows the process temperature to be reduced even further, to around
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500°C. Low-temperature processes enable the production of layers on substrates made of materials
with low melting points, as well as materials that undergo phase transformations above the
deposition temperature. The low deposition temperature of plasma CVD limits the stresses caused
by the large difference in the coefficient of thermal expansion between the substrate and the coating.
This primarily limits the tendency for deformation and cracking during the cooling of the product
from the coating production temperature to room temperature.

The CVD process can be conducted under atmospheric pressure conditions (100 kPa) [24,25] or
reduced pressure conditions (0.1-6.6 kPa) [26]. The process is practically applicable when the
chemical reactions occurring ensure obtaining a coating of the required thickness of 5-15 pm within
a reasonable time of 5-6 hours. The rate of chemical reactions and the deposition rate in the CVD
process increase exponentially with temperature, according to the Arrhenius equation [24].
Therefore, high-temperature processes are preferred from a kinetic standpoint. However, the high
temperature adversely affects the substrate, causing changes in its microstructure and mechanical
properties.

Since the mechanical properties of the substrate are crucial, significant effort has been made to
find chemical reactions that allow the CVD process to be conducted at relatively low temperatures.
The temperature to which the substrate is heated during the process usually ranges from 600 to
1100°C. This temperature is sufficient to cause significant and often undesirable changes in the
microstructure of the steel. Therefore, heat treatment is necessary after the process to ensure the
required microstructure and properties of the substrate. The development of CVD processes is driven
by the aim to reduce the deposition temperature. One of the low-temperature processes is plasma-
assisted CVD [27].

CVD processes are used to produce coatings made of metals, ceramics, as well as diamond and
diamond-like layers. This method can produce coatings from metals that cannot be deposited
electrolytically and have high melting points, such as W, Mo, Re, Nb, Ta, Zr, and Hf. Refractory
metals are deposited at temperatures significantly below their melting or sintering temperatures.
Diamond and diamond-like layers, chemically deposited from a gaseous mixture of hydrogen and
hydrocarbons, have properties similar to natural diamond [28]. Currently, CVD processes are
primarily used to produce coatings on cutting tools. The coatings produced are usually multilayered,
utilizing the best properties of each layer material [29]. For example, a TiN layer provides a low
coefficient of friction and resistance to galling, while an Al203 layer is characterized by high
oxidation resistance and high-temperature stability, which is beneficial when the cutting speed is
high [30]. Meanwhile, TiC and Ti(C,N) layers provide high resistance to abrasive wear under friction
conditions [31].

The advantage of the CVD process is the ability to deposit coatings on partially obscured
surfaces, such as the internal surfaces of small-diameter holes (< 1 mm). As with other processes, a
strong bond between the coating and the substrate is only possible if the substrate surface is clean
and free from oil and grease residues, oxides, and other contaminants [19].

The high substrate temperature promotes the mutual diffusion of atoms from the substrate into
the coating and vice versa. Therefore, the bond between the coating and the substrate produced by a
high-temperature process is a strong metallic bond. However, when the atoms of the layer form
brittle intermetallic phases with the atoms of the substrate, such mutual diffusion is undesirable as it
reduces mechanical properties and leads to delamination of the coating. To avoid this, diffusion
barriers are used in the form of interlayers made of materials that do not form brittle phases with
either the substrate or the deposited outer coating. In some applications, multilayer CVD coatings are
beneficial. They not only provide good adhesion to the substrate and limit mutual diffusion, but also
allow for advantageous changes in mechanical, chemical, and physical properties across their cross-
section [32]. For example, on carbide tools, three successive layers are deposited in the order from the
substrate: titanium carbide, titanium carbonitride, and titanium nitride. Such a coating shows
significantly greater durability compared to a single-layer coating. Sometimes, coatings consisting of
ten layers are used.
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The microstructure of coatings produced by the CVD process usually consists of columnar
grains, although equiaxed grains typically form at the beginning of the process (near the surface of
the product) [33,34]. The type of microstructure and grain size depend significantly on the process
conditions [35]. Often, the most desirable microstructure does not form at a high deposition rate.
Therefore, it is necessary to balance the cost criteria of the process (high deposition efficiency) with
the microstructure that ensures good tribological properties.

Coatings formed during the CVD process result from the absorption of deposited atoms on the
substrate surface, their migration across the substrate surface, and the formation of atom clusters by
the adsorbed atoms. These clusters, upon reaching a critical size by the addition of new atoms,
become grain nuclei. A significantly higher growth rate of grains in the direction parallel to the
substrate surface than in the perpendicular direction leads to the formation of a thin, dense coating
layer with a well-defined structure and surface topography. Grain nucleation on the substrate is
heterogeneous, so the cleanliness of the substrate, its roughness, and its crystalline structure greatly
influence the nucleation and growth of grains, as well as the microstructure and surface topography
of the coating [36].

In general, the microstructure of the coating and the topography of its surface depend on [37,38]:

the process temperature, which affects the mobility of atoms,
supersaturation,

process duration,

pressure in the chamber,

gas flow rate (laminar or turbulent),

spatial position of the substrate in the chamber,

substrate surface preparation.

e e o o o o o

Generally, increasing the reaction temperature and process duration increases the volume
fraction of the crystalline structure while decreasing the amorphous fraction. Similarly, reducing the
gas flow rate and the degree of supersaturation has the same effect. Grains in the immediate vicinity
of the substrate are very small, about 1 um in size. However, at a distance of about 1 um from the
substrate, the grains achieve much larger sizes. Grains with a favorable crystalline orientation grow
faster and eliminate grains with less favorable orientations that grow more slowly. Additionally,
grain growth is energetically easier compared to the nucleation of new grains on the surface of the
growing layer. In the coating zone away from the substrate, a microstructure of equiaxed or columnar
grains can be distinguished.

Increasing the deposition temperature changes the topography of the external surface of the
coating. A relatively low temperature and short deposition time lead to the formation of a coating
with a surface roughness of about 1 pm with characteristic spherical protrusions. Increasing the
temperature or the time causes needle-shaped grains to begin dominating the surface of the coating.
Further increasing the deposition temperature or prolonging the time promotes the formation of a
coarse-grained equiaxed microstructure.

CVD can be classified according to three parameters [39]:

— operating conditions (atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), and
ultrahigh vacuum CVD (UHVCVD)),

— physical characteristics of vapor (aerosol-assisted CVD (AACVD) and direct liquid injection CVD
(DLICVD)),

— substrate heating (hot wall CVD, and cold wall CVD).

3. Heat Transfer Modeling

Heat transfer modeling is crucial for optimizing Chemical Vapor Deposition (CVD) processes as
it directly impacts the quality and properties of thin films. The primary objective is to ensure uniform
temperature distribution across the substrate, which is essential for consistent deposition rates and
uniform film thickness. Variations in temperature can lead to defects, stress, and variations in
material properties.
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Heat transfer models assist in designing CVD reactors and processes that maintain stable
thermal environments, promoting high-quality film deposition. These models help determine
optimal process conditions such as substrate temperature, precursor flow rates, and reactor pressure.
By simulating various thermal scenarios, researchers can identify conditions that maximize
deposition efficiency while minimizing energy consumption and material waste, which is vital for
scaling up from laboratory to industrial production.

Thermal gradients within the reactor affect deposition processes, growth rates, and film
morphology. Accurate modeling allows for better control of these factors. Proper temperature control
prevents premature precursor decomposition and ensures complete chemical reactions, thereby
avoiding poor film quality. Additionally, modeling helps design controlled heating and cooling
protocols to mitigate thermal stress, cracking, and delamination.

Heat transfer modeling is essential for designing and scaling up CVD reactors by evaluating
different configurations for effective thermal management. It often integrates with other multiphysics
models, including mass transfer, fluid dynamics, and chemical kinetics, providing a comprehensive
understanding of the CVD process. This integration helps optimize gas flow patterns, temperature
distribution, and precursor delivery.

Effective heat transfer management enhances energy efficiency, reduces consumption, and
improves sustainability by identifying energy-saving opportunities and minimizing the
environmental impact of CVD operations.

Heat transfer modeling plays a crucial role in CVD processes by enabling precise control and
optimization of temperature distribution, which is essential for achieving uniform thin-film coatings
and high-quality material growth. For example, the performance of SiC devices is highly dependent
on the material quality of SiC substrates, which is influenced by heat and mass transfer within the
CVD reactor [40]. Numerical simulations and modeling help understand the complex interactions of
fluid dynamics, thermodynamics, and surface reactions, which are critical for predicting and
controlling the deposition process [41]. Modeling has been used to evaluate new reactor concepts for
SiC bulk growth, demonstrating the impact of gas flow and temperature distribution on the
deposition area [42]. Additionally, reactor geometry, such as a cone top configuration, can
significantly affect gas flow patterns and deposition rates, reducing non-uniformity in film thickness
[9]. Temperature distribution on the wafer surface is another critical factor, influencing chemical
reactions during the CVD process. Models have shown significant temperature drops in narrow gaps
between the wafer and heater under low-pressure conditions [43]. In applications like X-ray anodes,
heat transfer modeling optimizes the design for better thermal management, reducing maximum
temperatures in critical components [44]. Furthermore, in-line CVD processes for coating optical
fibers benefit from coupled radiation and convection heat transfer models to predict temperature
profiles and improve coating uniformity [45]. Numerical models also ensure the stability and
uniformity of substrate heating, which is vital for depositing oxide semiconductor layers containing
nanoparticles [46]. Overall, heat transfer modeling integrates thermodynamic, kinetic, and transport
data to link film properties to process parameters, highlighting its indispensable role in advancing
CVD technology [47].

Recently, there has been increasing interest in using various modeling tools to simulate heat
transfer in CVD processes. These approaches include Continuum Models (based on Finite Element
Analysis (FEA) and Computational Fluid Dynamics (CFD)), Molecular Dynamics (MD) Simulations,
the Lattice Boltzmann Method (LBM), Hybrid Approaches, and Multi-Physics Modeling. The
following sections will analyze selected solutions developed over the last decade.

3.1. Continuum-Based Approaches

The study of continuum-based models in heat transfer during Chemical Vapor Deposition
(CVD) processes has seen significant advancements over the last decade, with various research
papers contributing unique insights and methodologies.
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3.1.1. Finite Element Analysis

The finite element analysis (FEA) has been extensively applied to model heat transfer during
Chemical Vapor Deposition (CVD) processes, offering various advantages and facing certain
limitations.

Houston and Sime developed a self-consistent model for hydrogen plasma in MPA-CVD
reactors, highlighting the practical performance of the discontinuous Galerkin method. However, the
complexity of the model posed implementation difficulties [48].

Sime’s thesis on MPA-CVD reactors introduced automatic code generation for DG finite element
formulations, simplifying the implementation process, though the approach remains prone to human
error [49].

Cheimarios et al. reviewed multiscale models for CVD, stressing the need to link different scales
to optimize the process, particularly for patterned and flat surfaces [50].

Zhou and Hsieh’s work on FDM, a related additive manufacturing process, demonstrates the
reliability of numerical modeling in predicting thermal responses and bonding mechanics, which can
be analogous to CVD processes [51].

Khanafer et al. further explore FDM by developing a 3-D computational model to analyze
transient heat transfer and inter-layer adhesion, validated against experimental data, suggesting
potential applications in CVD modeling [52].

Gabrielli et al. reviewed strategies to reduce computational effort in FEA of rolling-element
bearings, which can be adapted to optimize CVD reactor simulations by balancing accuracy and
computational load [53].

Lisik et al. validated a CVD reactor model in ANSYS CFX, confirming the model’s accuracy in
simulating heat and mass transfer under various conditions [54].

Kleimanov et al. developed a numerical model using COMSOL Multiphysics to ensure substrate
temperature stability and uniform layer deposition in a CVD reactor for oxide semiconductor layers
containing gold nanoparticles [46].

Aranganadin et al. discussed the design of a 3-D MPECVD chamber using FEM to achieve
accurate simulation results by incorporating multiple physical interfaces [55].

Stupple et al. used FEA to model heat transfer in a water-cooled copper-based X-ray anode with
a CVD diamond heat spreader, demonstrating significant temperature reduction [44].

Table 1 presents a summary of various aspects of selected articles in the field of application of
the FEM method.

Table 1. Analysis of selected articles in the field of use of finite element method.

Title Advantages Disadvantages Gaps and Limitations

The model’s focus on
axisymmetric scenarios
may not account for all

High accuracy in solving ~ Resource and time- plasma distribution
Numerical complex PDEs. intensive. perturbations, limiting its
Modelling of MPA- applicability to reactors
CVD Rea%tors with with non-axisymmetric
the Discontinuous . . features.
Galerkin Finite Integrating multiple
hysical phenomena (e.g., Although robust in
Element Method ©
emen MeTo gas dynamics, . . simulations, the model
[48] Complex implementation

electromagnetic fields,
plasma chemistry) into a

requires further real-

requiring numerical
q & world validation to

. modeling expertise. . .
single model offers a & exp ensure alignment with
holistic view of reactor experimental data.

processes.
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Applying the model to
various reactor
geometries demonstrates
its versatility and

potential for optimizing world reactor interactions.

reactor design and

The need for extensive
. computational resources
The model’s assumptions p s .
and specialized expertise
may limit the adoption of
these simulations in

routine industrial

and simplifications may
not fully capture all real-

. processes.
operation.
Integrating mf’rared The study prlmar‘ll.y Including more materials
thermography with FEM  focuses on a specific
. . . . would enhance the
provides detailed thermal material, typically studv’s apolicability and
analysis during the FDM  acrylonitrile butadiene y'sapp Y
relevance.
process. styrene (ABS).

The authors present a
robust framework for
coupling different scales.
Thermal Analysis of

Fused Deposition The findings offer

Modeling Process ~ valuable insights for
Using Infrared  optimizing FDM process
Thermography parameters, such as

Imaging and Finite printing speed and layer

Further investigation is
needed to scale the
approach to larger, more

Finite element modeling
is computationally
intensive and resource-
demanding, limiting
accessibility in some
settings.

complex parts and
different FDM printers.

The study focuses on

Element Modeling  thickness, to reduce . .
) immediate thermal
[51] thermal-induced defects .. . ..
Real-time integration effects; examining long-
and enhance the . o .
. . requires specialized term stability and
mechanical properties of . . .
. equipment and expertise, performance under varied
printed parts. . . - .
not always available in all conditions would provide
e settings. a more comprehensive
Validating FEM & P . A
. . o understanding.
simulations with infrared
thermography
strengthens the model’s
credibility.
FEM simulations are
resource-intensive, .
FEM allows high- v More comprehensive

resolution simulation of
temperature distribution

Thermal Analysis of and gradients in FDM.
Fused Deposition
Modeling I.’r.ocess A parametric study shows
Based Finite how print speed, layer
Element Method: ow p peed, laye

thickness, and extrusion
temperature affect the
thermal profile.

Simulation and
Parametric Study
[52]

The findings provide

valuable guidelines to

enhance the quality of
FDM-produced parts in

expertise, which may limit

requiring significant . —_—
d 8518 experimental validation of

the simulation results is

eir use by small to needed.

medium-sized
enterprises.
Incorporating dynamic
variables like

The study focuses on a .
environmental

specific thermoplastic

temperatures and
commonly used in FDM. P

humidity would improve
the study.

Although valuable, the

simulations have limited The scalability to larger

and more complex prints

experimental validation. is not fully addressed.

d0i:10.20944/preprints202405.2117.v1
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the additive
manufacturing industry.

d0i:10.20944/preprints202405.2117.v1

Verification of
Thermo-Fluidic

CVD Reactor Model

[54]

The article’s main
strength is verifying the
numerical model with
experimental data.

Using ANSYS CFX offers

a high-fidelity approach
to modeling thermo-
fluidic phenomena in

CVD reactors.

The study tackles

practical challengesin  The study’s experimental

CVD reactor operation,

like managing heat and despite its focus on model

mass transfer under
varying conditions.

ANSYS CFX simulations
are computationally
intensive and resource-
demanding.

The study is specific to the

modeled CVD reactor’s
conditions and
configurations.

validation is limited

verification.

The findings are specific
to certain reactor
configurations and
conditions.

Incorporating dynamic

variables like temperature
fluctuations and varying

gas compositions would
improve real-world
relevance.

More extensive
experimental data is
needed to validate the
model under diverse
conditions.

Modelling of Heat
Transfer in an
Aluminum X-Ray
Anode Employing a
CVD Diamond
Heat Spreader [44]

Using CVD diamond as a

heat spreader
innovatively manages
thermal loads in X-ray
anodes.

Numerical modeling
offers detailed insights
into thermal behavior,
identifying critical heat

buildup areas and

showing effective
mitigation by the CVD
diamond heat spreader.

The findings have
practical implications for
X-ray equipment design

and operation.

The numerical
simulations are resource-
intensive, requiring
significant expertise.

The study focuses on
aluminum X-ray anodes
with CVD diamond heat

spreaders.

The experimental
validation is somewhat
limited in scope.

Including different anode

materials and
configurations would
enhance the study’s
relevance.

Incorporating dynamic
conditions like varying
power loads and
environmental
temperatures would
improve the study.

Investigating long-term
performance and
durability under

continuous operation
would provide valuable
insights.

3.1.2. Computational Fluid Dynamics (CFD)

The last decade has seen significant advancements in the application of Computational Fluid
Dynamics (CFD) to model heat transfer during Chemical Vapor Deposition (CVD) processes, as
evidenced by the reviewed papers.

Lee et al. highlighted the importance of considering slip-flow regimes and heterogeneous
reactions to accurately simulate heat transfer and hydrogen generation in HFCVD processes,
emphasizing the correlation between gas temperature and hydrogen concentration gradients on
substrates [56].

Libreros et al. discussed the complementary nature of theoretical, experimental, and CFD
methods in optimizing flat fin heat exchangers, which is relevant for CVD reactor design [57].

Tran et al. demonstrated the use of Proper Orthogonal Decomposition (POD) to reduce the
complexity of CFD models in CVD processes, making them more computationally efficient [58].
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Passos et al. explored the synthesis of polymeric biomaterials in a vertical CVD reactor, using
CFD to optimize heat and mass transfer for uniform material deposition [59].

Silva et al. used CFD steady-state simulations to determine the hydrodynamic and thermal
properties of the flow field in a modified CVD process, achieving good agreement with reference
studies [60].

Zhou et al. employed the sliding mesh method in CFD to study the real-time dynamics of
transport phenomena in MOCVD, finding that susceptor moving speed significantly affects film
uniformity [61].

CFD simulations using a three-dimensional hexahedral mesh and finite volume method have
been employed by Park et al. to solve momentum, continuity, energy, and chemical species equations,
showing good agreement with reference studies [62].

CFD simulation of a tungsten crucible CVD reactor revealed that axial heat convection is more
intense than radial convection, and a uniform temperature distribution is achieved with an upper gas
inlet, which is beneficial for tungsten deposition [63].

Table 2 presents a summary of various aspects of selected articles in the field of application of
the CFD method.

Table 2. Analysis of selected articles in the field of use of CFD.

Title Advantages Disadvantages Gaps and Limitations

While two-dimensional
modeling provides

Th f two-
e use of two valuable insights, it Extending the modeling

dimensional CFD

. . . simplifies the reactor’s to three dimensions
modeling provides a high-

. . real-world three- would capture more

resolution analysis of heat . .

. dimensional nature, complex flow and heat
transfer in the HFCVD . .
potentially overlooking transfer phenomena.
process.

. . complex interactions and
Two-Dimensional L.
flow characteristics.

Computational , .
. . The study’s emphasis on . .
Fluid Dynamics . . Despite being two-
. . slip-flow heat transfer is . . . .
Modeling of Slip- dimensional, CFD Extensive experimental
relevant for HFCVD . . L.
Flow Heat Transfer simulations are validation is needed to

processes operating under

in the Hot Filament ..
low-pressure conditions

computationally intensive  corroborate the CFD

Chemical Vapor . and require significant results.
.\ where slip-flow effects are .
Deposition Process S resources and expertise.
[56] significant.
Incorporating dynamic
operating conditions, like
.Insigh’.cs from t}.1e CFD The study may have transient temper.ature
simulations can improve o . changes and varying gas
. limited experimental i,
HFCVD reactor design o compositions, would
. validation. . L.
and operation. provide a more realistic
representation of the
HFCVD process.
E ding the study t
CFD provides detailed CFD simulations are Xpanding the study to
o . . - include different
insights into fluid computationally
CFD Study of . . . . polymers and reactor
. dynamics and heat intensive, requiring .
Chemical Vapor . . designs would enhance
g transfer within the CVD substantial resources and o
Deposition Reactor . the generalizability of the
. reactor. expertise. ..
for Synthesis of findings.

PHEMA [59] The study’s findings can
optimize key process
parameters like

Incorporating dynamic
operating conditions, like
fluctuating temperatures

The study focuses on a
specific polymer
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temperature, pressure,
design.

and gas flow rates,
improving the quality and
efficiency of PHEMA
synthesis.

The research has
significant practical
implications for the

chemical and materials
engineering industries.

The extent of

limited.
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and varying gas
compositions, would

better represent the CVD

process.

Investigating the long-
term performance and
stability of synthesized

experimental validation is PHEMA under different
environmental conditions
would provide valuable

insights.

CFD simulations are
computationally
intensive, requiring
significant resources and
expertise.

CFD allows high-
resolution analysis of
thermal and flow fields
within the MCVD reactor.

Numerical The study provides
. . - OV PTOVICES  The study is specific to the
Simulation on insights into optimizing
g . . MCVD process used for
Modified Chemical process parameters like -
optical fiber preform

Vapor Deposition heat flux, gas flow rates,
(MCVD) Thermal and rotation speed.
Flow Field [60]

manufacturing.

The findings are
applicable to the optical

fiber manufacturing The extent of

Including different
materials and MCVD
reactor configurations

would enhance the
generalizability of the

findings.

Incorporating dynamic
operating conditions, like
transient temperature
changes and varying gas
compositions, would
provide a more realistic
representation of the

MCVD process.

Investigating the long-
term performance and

industry, where precise experimental validation is stability of the deposition

control over the limited.

deposition process is
essential.

process under continuous
operation would provide
valuable insights.

Emphasizing multi-
component particle
deposition is crucial for
real-world applications,

The simulations are
computationally
intensive, requiring

Including different CVD
processes and materials
would enhance the

where multiple materials significant resources and generalizability of the

are often deposited expertise.

Unsteady Heat and .
simultaneously.

Mass Transfer for
Multi-Component

Particle Deposition
and mass transfer

in the Modified S . o
. provides insights into may limit the
Chemical Vapor . .
Deposition [62] transient behaviors
P during MCVD. CVD methods.
Computational

simulations provide
detailed analysis of the
deposition process,

The scope of experimental
validation is limited.

findings.

Incorporating dynamic

Examining unsteady heat The study is focused on operating conditions, like
the MCVD process, which varying gas compositions

and temperature

generalizability to other fluctuations, would better

represent the deposition
process.
Investigating the long-
term stability and
performance of the
deposited layers under
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helping identify optimal continuous operation
conditions and predict would provide valuable
parameter effects on insights.
deposition quality.

Including different

CFD provides detailed CFD simulations are materials and CVD

analysis of flow and heat computationally .
s . . . reactor designs would
transfer within the intensive, requiring
. . enhance the
tungsten crucible CVD  substantial resources and o
. generalizability of the
reactor. expertise.

findings.

The study focusesona  Incorporating dynamic
Numerical The study addresses tungsten crucible CVD  operating conditions, like
Simulation Study practical challenges in the reactor, which may limit  transient temperature
on Flow and Heat CVD process, applicable  the generalizability to  changes and varying gas

Transfer of the to industrial settings. other CVD reactors or compositions, would
Tungsten Crucible materials. better represent the
CVD Reactor [63] deposition process.
The article investigates Investigating the long-
various process term stability and
parameters, like gas flow The scope of experimental = performance of the
rates, temperature validation is limited. = deposition process under
distributions, and reactor continuous operation
geometry. would provide valuable
insights.

3.2. Molecular Dynamics (MD) Simulations

The last decade has seen significant advancements in the application of Molecular Dynamics
(MD) simulations to model heat transfer during Chemical Vapor Deposition (CVD) processes. These
simulations have been pivotal in understanding and optimizing the multiscale nature of CVD, which
involves complex interactions from the macroscopic reactor scale to the atomic scale of the deposited
films [50].

For instance, MD simulations have been employed to predict the behavior of supercritical CO2
in heat transfer applications, highlighting the importance of accurate thermal coefficients and the
challenges associated with the mutability of supercritical properties [64].

In the context of CVD, MD has been used to simulate the sulfurization of MoO3 by H2S/H2
mixtures, revealing critical reaction pathways and intermediates that enhance the quality of MoS2
layers [65].

Additionally, the development of constant chemical potential molecular dynamics (CuMD) has
provided new insights into concentration-driven processes, such as crystallization and surface
adsorption, which are fundamental to CVD [66].

Overall, the integration of MD simulations with other computational techniques has
significantly improved the design, analysis, and optimization of CVD processes, paving the way for
the development of novel materials and more efficient reactors.

Table 3 presents a summary of various aspects of selected articles in the field of application of
the MD simulations.
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Title

Advantages Disadvantages

Gaps and Limitations

study the CVD process is

atomic-level insights not
easily accessible through

Applying quantum
molecular dynamics to

. . ) QMD simulations are

innovative, offering . .
resource-intensive,

requiring significant

. e expertise.
experiments, aldmg n

understanding

sulfurization mechanisms.

Quantum
Molecular
Dynamics
Simulations of
Chemical Vapor
Deposition
Synthesis of MoS2
Crystal Assisted by
H2 Partial Pressures
[65]

analyzes how different H2

By investigating the role
of H2 partial pressures,
the study addresses a The study’s focus on
critical factor in the CVD MoS2 synthesis may limit
process. Understanding  its generalizability to
how H2 influences the other materials or
sulfurization of MoO3 is processes.
essential for optimizing
the synthesis of high-
quality MoS2 crystals.

The article thoroughly

Although insightful, the
study offers limited
discussion on
experimental validation.

environments affect the
sulfurization process,
providing valuable
insights for optimizing

Including other materials
synthesized via CVD
would enhance the
study’s generalizability
and provide broader
insights into optimizing
CVD processes.

Incorporating dynamic
conditions, such as
varying H2 concentrations
and temperatures, would
offer a more
comprehensive
understanding of the
CVD process.

Investigating the long-
term stability and
performance of
synthesized MoS2 crystals
under various conditions
would provide insights
into their practical
applications.

Non-Equilibrium
Modeling of
Concentration-
Driven Processes
with Constant
Chemical Potential
Molecular
Dynamics
Simulations [66]

CVD conditions for MoS2
synthesis.
I.ntrodu.cmg CuMD CuMD simulations are
simulations marks a .
L computationally
significant advancement .
. . demanding.
in molecular dynamics.
Implementing CuMD

The study’s detailed
analysis of concentration-
driven processes shows

simulations requires
expertise in molecular
dynamics and non-

the versatility of CuMD R
. . . equilibrium
simulations across various .
thermodynamics.
systems.

Expanding experimental
validation to more
conditions and systems
would strengthen the
findings.

Including varied dynamic
conditions in simulations
would offer a more
comprehensive
understanding of non-
equilibrium processes.

Investigating long-term

The findings have broad Experimental validation is stability under constant

applicability in material ~ crucial to confirm the

chemical potential

science, chemistry, and simulations’ accuracy and conditions would provide

biology. applicability.

valuable practical
insights.



https://doi.org/10.20944/preprints202405.2117.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2024 doi:10.20944/preprints202405.2117.v1

14

3.3. Lattice Boltzmann Method (LBM)

The Lattice Boltzmann Method (LBM) has significantly advanced in modeling heat transfer
during Chemical Vapor Deposition (CVD) processes, leveraging its mesoscopic approach to handle
complex boundaries and parallelization effectively. This method models fluid flow using fictive
particles, which simplifies the integration of thermodynamics into transport equations and enhances
its flexibility in dealing with multiphase flows, making it highly suitable for CVD applications [67].

Recent studies have demonstrated LBM's efficacy in simulating 3D liquid-vapor phase changes
and heat transfer in irregular geometries, which are prevalent in CVD reactors [68,69].

The Immersed Boundary-LBM (IB-LBM) has shown particular effectiveness in modeling
radiative heat transfer in 2D irregular geometries, highlighting its potential for handling the complex
geometries encountered in CVD processes [70].

Additionally, LBM’s capability to simulate natural convection and entropy generation in non-
Newtonian fluids under magnetic fields has been explored, providing valuable insights into
optimizing heat transfer in CVD reactors [71].

The development of multiple-relaxation-time LBM approaches has further improved the
efficiency and accuracy of simulations, making it a promising candidate for 3D liquid-vapor phase
change modeling in CVD [72].

Moreover, the method’s application in predicting heat transfer and phase change in multi-layer
deposition processes has been validated against experimental data, underscoring its reliability [73].

LBM'’s intrinsic second-order accuracy and efficient interface treatments for conjugate heat
transfer make it a robust tool for modeling thin layers in CVD processes [74].

LBM has been successfully applied to model the drying of colloidal suspensions, enhancing heat
conduction in nanoparticle deposition, which is analogous to the fine control required in CVD
processes [75].

Bibliometric analysis of LBM research indicates a growing focus on multiscale models and
hybrid methods, which are crucial for accurately capturing the multiscale nature of CVD processes.
Overall, LBM’s unique advantages, such as easy handling of complex geometries, parallel
simulations, and continuous development, make it a powerful tool for advancing the understanding
and optimization of heat transfer in CVD processes.

The paper by Lach et al. introduces a heat flow model based on the lattice Boltzmann method
(LBM) for phase transformation, which can be adapted to simulate the heat transfer in CVD processes
due to its capability to handle complex boundaries and phase changes [76].

Svyetlichnyy et al. discuss the development of a platform for 3D simulation of additive layer
manufacturing, highlighting the importance of accurately modeling the changes in the state of matter.
This is crucial for CVD, where precise control of temperature and reactant flow impacts the quality
of the deposited layers [77].

The application of cellular automata and LBM in additive layer manufacturing presented by
Svyetlichnyy et al. provides a framework that can be leveraged for modeling the deposition and heat
distribution in CVD, ensuring uniform layer formation [78].

Finally, Lach and Svyetlichnyy (2024) present a 3D model of carbon diffusion during diffusional
phase transformations, which can be directly applied to model mass transfer during CVD, enhancing
the understanding of reactant diffusion and product layer growth [79].

Table 4 presents a summary of various aspects of selected articles in the field of application of
the LBM method.

Table 4. Analysis of selected articles in the field of use of LBM method.

Title Advantages Disadvantages Gaps and Limitations
The article provides a LBM'’s computational The article lacks extensive
Lattice Boltzmann comprehensive overview  intensity is a primary coverage of scalability

Method and Its of LBM, covering its  challenge, particularly for challenges and solutions
Applications [69]  theoretical foundations large-scale simulations. for very large or complex
and practical applications. Discussing strategies for systems.
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optimizing efficiency and

managing resources

would enhance the article.

The article lacks extensive
coverage of scalability
challenges and solutions
for very large or complex
systems.

to include fields like

and material science
would broaden the
article’s scope beyond
hydroinformatics.

Focusing primarily on
theoretical and
computational aspects,

The authors clearly
explain the LBM
methodology, making it

Expanding the discussion

biomedical engineering

the article would benefit
accessible to readers of from more discussions on
varying expertise levels. experimental validations

While LBM excels in
steady-state simulations,
it faces challenges in
dynamic and transient
processes.

Highlighting more
interdisciplinary
applications of LBM
would increase the
article’s appeal to a wider

and real-world case audience.
studies.
Combining the immersed The jlyb:;:CI}]:I;BM
boundary method (IBM) . nfputat' oall Exbanding fo three
with the lattice Boltzmann omputationally pandmg to

intensive, potentially
limiting its practical use
for large-scale problems

method (LBM) enhances
the accuracy of radiative
heat transfer simulations

dimensional geometries
would improve the
findings” generalizability.

Analysis of in irreeular geometries or users with limited
Radiative Heat grare ' resources.
Transfer in Two-
. . . . Evaluating the method
Dimensional Addressing two- Focusing on two- . .\
. . ; . . . under dynamic conditions
Irregular dimensional irregular ~ dimensional geometries .
. . would provide a more
Geometries by geometries, the study ~ may not capture the full .
) comprehensive
Developed tackles a common complexity of three- .
. . . assessment of its
Immersed challenge in heat transfer ~ dimensional systems. I
. ; . capabilities.
Boundary-Lattice simulations.
Boltzmann Method Discussing strategies to
[70] The article thoroughly optimize IB-LBM
analyzes simulation The article relies mainly computational efficiency,
results, detailing how on numerical simulations, such as parallel
various parameters affect with limited experimental computing or algorithmic
radiative heat transfer in validation. improvements, would
irregular geometries. enhance practical
accessibility.
Expanding the study to
An Efficient The article presents an Despite efficiency include different types of
Thermal Lattice ~ advanced thermal LBM improvements, the  phase change phenomena
Boltzmann Method  for three-dimensional thermal LBM still and fluid flow scenarios

for Simulating liquid-vapor phase

change simulations.

demands significant
Three-Dimensional

Liquid—Vapor
Phase Change [72]

computational resources.

A major strength is the Focusing on liquid-vapor
focus on computational  phase change may limit

would enhance the
generalizability of the
findings.
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efficiency, making the the findings’ Investigating the
optimized thermal LBM generalizability to other =~ method’s performance
feasible for large-scale phase change or fluid under dynamic and
simulations. flow problems. transient conditions, such
as varying heat fluxes and
pressure changes, would
provide a more
comprehensive
understanding of its
capabilities.
Further optimizing
The article thoroughly computational efficiency
analyzes simulation More extensive

through parallel
experimental validation computing or algorithmic
comparisons with existingwould enhance the article. improvements would

results, including

methods. make the thermal LBM
more practical for large-
scale simulations.
E ing th
The study compares Evaluating multiple xpanding the study to

o . include a wider range of
multiple interface interface schemes through
C o .2 heat and mass transfer
schemes, highlighting  extensive simulations is

. . problems would enhance
their accuracy and computationally L
. . . the generalizability of the
computational efficiency. demanding. 1
findings.

Addressing conjugate
Accuracy of heat and mass transfer, L.
Y . The study’s insights on
Interface Schemes the article focuses on a

j te heat
for Conjugate Heat crucial aspect of thermal tizrrll]sl;eg:ria eioir;d Hllasti
and Mass Transfer ~ and fluid dynamics y PPy

Testing interface schemes
under dynamic
conditions, like varying

heat fluxes and pressure
. . . . other heat and mass
in the Lattice simulations, relevant for changes, would offer a
. transfer problems. .
Boltzmann Method  material and phase more comprehensive
[74] interactions. understanding.
. . Optimizing the
Combining theoretical . P . & ..
. . More extensive computational efficiency
analysis with numerical . L .
. . experimental validation of interface schemes
simulations strengthens

, . would enhance the article.  would improve their
the study’s conclusions. - .
accessibility for practical
applications.

The study uses the lattice
Boltzmann method to  Including nanoparticle

Lattice Boltzmann model the complex drying  effects makes LBM
Modelling of of colloidal suspensions

Including various porous
materials and drying

simulations conditions would enhance
Colloidal involving multiphase computationally the findings’
Suspensions Drying flows and nanoparticle intensive. generalizability.
in Porous Media interactions.
Accounting for Incorporating local The study’s insights on Investigating the
Local Nanoparticle nanoparticle effects like colloidal suspensionsin  method’s performance
Effects [75] viscosity changes, surface porous media may not under dynamic and

tension variations, and  apply to other drying transient conditions, such

drying rate reductions, =~ processes or materials.  as varying temperatures
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the model offers detailed and humidity levels,
simulations. would provide a more
comprehensive

understanding of its
capabilities.

Studying the long-term
More extensive stability of dried colloidal
experimental validation structures under different

The article
comprehensively analyzes
how different parameters . .

. would enhance the article. environments would offer
affect the drying process. . L
practical application

insights.

4. Mass Transport Modeling

Mass transport modeling is a critical component in the analysis and optimization of Chemical
Vapor Deposition (CVD) processes. It involves understanding and predicting the movement and
distribution of reactant gases, intermediates, and by-products within the CVD reactor. This modeling
is essential for controlling the deposition of thin films on substrates, ensuring uniformity, quality,
and efficiency.

Mass transport modeling helps analyze how reactant gases flow through the reactor, including
understanding laminar or turbulent flow regimes, flow patterns, and how these affect the distribution
of reactants near the substrate surface. The boundary layer, the thin region adjacent to the substrate
where the gas velocity changes from zero (at the substrate) to the free stream value, significantly
influences mass transport. Modeling the boundary layer helps predict local deposition rates.

The shape and dimensions of the CVD reactor impact gas flow and reactant distribution. Mass
transport models assist in designing reactor geometries that promote uniform gas distribution and
efficient reactant delivery to the substrate. Proper placement and design of gas inlets and outlets
ensure that reactants are evenly distributed and by-products are efficiently removed, minimizing
dead zones and enhancing film uniformity.

Mass transport modeling helps determine the concentration profiles of reactants within the
reactor, crucial for predicting local deposition rates on the substrate, which depend on the availability
of reactants at the surface. Temperature gradients within the reactor affect reaction kinetics and mass
transport properties. Models that incorporate thermal effects can predict how temperature variations
influence the deposition rate and uniformity.

Achieving uniform film thickness across the substrate is critical for high-quality coatings. Mass
transport models identify the conditions that lead to uniform reactant distribution and deposition
rates. By manipulating mass transport parameters, it is possible to influence film characteristics such
as thickness, composition, grain size, and stress, leading to improved film quality.

When scaling up from laboratory to industrial scale, maintaining process consistency is
challenging. Mass transport models help understand how changes in reactor size affect gas flow and
deposition rates, enabling effective scale-up. Models can guide the adjustment of process parameters
such as flow rates, pressures, and temperatures to maintain optimal conditions during scale-up.

Efficient use of reactants is critical for cost-effective and environmentally friendly CVD
processes. Mass transport models optimize reactant flow to maximize utilization and minimize
waste. By optimizing heat and mass transfer, models help design processes that require less energy
for heating and maintaining the desired reactor conditions.

Mass transport modeling is often integrated with thermal, chemical reaction, and fluid dynamics
models to provide a comprehensive understanding of the CVD process. This holistic approach
captures the interplay between different physical phenomena. Combining mass transport with
chemical kinetics and thermal analysis enhances the accuracy of predictions regarding film properties
and process outcomes.
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Mass transport modeling is indispensable in the development, optimization, and scaling of CVD
processes. It enables a detailed understanding of reactant distribution, gas flow dynamics, and
deposition mechanisms. By providing insights into how reactants and by-products move and interact
within the reactor, mass transport models facilitate the design of more efficient reactors, improve film
quality, and ensure uniform deposition. This modeling is essential for achieving high-performance
CVD processes, reducing waste, and enhancing overall process efficiency.

Mass transport modeling plays a crucial role in CVD processes by providing insights into the
complex interactions between fluid dynamics, thermodynamics, and chemical reactions, which are
essential for optimizing deposition quality and efficiency. These models help elucidate the basic
mechanisms of multi-species transport and their interplay with gas and surface reactions, as seen in
the development of 3D CFD models for pyrocarbon deposition [80]. The integration of mass transport
with chemical kinetics models, such as those for carbon-coated optical fibers, allows for the
optimization of coating quality by validating different reactor models under various conditions [81].
Mass transport modeling also addresses the challenges of uniform precursor concentration and
convective mass transport in reactors, as demonstrated in studies on pulsed-pressure CVD systems
[82]. Furthermore, these models are essential for predicting growth rates and doping non-
homogeneity in SiC epitaxial growth processes, aiding in the development of new CVD processes
[83,84]. The application of reduced-order models [58], such as the Proper Orthogonal Decomposition
(POD) method [85], significantly reduces the complexity of the governing equations, making it
feasible to control transport processes more efficiently. Overall, mass transport modeling is
indispensable for advancing CVD technology, enabling precise control over deposition parameters
and enhancing the quality and uniformity of the deposited films [86].

4.1. Diffusion-Based Models

Diffusion-based models, particularly those leveraging stochastic differential equations (SDEs),
have shown significant promise in various domains, including the modeling of complex processes
like chemical vapor deposition (CVD). Fishman et al. introduced novel approaches to diffusion
models constrained by inequality metrics, relevant for applications like robotics and protein design,
which can potentially be adapted for precise control in CVD environments [87]. Yang et al. provided
an extensive survey of diffusion models, categorizing them into efficient sampling, improved
likelihood estimation, and data structure handling, highlighting their broad applicability and
potential enhancements for CVD processes [88]. These studies collectively illustrate how diffusion-
based models can be optimized and adapted to improve the precision and efficiency of CVD
processes, leveraging advancements in computational techniques and theoretical frameworks. The
following subsections present selected solutions in this area.

4.1.1. Fick’s Laws of Diffusion

Fick’s laws of diffusion are pivotal in modeling Chemical Vapor Deposition (CVD) processes, as
they describe the transport mechanisms essential for material deposition. The first law, which relates
the diffusive flux to the concentration gradient, and the second law, which predicts how diffusion
causes concentration to change over time, are instrumental in designing and optimizing CVD
systems.

Paul et al. introduce Fick’s laws, detailing the derivation and solutions of the second law for
various conditions, which are crucial for estimating diffusion coefficients in CVD processes [89].

Poirier and Geiger apply Fick’s law to the diffusion of chemical species through a phase due to
concentration gradients, offering essential insights for modeling diffusion in materials used in CVD
processes [90].

Donev et al. explore a mesoscopic model of diffusion in liquids, highlighting the importance of
thermal fluctuations and random advection in addition to Fick’s law, enhancing our understanding
of diffusion in CVD processes at different scales [91].

Cheimarios et al. emphasize the multiscale nature of CVD, illustrating how Fick’s laws are
applied at different scales to model the diffusion and deposition of thin films. Their work reviews
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various methodologies and the transfer of information between scales, highlighting the complexity
of accurately modeling CVD processes [50].

Andreucci et al. extend Fick’s laws to inhomogeneous media, relevant for CVD processes
involving spatially varying properties. They discuss the geometric interpretation of reversibility and
hydrodynamic scaling, providing insights into the macroscopic behavior of diffusion in CVD [92].

Additionally, Gavriil et al. critically assess the application of Fick’s law in food packaging, which
parallels the challenges in CVD processes by addressing complex transport phenomena and
environmental interactions [93].

Philipse discusses Brownian motion and diffusion equations, explaining how particle positions
and orientations evolve over time, foundational for understanding diffusion in CVD processes [94].

Sibatov and Sun discusses the generalized Fick law in the context of fractional operators,
describing dispersive transport in disordered semiconductors, relevant for advanced CVD process
modeling [95].

These studies underscore the significance of Fick’s laws in providing a foundational
understanding of diffusion in CVD and similar processes.

Table 5 presents a summary of various aspects of selected articles in the field of application of
the Fick’s Laws of Diffusion.

Table 5. Analysis of selected articles in the field of use the Fick’s Laws of Diffusion.

Title Advantages Disadvantages Gaps and Limitations
Expanding the discussion
to cover a wider range of
materials, including non-
metallic systems, would
enhance the applicability

The chapter thoroughly The chapter focuses on

. . theoretical aspects with
covers Fick’s first and P

. . limited experimental
second laws of diffusion. P

validation. .
of the principles
discussed.
Explorin:
The discussion includes oo . . proring
. . . Detailed insights into interdisciplinary
practical applications in . L .. .
1, . . metallurgical applications applications, such as in
Fick’s Law and materials processing, . X .
e . are provided, but biological systems or
Diffusivity of valuable for engineers VN .
. L diffusivity in other environmental
Materials [90] and scientists in

materials may not be  engineering, would show
comprehensively covered.  Fick’s law’s broader
utility.

metallurgy, ceramics, and
materials science.

The mathematical .
Incorporating modern

The authors provide clear treatment may be e e
. . diffusivity measurement
explanations of complex challenging for readers .
. . techniques and recent
concepts, accessible to without a strong
. advancements would
both students and background in .
. ; provide an up-to-date
professionals. mathematics or transport .
perspective.
phenomena.
The study introduces a
. reversible mesoscopic ~ The accurate mesoscopic .
A Reversible del with th pl del i tati pll Extending the model to
. model wi ermal  model is computationally . .
Mesoscopic Model P Y include diffusion in other

fluctuations, offering a intensive, requiring
more accurate view of  significant resources and
diffusion in liquids and  limiting its use for large-
challenging the traditional scale or real-time
irreversible model based simulations.
solely on Fick’s law.

states of matter and
complex fluids would
enhance its

of Diffusion in
Liquids: From Giant
Fluctuations to

Fick’s Law [91] generalizability.
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The model is specifically =~ Testing under dynamic
tailored for diffusionin  conditions, like varying
liquids, which may limit temperature and pressure,

The authors present a
strong theoretical
framework linking

its generalizability to  would clarify the model’s
other states of matter such
as gases or solids.

microscopic fluctuations
to macroscopic diffusion
behavior.

Using Lagrangian
numerical methods, the
study captures the
stochastic nature of
particle movements and
thermal fluctuations,
essential for accurate
mesoscopic diffusion
modeling.

The study could benefit
from more extensive
experimental validation
despite strong theoretical
and numerical
development.

capabilities and
limitations.

Optimizing
computational efficiency
would make the model
more practical for real-
world applications.

The study thoroughly
explores Fick’s law and
the Fokker—-Planck
equation in
inhomogeneous media.

models and equations are
highly complex.

Expanding the study to

include a broader range of
The study’s mathematical applications and different

types of diffusion
processes would enhance
the generalizability of the
findings.

Testing diffusion models

Fick and Fokker-  Integrating Fick’s law .
e . . . under dynamic
Planck Diffusion  with the Fokker-Planck Despite robust theoretical - o
. . . .. . conditions, like time-
Law in equation provides a insights, the article lacks . .
- e . . varying gradients and
Inhomogeneous comprehensive diffusion extensive experimental .
. . L. external fields, would
Media [92] modeling framework for validation. .
. . provide a more
inhomogeneous media. .
comprehensive
understanding.
Focusing on
The authors use rigorous 5 . Simplifying the complex
. inhomogeneous media .
mathematical methods to L2, , mathematical models
. . . may limit the results . .
derive and validate their o without losing accuracy
generalizability to other L
models. e would make the findings
diffusion processes. .
more accessible.
While the theoretical ~ The article could broaden
The article thoroughly coverage is extensive, the its scope to include
explores continuity,  article could benefit from interdisciplinary
gradients, and Fick’s laws. more practical examples  applications of Fick’s
and applications. laws.
Continuity, PP

Gradients and
Fick’s Diffusion

Laws [94] The author explains

complex concepts clearly

and concisely.

The advanced
mathematical treatment
may be challenging for

math or physics
background.

The discussion is
primarily focused on
linear systems.

readers without a strong Addressing Fick’s laws in

dynamic and non-linear
systems would enhance
the discussion.
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The article places Fick’s . Including recent
. The article focuses on .

laws in historical context, theory and lacks advancements in

highlighting their Y diffusion would

. N discussion on T
evolution and significance complement the historical

experimental validation.

in diffusion theory. perspective.
The fractional differential
Using fractional calculus ~ equations and their
to generalize Fick’s law solutions are Incorporating diverse

for dispersive transport is mathematically complex, experimental data would
innovative, addressing ~ which might limit the = validate and demonstrate

traditional models’ accessibility of the study the models’ robustness
limitations in disordered to researchers who are not across various scenarios.
systems. well-versed in advanced

mathematical techniques.

. . Testing fractional models
The article presents a  Robust theoretical models &

Dispersive . . . under dynamic
detailed theoretical need more extensive L. ) .
Transport .y . e conditions, like varying
) framework, linking  experimental validation to .
Described by the . . . . temperature or electric
. . fractional derivatives to  confirm their real-world .
Generalized Fick fields, would deepen
. . observable ToF accuracy and . .
Law with Different . . understanding of their
. experiment phenomena. applicability. . .
Fractional practical applicability.

Operators [95]  The findings have broad
implications for studying Focusing on Riemann—
charge transportin ~ Liouville derivatives, the
disordered systems like study could explore other
amorphous fractional operators or

Simplifying or optimizing
fractional models would
make them more
semiconductors, organic hybrid models for a more . . .

. . . accessible for industrial
bulk heterojunction cells, comprehensive e .
use with limited

and perovskite solar cells, understanding of .
computational resources.

making the study relevant  dispersive transport
in materials science and phenomena.
electronics.

4.1.2. Boundary Layer Approaches

Boundary layer approaches are crucial in the modeling of Chemical Vapor Deposition (CVD)
processes, as they help in understanding the transport phenomena near the substrate surface where
deposition occurs. These approaches allow for detailed analysis of the kinetics, transport, and
reaction mechanisms within the boundary layer.

Zhang et al. investigate the impact of boundary layers on the deposition rates and characteristics
of polycrystalline silicon in a CVD process using trichlorosilane and hydrogen, highlighting the
importance of controlling boundary layer thickness to enhance deposition uniformity and quality
[96].

Aghajani et al. study the deposition of SiC on C/C composites using CVD, exploring the
deposition kinetics by varying process parameters such as time, temperature, and precursor
composition, and employing boundary layer theory to understand the deposition rates and coating
characteristics [97].

Boi et al. examine the growth of Fe-filled carbon nanotubes using boundary layer chemical vapor
synthesis, a method that exploits random fluctuations within the viscous boundary layer, discussing
how tangential and perpendicular growth modes affect the synthesis process [98].

Lukashov et al. propose an analytical model for the deposition of thermal barrier coatings via
Metal-Organic CVD (MO CVD), using the reacting boundary layer model to analyze the diffusion
combustion of precursors and evaluate coating growth rates and precursor efficiency [99].
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Kleimanov et al. present a numerical model of a CVD reactor used for producing oxide
semiconductor layers, aiming to ensure uniform substrate heating and layer deposition by simulating
the induction heating process and analyzing the impact of the boundary layer on deposition
uniformity [46].

Sayevand and Machado address singularly perturbed fractional differential equations
displaying boundary layer behavior, introducing a novel operational matrix technique to
approximate solutions, enhancing the accuracy and stability of boundary layer models, which is vital
for predicting deposition rates in CVD processes [100].

Timms and Purvis present a one-dimensional model for the initiation of shear bands in reactive
materials, using boundary layer analysis to identify key physical properties controlling the reactive
shear banding process, providing insights into localized plastic deformation relevant for
understanding stress effects in CVD processes [101].

Table 6 presents a summary of various aspects of selected articles in the field of application of
the boundary layer approaches.

Table 6. Analysis of selected articles in the field of use the boundary layer approaches.

Title Advantages Disadvantages Gaps and Limitations

The study primarily
focuses on experimental ~ Extending the study to
The study provides  observations. Integrating include different materials
valuable insights into  computational modeling  and substrates would

optimizing CVD could provide a more enhance the
parameters for 3-5iC comprehensive generalizability and
coatings on C/C understanding of the applicability of the
composites. deposition mechanisms  findings across various
and boundary layer industrial applications.
dynamics.
The use of XRD and
FESEM allows for a

The research is specific to

Deposition Kinetics ~ detailed analysis of the Investigating dynamic
P ., Y -SiC on C/C composites. estigaing cynami
and Boundary coating’s phase . conditions like fluctuating

, . Expanding the scope to
Layer Theory in the composition and temperatures and

. . o other materials and
Chemical Vapor  microstructure, which is precursor flow rates

composites would
. . ..., would better represent the
increase the findings

generalizability.

Deposition of 3-SiC crucial for understanding
on the Surface of  the deposition process
C/C Composite [97] and improving the quality

of the coatings.

CVD process.

The study does not
address the
environmental impact of
the CVD process, such as
the emissions and by-
products generated
during deposition.

Examining the long-term
The findings are
significant for industries
like aerospace and
electronics that rely on
high-quality $-SiC
coatings.

stability and performance
of B-SiC coatings under
operational conditions
would provide insights
into their practical
applications and
durability.

Including this analysis
would provide a more
holistic view of the
process’s sustainability.

Possible Interplay The study’s exploration of Replicating the study’s  Including other metal-

of Tangential and tangential and precise CVD parameter filled CNTs would offer a
Perpendicular perpendicular growth control may be broader understanding of
Modes inthe = modes offers new insights challenging. growth mechanisms.
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Growth of Fe-Filled into Fe-CNT formation
Carbon Nanotubes mechanisms.
[98] Studying Fe-CNT growth
The article The detailed insights on under varying
comprehensively analyzes Fe-CNTs may not apply ~ temperatures and gas
nanotube structures using  to other filled carbon compositions would
various characterization nanotubes or reveal the process’s
techniques. nanomaterials. sensitivity to

environmental changes.

Understanding Fe-CNT
growth mechanisms has
significant implications
for nanotechnology and

Scaling up the synthesis ~ Evaluating Fe-CNTs’
and analysis methods for long-term stability and
large-scale Fe-CNT performance in practical
materials science produ(?ti(.)n may be aPpli.cat%ons v.vould .
. difficult. provide insights into their
applications. . .
durability and limitations.

The article provides a
robust analytical
framework for
understanding the
deposition process in MO
CVD. By integrating
diffusion combustion

The model’s
computational intensity
may limit its industrial
use without significant

Including different
coatings and precursors
would enhance the

reactions and convection model’s generalizability.
N resources.
conditions, the model
offers a detailed
Analytical Model of mechanism for the growth
the Process of of TBCs.
Thy 1 Barri
ermat barrier Testing under dynamic

Coating by the MO The study’s focus on 7YSZ  The model is tailored conditions like varvin
CVD Method [99] coatings, widely used in  specifically for MO CVD yng
temperatures and flow
aerospace and energy processes and 7YSZ
industries, enhances its coatings.
practical relevance.

rates would better assess
its capabilities.

Examining long-term

Model predictions Although the model is  stability and performance
validated against compared with under operational
experimental data experimental data, the conditions would provide
strengthen the proposed scope of this validation is  insights into practical
approach’s credibility and =~ somewhat limited. applications and
practical applicability. durability.
Expanding the study to
include different types of
Numerical The use of detailed The simulations require semiconductor materials
Simulation of CVD numerical simulations to significant computational and reactor configurations
Reactor for Oxide model the CVD reactor resources, limiting would enhance the
Semiconductor  Processes is a significant accessibility to advanced generalizability of the
Layer Deposition strength. research facilities. findings and provide
[46] broader insights into the
CVD process.

The study tackles The study focuses on a
practical CVD challenges specific CVD reactor and


https://doi.org/10.20944/preprints202405.2117.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2024 doi:10.20944/preprints202405.2117.v1

24

like substrate temperature material system (oxide  Testing under dynamic
stability and uniform  semiconductors with gold conditions like varying
layer deposition. nanoparticles). temperatures and gas
flow rates would better
reveal the reactor’s
capabilities and

limitations.
While the simulations are
Combining fluid thorough,.the study o
would benefit from more Optimizing

dynamics, heat transfer,
and materials science
offers a comprehensive
approach to CVD reactor
design.

extensive experimental computational efficiency
validation to confirm the would make simulations
accuracy and applicability more practical for
of the simulated results industrial use.
under real-world
conditions.

Expanding the approach
to include a wider range
of differential equations

Using fractional calculus

Th 1
for boundary layer e complex

mathematical models may

problems offers a novel . . s
limit accessibility for non-

and boundary conditions

perspective on differential would enhance its

equations. specialists. generalizability and
- applicability.
chxu raijf}iltgng The modified truncated Simplifying the
PP Chebyshev series and Focusing on specific PUYME

Characterize the . . mathematical techniques
) operational matrix =~ boundary layer problems . .
Solution Set of . . . i while maintaining
technique ensure high  may limit the approach’s

Boundary Layer
Problems [100]

accuracy would broaden

accuracy, crucial for eneralizability. ey
y 8 Y accessibility.

practical applications.

Detailed methodology, Testing under dynamic

. . e More empirical datais and transient conditions
including stability and

. needed to enhance the would provide a
error analysis, makes the , . .
L method’s practical comprehensive
findings robust and - .
applicability. understanding of the

reliable. method’s capabilities.

4.2. Kinetic Monte Carlo (KMC) Simulations

Kinetic Monte Carlo (KMC) simulations are a powerful tool for modeling chemical vapor
deposition (CVD) processes, offering detailed insights into the physicochemical phenomena
occurring at various scales. KMC methods are particularly advantageous for studying deposition
processes due to their ability to address larger time and spatial scales compared to molecular
dynamics (MD) and provide a more detailed approach than continuum-type models [102].

Pineda and Stamatakis present the basic principles, computational challenges, and successful
applications of KMC simulations in heterogeneous catalysis. Their work highlights the integration of
first-principles calculations with KMC to accurately model reactions over surfaces, which is critical
for designing novel catalysts used in CVD processes [103].

Cheimarios et al. present modern applications of Monte Carlo and KMC models in deposition
processes, including physical and chemical vapor deposition, atomic layer deposition, and
electrochemical deposition [104].

Chen et al. propose an all-atom KMC model to simulate the growth of graphene on a Cu
substrate, including essential atomistic events such as deposition, diffusion, and attachment of carbon
species, successfully predicting various graphene morphologies and growth kinetics [105].
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Papanikolaou and Stamatakis discuss the fundamentals and applications of KMC simulations
in modeling reactions on catalytic surfaces, reviewing the principles of KMC simulations and their
relevance in heterogeneous catalysis and CVD processes [106].

Rodgers et al. present a three-dimensional KMC model to simulate diamond CVD, including
adsorption, etching, lattice incorporation, and surface migration events. The model accurately
reproduces experimental growth rates and provides insights into growth mechanisms under
different conditions [107].

Osman and Mitra simulate the growth of polymer films on two-dimensional surfaces using
KMC, modeling the initial growth of iCVD surface reactions, assuming room temperature substrates
and specific reactor pressures. The simulation results are compared with experimental data for initial
growth, demonstrating the potential of KMC in modeling polymer film deposition [108].

Heiber introduces Excimontec, a Python package for simulating ionic transport properties in
crystalline materials using KMC. The tool aids in understanding and optimizing organic
semiconductor devices by modeling the behavior of excitons and polarons in semiconductor layers,
relevant for CVD processes [109].

Edward and Johnson use an atomistic multi-lattice KMC model to understand defect generation
in multi-layered graphene caused by the adsorption and diffusion of epoxy groups. The simulations
reveal the temperature and pressure dependencies of defect formation, providing insights into the
role of epoxy diffusion in CVD processes [110].

Agarwal et al. introduce the QSD-KMC approach for modeling state-to-state dynamics in
complex systems, such as biomolecular dynamics. The method retains time resolution even in highly
non-Markovian dynamics, which can be applied to CVD processes to model long timescale reactions
and state transitions [111].

Table 7 presents a summary of various aspects of selected articles in the field of application of
the Kinetic Monte Carlo (KMC) simulations.

Table 7. Analysis of selected articles in the field of use the Kinetic Monte Carlo (KMC) simulations.

Title Advantages Disadvantages Gaps and Limitations

Including substrates like
Ni(111) or SiC would
broaden the findings’

generalizability and
deepen understanding of

The all-atom kMC model The all-atom kMC model
accurately captures is computationally
atomic interactions and intensive, requiring

surface dynamicsin  significant resources and

graphene growth. time. araphene growth.
An All-Atom The quel includes The study focuses on the Testl.ng und.er dynar.mc
factors like hydrogen conditions, like varying

Kinetic Monte Carlo
Model for Chemical

Cu(111) substrate, though

artial pressures, surface .
P P it’s not the only one used

temperature and pressure,

diffusion, and carbon- would better evaluate the

Vapor Deposition for graphene growth.
P p copper interactions. grap & model’s capabilities and
Growth of SR
limitations.
Graphene on
Cu(111) Substrate )
[105] Increasing the extent of
L experimental validation
The findings have . . .
N T Despite detailed through systematic
significant implications Co . . .
theoretical insights, the comparison with

for the optimization of
. prmiz study lacks extensive empirical data would help
industrial graphene . - . ,
experimental validation. ~ confirm the model’s
accuracy and enhance its
practical applicability in
industrial settings.

production.
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Expanding the study to
KMC simulations require include a wider range of
The article explains KMC ~ |~ d . &
. . . significant resources and  surface reactions and
simulation principles and . - s .
. . time, limiting accessibility catalytic systems would
their application to

surface reactions to well-equipped enhance the
' facilities. generalizability of the
findings.
F .
Toward the hetero Z;l:zi)ltrllsg::’:al sis Complex models demand Testing KMC simulations
Accurate Modeling the gtu dv is hi hly ’ expertise in under dynamic
of the Kinetics of relevant t}; n dfstr?al computational techniques conditions, like varying
Surface Reactions applications in chemical and physical chemistry, temperatures and
Using the Kinetic enp}i)neerin and materials restricting use to pressures, would provide
Monte Carlo & scgience specialists. a fuller understanding of
Method [106] ' their capabilities.
While the article provides
. extensive theoretical Integrating KMC with
C tudies show KMC
:iiil:tig:s’s (:*Z\Z:tical insights, more methods like density
utility in reilictin experimental validation functional theory (DFT)
reactior?; anz o timifin would enhance the could offer a holistic
catalvtic roIZesses & robustness and approach to modeling
yuep ' applicability of the catalytic processes.
findings.

The detailed kMC model Three-dimensional kMC
comprehensively explains  simulations require
diamond growth at the  substantial resources, techniques would
atomic level in the CVD  limiting accessibility to enhance the model’s
process. well-equipped facilities. generalizability.

Including various
materials and deposition

The use of three-

dimensional simulations Tailored to diamond

Testing under different
offers a more realistic

Three-Dimensional CVD, the model may need gas compositions and

o representation of the modifications for other temperatures would
Kinetic Monte Carlo .\ . -,
. . deposition process materials or deposition  better understand the
Simulations of dt . del biliti
. . compared to previous rocesses. model’s capabilities.
Diamond Chemical P Previ P P
.\ one- or two-dimensional
Vapor Deposition
[107] models.
While the simulations
The findings have rovide detailed
D [nes fav provice ¢ Correlating with
significant implications  theoretical insights, the .
o . experimental data under
for optimizing the CVD study could benefit from . ..
. . diverse conditions would
process to improve the more extensive

hen th I’
quality and efficiency of experimental validation to 3:;?2? 22; rZ;(:\ii‘lcsi
diamond film production, confirm the accuracy and Y

which is crucial for practical applicability of relevance.
industrial applications. the results.

A Basic Monte Using a Monte Carlo  Monte Carlo simulations  Including other CVD

Carlo Model of model for iCVD are computationally processes and materials
Initiated Chemical simulation offers a new intensive, limiting would enhance the
Vapor Deposition molecular-level practicality for real-time findings’ generalizability

Using Kinetic ~ perspective on deposition or large-scale and understanding of

Theory [108] mechanisms.

applications. deposition mechanisms.
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Applying kinetic theory,
the model captures
particle dynamics, leading

Tailored to iCVD, the
findings may not
generalize to other CVD
processes.

Testing the model under
varying temperatures and
pressures would better
evaluate its capabilities.

to precise predictions and
optimization.
The article lacks extensive
The findings improve experimental validation of Optimizing Monte Carlo

control and efficiency in  the simulation results. simulations’
the iCVD process, Including more computational efficiency
essential for producing experimental data would would make the approach
high-quality polymeric  enhance the credibility more practical for
films. and applicability of the industrial use.
model.

Including more thermal
The multi-lattice KMC . . . and environmental
KMC simulations require
model advances
understanding of
graphene oxidation.

s ; conditions would provide
significant computational .

a comprehensive
understanding of

oxidation processes.

resources and expertise.

Atomistic Multi- . . . L .
Lattice Kinetic Focusing on the atomic Focusing on hyperthermal Investigating dynamic
scale reveals specific =~ oxidation may not cover thermal conditions would
Monte Carlo (KMC) .| . . S _
. oxidation mechanisms in all real-world oxidation offer a realistic
Modeling of . ., .
multi-layer graphene.  conditions for graphene.  representation of real-
Hyperthermal L
S . world applications.
Oxidation of Multi- e
The findings have broad
Layer Graphene o
[110] implications for the
development and The study could benefit Optimizing KMC
optimization of graphene-  from more extensive simulation efficiency
based materials, which experimental validation towould make the approach
are of significant interest corroborate the more accessible for
for their exceptional simulation results. research and industry.

electronic, thermal, and
mechanical properties.

4.3. Multi-Scale Modeling Techniques

Multiscale modeling of mass transport during chemical vapor deposition (CVD) involves
integrating various scales to accurately predict and optimize the deposition process. At the
macroscopic level, computational fluid dynamics (CFD) models are employed to simulate the
complex reacting flow within the CVD reactor, capturing the transport phenomena and temperature-
dependent physical properties to understand the interplay between gas and surface reactions. This
is complemented by mesoscale models that link reactor-scale heat and mass transport equations with
phase-field equations to predict the morphology and distribution of synthesized materials, such as
2D materials like MoS2. At the microscopic level, models focus on the detailed surface chemistry and
the effects of micro-topography on species consumption, as seen in the deposition of silicon from
silane on trenched wafers. Multiscale approaches also involve coupling different software packages
to handle large-scale transport-reaction models and small-scale reactive precursor gas models,
ensuring that fast reaction processes are accurately represented without losing critical information
[50]. Momeni et al. developed a multiscale model linking CVD control parameters to the morphology,
size, and distribution of synthesized 2D materials. The model couple’s reactor-scale heat and mass
transport equations with mesoscale phase-field equations to predict and control the growth
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morphology of 2D materials like MoS2. The framework is experimentally validated, demonstrating
its capability to optimize growth conditions [112].

Geiser proposed a multiscale model based on two different software packages. The large scales
are simulated with CFD software based on the transport-reaction model (or macroscopic model), and
the small scales are simulated with ordinary differential equations (ODE) software based on the
reactive precursor gas model (or microscopic model) [113].

Table 8 presents a summary of various aspects of selected articles in the field of application of
the multi-scale modeling.

Table 8. Analysis of selected articles in the field of use the multi-scale modeling.

Title Advantages Disadvantages Gaps and Limitations
The article effectively Multiscale modeling requires
integrates multiple length significant computational The lack of extensive
scales, from atomic to resources, which can be a . L.
macroscopic levels, providing limiting factor for its expenmt.antal.val.u.iatlon atall
a detailed understanding of widespread adoption in scales is a significant gap.
CVD processes. industrial settings.
Multiscale Modeling in
Chemical Vapor The methodologies presented The models are often tailored

The authors present a robust

Deposition Processes: . are complex and require a high to specific CVD processes or
P framework for coupling P d & P P

Models and . level of expertise in both ~ materials, which can limit their
. different scales. . . o
Methodologies [50] modeling and computational generalizability.
techniques.

Bridging these scales helps
optimize reactor designs and
process parameters, improving

While the models are The scalability of the models to
theoretically robust, larger industrial processes is
experimental validation across not fully addressed.

film quality and efficiency. all scales is challenging.

, .. The multiscale nature of the  Including more 2D materials
The study’s strength is its

. . framework introduces would enhance the
comprehensive multiscale s ) s
h significant computational framework’s utility and
approach. . T
PP complexity. generalizability.

Systematic MoS2 growth ~ Findings on MoS2 growth may

I ti I-time dat.
Multiscale Framework  experiments validate the = not directly apply to other 2D nEOTPOTAting rea ~ume data

and feedback could improve

for Simulation-Guided model, showing its practical materials without model
) L e CVD process control accuracy
Growth of 2D Materials applicability. modifications. ..
[112] and efficiency.

A .
The framework optimizes CVD ssumptions and

parameters for reproducible,
scalable production of high-
quality 2D materials.

Testing the model under
varying environmental
conditions would provide a
more robust understanding of
its applicability.
Expanding the study to

simplifications for feasible
simulations may limit

prediction accuracy under

varied growth conditions.

include a variety of materials

ltiscal ling of
Mu éﬁ;?n?cz/lkzile IOI;g © Using CFD and ODE software Integrating CFD and ODE and CVD processes would
Deposition ( CI\)/D) for different scales is a major ~ models requires significant provide a more comprehensive

advancement. computational resources. understanding of the
multiscale modeling approach
and its versatility.

Apparatus: Simulations
and Approximations

11
[113] The study tackles practical  The study focuses on specific

CVD challenges like ensuring materials (SiC and TiC), which
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uniform and stable thin film might limit the generalizability =~ Testing under dynamic
deposition. of the findings. conditions, like varying
temperatures and gas flow
rates, would better represent
industrial CVD processes.
Optimizing computational
efficiency through parallel
computing or algorithmic
improvements would make the
approach more accessible and

The article thoroughly explains
the models, methods, and
upscaling techniques to
integrate microscale
interactions into the

The study could benefit from
more extensive experimental
validation to confirm the
accuracy of the simulation

results. . .
macroscale model. practical for routine use.

4.4. Machine Learning and Data-Driven Approaches

Machine learning (ML) and data-driven approaches have been increasingly applied to model
mass transport in Chemical Vapor Deposition (CVD) processes, offering enhanced predictive
capabilities and optimization potential.

Xie and Stearrett studied benchmark data imputing, feature selection, and regression algorithms
for ML-based CVD virtual metrology. They found that linear feature selection regression algorithms
underfit the data, suggesting that a nonlinear feature selection and regression algorithm combined
with nearest data imputing can achieve up to 70% prediction accuracy. This significantly reduces
CVD processing variation and improves wafer quality, demonstrating ML’s potential in enhancing
metrology in mass production [114].

Costine et al. discussed an ML approach that uses data from published growth experiments to
predict growth performance in unexplored parameter spaces. By leveraging literature data on MoS2
thin films grown using CVD, the study employs unsupervised and supervised ML methods to
uncover design rules that classify monolayers and guide future CVD experiments, optimizing growth
conditions for desired microstructures and morphologies [115].

Yoshihara et al. constructed an ML model to design experimental CVD conditions for forming
large-area graphene. The model predicts graphene domain size from CVD growth conditions and
spectral information of the Cu surface, demonstrating faster graphene growth compared to
traditional methods. This approach highlights the efficacy of ML in optimizing CVD conditions for
large-scale applications [116].

Zeng et al. integrated ML with computational fluid dynamics (CFD) to identify core factors
influencing the phase composition of boron carbide deposits. By combining ML and CFD, the
prediction error is significantly reduced, providing accurate predictions of the deposited boron-
carbon ratio. This approach highlights the potential of ML in optimizing deposition conditions and
understanding mass transport mechanisms [117].

Khosravi and Zeraati modeled the length of CNTs prepared by floating catalyst CVD using
hybrid artificial neural networks (ANN) and gene expression programming (GEP). The models
consider various CVD parameters, with ANN-MPSO (modified particle swarm optimization)
providing accurate predictions for CNT length. The results highlight the effectiveness of ML in
predicting outcomes based on CVD process parameters [118].

Dritsas and Trigka, focusing on cardiovascular disease prediction, demonstrated the efficacy of
supervised ML techniques in handling complex datasets and improving prediction accuracy. The
methodologies and insights can be adapted to optimize mass transport models in CVD processes
[119].

Koronaki et al. presented an equation-free, data-driven approach for reduced order modeling of
CVD processes, utilizing the Proper Orthogonal Decomposition (POD) method and Artificial Neural
Networks (ANN) for model development, with the Support Vector Machine (SVM) classification
algorithm used to identify clusters of data corresponding to different process states [120].

Table 9 presents a summary of various aspects of selected articles in the field of application of
the machine learning and data-driven.
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Table 9. Analysis of selected articles in the field of use the machine learning and data-driven.
Title Advantages Disadvantages Gaps and Limitations
The study performs a
cross-benchmark analysis
on various data imputing Including diverse datasets

methods, feature selection . from various CVD
) Implementing GB and
techniques, and

NN algorithms requires
substantial computational

processes and

regression algorithms. semiconductor devices

This thorough evaluation would enhance the

resources.

helps in identifying the findings’ robustness and
most effective applicability.
combinations for accurate
VM in CVD processes.
Machine Lear.nmg Non-linear regression Testing VM models under
Based CVD Virtual . . . . . e
. algorithms, especially Non-linear algorithms dynamic conditions
Metrology in Mass . . . .
Produced gradient boosting (GB) showed high accuracy but would provide a
. and neural networks raised overfitting comprehensive
Semiconductor o . . . .
(NN), significantly concerns, especially with  understanding of their
Process [114] . . s
improve prediction GB. capabilities and
accuracy over traditional limitations.

linear models.

Optimizing ML
algorithms for
More extensive validation computational efficiency

The findings have direct
applications in the
semiconductor industry,

where efficient and across different CVD while maintaining
accurate VM can lead to  PTO€SSes and conditions accuracy would make the
reduced processing times, is needed. VM.appranh more
lower costs, and practical for industrial
improved wafer quality. Hse-
The study relies heavily

on data from existing
Applying ML methods to  literature, which may
optimize the CVD process  introduce biases or

Including more
experimental conditions
and substrate types would

is a significant inconsistencies due to .
. . enhance understanding of
advancement. variations in experimental
. the CVD process.
setups and reporting
standards.

Data-driven
Assessment of . Combining ML
i . While the study uses ML InE
Chemical Vapor The study compiles a . predictions with
.. . to draw conclusions, more . .
Deposition Grown comprehensive dataset on systematic experimental

. . 1
MoS2 Monolayer MoS2 CVD growth direct experimenta studies would validate the

validation of the

Thin Films [115]  conditions from various . . model’s accuracy and
predicted optimal .
sources. .\ optimize the CVD
conditions would
rocess.
strengthen the results. P
The findings have
. . g . The ML models used are Real-time monitoring and
practical implications for . .
. . complex and require adjustment of CVD
the synthesis of high- . . .
. significant computational parameters based on ML
quality MoS2 monolayers, L .
. . resources. predictions could improve
which are crucial for
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applications in electronics efficiency and quality
and optoelectronics. control.

ML model accuracy relies
on the quality and
quantity of training data;
data limitations or biases
can affect predictions.

Integrating machine
learning to optimize CVD
processes is a significant
advancement.

Applying ML to other
materials and CVD
processes would broaden
its applicability.

Machine Learning

Method for High-quality, large-area

graphene is essential for Optimizing CVD Testing ML models under

Determining . . . conditions with ML varying temperatures and
. industrial applications .
Chemical Vapor . . algorithms demands pressures would assess
L. like electronics, sensors, . C. . . . .
Deposition . . significant computational  their practical utility.
i and flexible devices. .
Conditions for resources and expertise.
Large-Area
Graphene Growth The use of machine Promising results need Optimizing ML
[116] learning enables the extensive experimental algorithms’
analysis of large datasets validation across various computational efficiency
to discern complex setups and conditions to would make them more
relationships between = ensure robustness and  accessible for industrial
process parameters and reliability. use.
graphene quality.
The use of ANN-MPSO
and GEP presents an The hybrid modeling Including various
innovative approach to approach is nanomaterials and CVD
modeling and predicting computationally processes would enhance
CNT lengths, leveraging intensive, needing the findings’
the strengths of both  substantial resources and  generalizability and
machine learning and expertise. modeling insights.

evolutionary algorithms.

By focusing on optimizing
Predictive modeling the CVD process, t.h.e Focusing on CNT length Testing models under
of the length of ~ study addresses a critical rediction mav limit
prepared CNT by need in the production of a plicabili to o’ilher CNT
CVD through  high-quality CNTs, which PP vy

ANN-MPSO and have numerous production aspects or e o

. . better reveal their
L. . different nanomaterials. .
GEP [118] applications in capabilities.

nanotechnology and

dynamic conditions, like
varying temperatures and

materials science.

The article could benefit
from more extensive
experimental validation to
confirm the accuracy and
robustness of the
predictive models under
various conditions.

The detailed analysis of
various process
parameters provides

valuable insights into the
factors that influence CNT
growth, aiding in process
control and optimization.
Classification of The combination of POD Integrating POD, ANN, Extending the approach to

States and Model =~ and ANN for MOR in and SVM requires various CVD processes

Order Reduction of CVD processes is anovel  significant machine and reactors would
Large Scale approach. learning and enhance its

Simplifying
computational models
while maintaining
accuracy would make
them more accessible for
industrial use.
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Chemical Vapor computational modeling  generalizability and
Deposition expertise. applicability.

P ith
rocesses wit The study tackles the

challenge of simulating
large-scale,
computationally intensive

Solution
Multiplicity [120]

While the study presents  Testing reduced-order

a robust theoretical models under dynamic
framework, the validation conditions, like transient
of the reduced-order  temperature and pressure

D
CVD processes due to models could be more changes, would improve

nonlinearity and multiple

. extensive. understanding of their
solutions.
robustness.
The article provides a
detailed methodology, .
. . &Y . More extensive
including the Focusing on CVD . .
e . . experimental validation
classification of states ~ processes with solution
. e . would strengthen the
using Support Vector multiplicity may limit , o
; L models’ credibility and
Machine (SVM) applicability to other .
. . demonstrate practical
algorithms and the chemical processes.

relevance.
subsequent development

of reduced-order models.

5. Combined Heat and Mass Transfer Modeling

The complex modeling of heat and mass transfer in the CVD process is essential for optimizing
the deposition process, ensuring high-quality film production, and achieving economic and
environmental benefits. By leveraging advanced modeling techniques, researchers and engineers can
design more efficient and effective CVD systems, leading to advancements in semiconductor
technology and other fields that rely on high-quality thin films.

The coupling of heat and mass transfer in CVD processes is crucial because the temperature
distribution affects the reaction rates, which in turn influence the concentration fields. Additionally,
the exothermic or endothermic nature of the reactions can significantly alter the temperature field.
The coupled equations can be solved using numerical methods such as finite difference, finite
element, or finite volume methods.

5.1. Coupled Heat and Mass Transfer Equations

Kuvyrkin et al. construct a mathematical model describing the CVD process on a curvilinear
plate. The model accounts for convective heat transfer, radiative heat transfer, and mass transfer
during substance attachment to the surface. A numerical algorithm is proposed to find the
temperature profile over time, with results and analysis provided for different materials. This model
helps in understanding and optimizing deposition on complex geometries [121].

Lukashov et al. propose an analytical model for the growth of thermal barrier coatings during
Metal-Organic Chemical Vapor Deposition (MOCVD). The model considers the coating deposition
process as independent global reactions of diffusion combustion under convection conditions on a
permeable surface. The rate of coating growth and precursor efficiency are analytically evaluated,
and the model’s accuracy is confirmed through comparison with experimental data [99].

An et al. investigate the heat and mass transfer performance in a three-dimensional bell-shaped
polysilicon CVD reactor. They analyze the distributions of velocity, temperature, and concentrations
of key components, as well as the silicon deposition rate. The study finds that higher inlet velocities
lead to more uniform distributions and better deposition performance, providing insights for reactor
design optimization [122].

Reznik et al. perform physical and mathematical simulations of SiC deposition in a porous
carbon-carbon composite material. The results of parametric calculations of heat and mass transfer
at macro- and microlevels are presented, analyzing the compaction of pore space by a SiC matrix
depending on reaction medium parameters [123].
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Wejrzanowski et al. study the relationship between heat and mass transfer in a hot wall CVD
reactor and the epitaxial growth of SiC. The research focuses on achieving homogeneous film
thickness by modeling heat and mass transfer distributions during the epitaxial growth process,
providing valuable insights for reactor design and optimization [40].

Raji and Sobhan develop a mathematical model for CNT synthesis through catalytic CVD. They
use COMSOL software to solve the governing equations for momentum, energy, and mass transport,
providing insights for optimal furnace design [124].

Lisik et al. provide a numerical model of a CVD reactor validated against experimental data,
focusing on heat and mass transfer [54].

Table 10 presents a summary of various aspects of selected articles in the field of application of
the coupled heat and mass transfer equations.

Table 10. Analysis of selected articles in the field of use the coupled heat and mass transfer

equations.
Title Advantages Disadvantages Gaps and Limitations
The study focuses
specifically on 7-8%
Yitria-Stabilized Zi .
sty provids V1 Seled i
detailed analytical model & . Including other TBC
. common material for .
that describes the complex 4 materials would enhance
. . . TBCs, the findings may ,
interactions and reactions not be directly applicable the model’s
during the MO CVD Y }?p generalizability.
to other materials or
process. . .
coating systems without
further modification and
Analytical Model of validation.
the Process of Testing under dynamic
Thermal Barrier , - The model assumes conditions, like varying
. The model’s predictions .
Coating by the MO independent global temperatures and gas

CVD Method [99] of growth rate and reactions, which may not flow rates, would better

precursor efficiency are

valuable for industr fully capture the reveal the model’s
Y- complexity of interactions capabilities and
in the CVD process. limitations.
Simplifying the model

1 . Large-scale industrial use . .
Validation against e while maintaining
. may require significant .
experimental data accuracy would make it
more practical and
accessible for broader

industry use.

computational resources
enhances the model’s P . ..
and expertise, limiting
accessibility for smaller

manufacturers.

credibility and relevance.

The focus on curvilinear
surfaces in CVD processes . Including various
P The model and numerical &

is innovative, addressing curvilinear geometries

Mathematical . . methods are
. a significant gap in . would enhance the
Modeling of . . computationally , o
. existing research which . . model’s generalizability
Chemical Vapor intensive.

predominantly focuses on and insights.

D .t. f
eposition o flat surfaces.

Material on a The study is tailored to

specific curvilinear
geometries, which might
limit the generalizability
of the findings to other

Curvilinear Surface Incorporating various
[121] heat and mass transfer
mechanisms enhances the

Testing under dynamic
conditions like varying
temperatures and

model’s robustness. deposition rates would
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model, ensuring feasible
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shapes and
configurations.

The study provides
limited experimental
validation.
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better evaluate the
model’s capabilities.

Simplifying the model
while maintaining
accuracy would make it
more practical for
industrial applications.

The bell-shaped reactor
design represents an
innovative approach to
addressing non-uniform
deposition issues

commonly encountered in

traditional reactor
designs.
Heat and Mass
Transfer
Characteristics of

The use of CFD
simulations allows for a

Three-Dimensional comprehensive analysis of

Bell-Shaped heat and mass transfer

Detailed CFD simulations
require significant
computational resources,
limiting practicality for
some organizations.

Focusing on polysilicon
deposition may limit the
findings’ applicability to

Expanding the study to
include other
semiconductor materials
would enhance the
generalizability of the
findings and provide a
broader understanding of
the reactor’s capabilities.

Testing the reactor under
varying conditions like
fluctuating temperatures

Polysilicon phenomena, providing . and gas flow rates would
. o g other materials or . ]
Chemical Vapor insights that are difficult better assess its practical
. . processes. L
Deposition Reactor to obtain through applicability.
[122] experimental methods
alone.

Findi timi Explori lability f
indings can optimize ., dy lacks extensive xploring scalability for
reactor parameters, . . industrial production

. .. experimental validation to .
enhancing deposition . . ., would ensure practical
. . L. confirm the simulations’ . o
uniformity and efficiency . 11 implementation in large-
: . accuracy and reliability. .
for high-quality scale manufacturing.
polysilicon production.
Th f both physical
Zifien?atk?e maptiz:llca Including different
. . . The simulations are materials and CVD

simulations provides a . .

. resource-intensive, processes would enhance
thorough analysis of the e o
requiring significant the findings

heat and mass transfer - s

. expertise. generalizability and
Heat and Mass phenomena occurring rovide broader insichts
Transfer in the  during the CVD process. P g
Chemical Vapor
D ition of By focusi th
cposiion o y focusing on the Testing the CVD process

deposition of SiC into Focusing on SiC and

carbon—carbon

Silicon Carbide in a
Porous Carbon-
Carbon Composite  composites, the study
Material for a Heat addresses a critical area in
Shield [123] the development of high-
performance materials for
aerospace applications.
The article examines
parameters like
temperature distribution,

may limit the findings’
applicability to other
materials or processes.

The study offers robust
theoretical insights but

carbon-carbon composites

under varying
temperature and pressure
profiles would better
assess its capabilities and
limitations.

Studying the long-term
stability and performance
of the deposited SiC
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gas flow rates, and limited experimental  coatings under different
deposition rates in detail. validation. environmental conditions

would provide valuable
insights into their
practical applications and
durability.

The model’s complexity Including different
necessitates significant ~ materials and reaction
computational resources, conditions would enhance

which may limit its the model’s
accessibility for real-time  generalizability and

The study integrates gas
flow, diffusion, and
reaction kinetics affecting

mass transport.
P process control or smaller usefulness across CVD

research facilities. processes.
Incorporating detailed
A Computational  interactions improves  Applying the model to
Model for prediction accuracy for  other materials or CVD
Predicting the Mass CNT growth ratesand  processes would need
Transportina CVD  uniformity, crucial for = major modifications and

Testing under varying
temperatures and
pressure profiles would
better evaluate the
model’s capabilities.

Reactor for Carbon industrial applications. further validation.
Nanotube Synthesis
[124] The study would benefit

The findings can optimize  from more extensive
CVD processes in the experimental validation to
semiconductor industry, ensure the model’s

Optimizing
computational efficiency
would make the model

enhancing efficiency and  predictions align with . .
more practical for routine

cost-effectiveness of CNT real-world data, ! .
. o s industrial use.
production. enhancing its reliability
and practical
applicability.

5.2. Phase Change Phenomena

Leone et al. perform kinetic calculations of the chemical phenomena during the epitaxial growth
of silicon carbide. The study focuses on the effects of precursor types and growth temperatures on
the deposition process, considering gas-phase reactions and phase changes [125].

Geiser and Arab develop a four-phase model for CVD processes, incorporating phase changes
and transport phenomena to optimize the deposition of metallic bipolar plates [126].

Jamshidi et al. use thermodynamic equilibrium calculations to model gas-phase species in a
thermal plasma CVD reactor, considering ionic species and phase changes during polycrystalline
diamond deposition [127].

Vignoles provides a comprehensive review of modeling techniques for chemical vapor
infiltration (CVI), including phase change phenomena, for the preparation of fiber-reinforced
composites [128].

Fashu et al. use a phase-field (PF) model to investigate the growth morphology of two-
dimensional (2D) materials during CVD. The model, based on Burton-Cabrera-Frank (BCF) crystal
growth theory, explores the effects of substrate temperature and concentration of absorbed atoms on
the substrate. The results demonstrate that the rich morphology of 2D islands in CVD growth can be
reproduced, showing transitions from dendritic to compact shapes with increasing substrate
temperature [129].

In a review article, Sabzi et al. discuss the factors influencing CVD system design, including
substrate geometry, temperature, chemical composition, and deposition processes. The paper
highlights the role of phase change phenomena, such as surface reaction kinetics, diffusion, and
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desorption, in determining the deposition rate and microstructure of ceramic coatings during CVD

processes [130].

Table 11 presents a summary of various aspects of selected articles related to phase change

phenomena.

Table 11. Analysis of selected articles in the field of phase change phenomena.

d0i:10.20944/preprints202405.2117.v1

Title Advantages Disadvantages Gaps and Limitations
Includi ; ;
The study details gas- Detailed gas-phase neluding various SIC
. . . precursors and deposition
phase reactions, crucial modeling needs conditions would enhance
for understanding SiC ~ significant computational o,
o o the findings
CVD deposition resources, limiting real- -
mechanisms time application generalizability and offer
' PP ' broader CVD insights.
Relevant for chlorine-  Testing under dynamic
-Ph D, the findi itions i i
Gas hase Chlorine-based CVD based CV’ , the findings  conditions like varying
Modeling of rocesses produce high. ™Y not directly apply to temperatures and
Chlorine-Based . P o & other precursors or pressures would better
. quality SiC films. . ,
Chemical Vapor methods without assess the system’s
Deposition of adaptation. capabilities and
Silicon Carbide limitations.
[125] The insights gained from
the gas-phase modeling
are directly applicable to Optimizing model
industrial CVD processes, The study heavily relies computational efficiency
would make them more

aiding in the production
of high-quality SiC layers
for electronic and
optoelectronic
applications.

on computational models.

practical for industrial use
and real-time
adjustments.

Simulation of

Chemical Vapor
Deposition: Four- kinetics, the model offers

Phase Model [126]

The detailed multiphase
model requires significant
computational resources,

Incorporating four phases,
the model provides
detailed and realistic CVD
process simulations for
accurate predictions and
optimizations.

which may limit its
practical applicability,
especially for real-time
process control.
Considering gas flow
dynamics, plasma
interactions, and reaction R
not generalize well to
a holistic CVD process
view.

or materials.

While the theoretical
framework is robust,
more extensive

This detailed framework
optimizes process
parameters, enhancing
efficiency and layer
quality for industrial
applications.

would enhance the

other deposition processes

experimental validation

credibility and practical
relevance of the findings.

Including various
materials and CVD
processes would enhance
the model’s
generalizability and
industrial applicability.

Tailored to specific CVD  Testing under varying
processes, the model may

temperatures and
pressures would better
assess the model’s
capabilities.

Optimizing
computational efficiency
without sacrificing
accuracy would make the
model more practical for
industrial use.

Thermodynamics
Modeling of Gas

The study offers an in- The complex

depth thermodynamic

thermodynamic models

Expanding the study to
include different types of
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materials and CVD

analysis of gas-phase  may limit accessibility to
processes would enhance

Phase Processes in
non-specialists.

Polycrystalline processes in
Diamond polycrystalline diamond the generalizability of the
Deposition During deposition. findings.
Thermal Plasma
Cheml,cél Vapor The models consider The study’s theoretical Testing .the mO(-:h.els un.der
Deposition [127] dynamic conditions like
temperature, pressure, models are robust but lack varvine eas flows and
and chemical extensive experimental teri eg;'ag’cures would
composition. validation. p .
better assess their
capabilities.
timizi VD
The findings significantly The focus is specifically Optimizing CVD process
. . . parameters based on these
improve polycrystalline on polycrystalline models could improve
diamond production diamond deposition using o P
. . deposition quality and
quality and efficiency. thermal plasma CVD. .
efficiency.
Expanding the discussion

The article offers a The models discussed are .
to include other types of

comprehensive often highly complex, . o\
. Lo chemical vapor deposition
understanding of CVI requiring significant
) . processes would enhance
processes through various computational resources N
. . . the generalizability of the
modeling techniques. and expertise. L.
findings.
Detailed methodology
Modeling of descriptions make it a Testing the models under
. 8 P . The article is heavily & . L .
Chemical Vapor useful guide for dynamic conditions like
. . . focused on CVI processes .
Infiltration developing and . . changing temperatures or
. . for composite materials.
Processes [128] implementing CVI pressures would better
models. evaluate their capabilities.
While the article discusses
The findings and . . Simplifying and
. . . various modeling o
discussions are highly . . optimizing the models
. techniques, there is less . .
relevant to the practical . without losing accuracy
emphasis on the
aspects of CVI processes . L would make them more
. experimental validation of . .
in industry. accessible and practical.
these models.

The PF model effectively

captures the diverse ~ The PF model’s detailed Including more 2D

materials would enhance

island morphologies simulations are
observed in 2D materials, computationally the model’s
such as dendritic, intensive, limiting real- generalizability and

triangular, and hexagonal time use and accessibility =~ usefulness in various

Phase-field i nve
Modelling of 2D shapes, ur(l;lsr different  for some researchers. CVD applications.
Island Growth condiions.
Morphology in The integration of various ) .
Testing under dynamic

hemical Vapor
Che ,Cé apo growth conditions, such ~ While insightful for 2D i, . .
Deposition [129] . .. conditions like fluctuating
as substrate temperature material growth, findings
temperatures and gas

and atomic interactions at may not apply to other .
. ) compositions would
the island edges, allows  materials or processes ,
. . better assess the model’s
for a comprehensive without further research. .
capabilities.

study of their effects on
island morphology.
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The findings are The study would benefit
significant for optimizing  from more extensive Optimizing to reduce
CVD processes to control experimental validation to computational demands

the shape and size of 2D  corroborate the model’s while maintaining
islands, which is crucial ~ predictions with real- accuracy would make the
for applications in world data, enhancing its model more practical for
electronics and reliability and industrial use.
nanotechnology. applicability.

5.3. Surface Reaction Kinetics

Jansen discusses the processes involved in modeling surface reactions in CVD, including the use
of lattice models to represent adsorption sites and defects. The study also covers the implementation
of processes and the importance of reducing noise in kinetic Monte Carlo simulations [131].

Badran and Shi investigate the decomposition kinetics of 1-methylsilacyclobutane (MSCB) in a
hot wire CVD reactor. Using vacuum ultraviolet laser single photon ionization and time-of-flight
mass spectrometry, they determine the rate constants and activation energies for different
decomposition pathways, highlighting the catalytic role of the tungsten filament in the reactor [132].

Reinke characterizes the surface kinetics of titanium isopropoxide (TTIP) and water in HV-CVD,
deriving activation energies for desorption, hydrolysis, and pyrolysis, and demonstrating the
deposition of epitaxial barium titanate films at a low temperature of 400°C [133].

Reinke further investigates the surface reaction kinetics of TTIP in high vacuum CVD of titanium
dioxide, providing quantitative predictions of precursor impinging rates and examining the
activation energies of surface reaction steps [134].

Song et al. propose surface kinetic mechanisms for the epitaxial growth of SiC using
methyltrichlorosilane (MTS) in a hydrogen environment, discussing the components of surface
species and growth rates under different mechanisms [135].

Sabzi et al. discuss the factors influencing CVD system design, focusing on surface reaction
kinetics, diffusion, and desorption reactions [130].

Muneshwar and Cadien present a first-order kinetic model for atomic layer deposition (ALD)
reactions, simulating the effects of precursor exposure, post-precursor purge, reactant exposure, and
substrate temperature on growth per cycle [136].

Konar and Nessim, in a mini-review, focus on the synthesis of transition metal selenides using
ambient-pressure CVD, emphasizing their application in energy storage and the influence of surface
morphology on reaction kinetics [137].

Yuesong Xiang et al. investigates the controlled synthesis of 2D magnetite nanosheets using
CVD, emphasizing the importance of surface reaction kinetics in their formation [138].

Tomasini details the role of surface energy and activation energy in determining the reaction
kinetics in CVD processes, focusing on molecular hydrogen dissociative adsorption and precursor
thermal decomposition [139].

Zhao et al. discuss the tuning of crystal dimensions through growth temperature and hydrogen
concentration, linked to surface reaction and mass transport mechanisms [140].

Table 11 presents a summary of various aspects of selected articles related to surface reaction
kinetics.

Table 12. Analysis of selected articles in the field of surface reaction kinetics.

Title Advantages Disadvantages Gaps and Limitations
The authors developed a The kinetic model and
Surface Kinetics of o p . . Including different CVD
. surface kinetic model for simulations are
Titanium . processes and precursors
L . TTIP and water, computationally
Isopropoxide in High . .. . . . would enhance the
including first- and intensive, needing

Vacuum Chemical findings’ generalizability.

second-order reactions.  significant resources.
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Testing under varying

[134] The study uses 363 data The study focuses :
precursor concentrations

oints across various o
P specifically on the HV- d
an

temperatures would

deposition parameters, .
CVD process using TTIP better assess the model’s

like substrate
and water.
temperature and

precursor rates.
Although the model is

validated against a

The findings have substantial dataset, the

capabilities.

Optimizing

significant practical ~ study could benefit from . -
S . . computational efficiency
relevance for optimizing additional experimental .
. L . would make the kinetic
HV-CVD processes in the validation under various .
model more accessible

conditions to further
confirm the robustness
and accuracy of the

semiconductor and thin-
film industries.

for industrial use.

model.
The article provides an
in-depth analysis of the
kinetic mechanisms at ~ The complexity of the

reactions and the detailed
process. By dissecting  kinetic modeling may
both gas-phase and pose challenges for

surface reactions, it offersreaders who are not well-
versed in chemical

play during the CVD

a granular understanding

of the factors influencing kinetics and CVD
SiC growth, which is processes.
L f o
Surface Kinetic  Cruialfor optimizing
Mechanisms of epostiion €o ons.
Epitaxial Che.rr.ucal Focusing on the efficient While the st.ud.y is
Vapour Deposition of . thorough in its
. . MTS-H; system, it . oo
4H Silicon Carbide . | . . theoretical analysis, it
highlights chlorine’s role .
Growth by . . ... could benefit from more
. . in enhancing deposition . .
Methyltrichlorosilane- . . extensive experimental
rates and film quality. o
H, Gaseous System validation.
[135]

The insights gained from
this study can directly Focusing on the MTS-H,

impact the ..
. . system may limit
semiconductor industry, .
. . applicability to other
particularly in the
. . precursor systems or
production of high- o
. . . deposition processes.
quality SiC epitaxial
layers.

Including various

precursors and carrier

gases would broaden
understanding of the

CVD process for SiC and

other materials.

Testing dynamic
conditions like varying
temperatures and gas
flow rates would better
evaluate kinetic
mechanisms and their
impact.

Examining long-term

stability and performance

of SiC layers under
different conditions
would provide insights
into their practical
applications in high-
stress environments like
power electronics and
aerospace.

The review The detailed discussion

A Review on
comprehensively covers on reaction kinetics and

Sustainable
Manufacturing of CVD aspects like reaction deposition mechanisms

Ceramic-Based Thin  kinetics, deposition might be complex for

Films by Chemical mechanisms, and

Extending the research to
include other types of
materials and their
respective CVD processes

readers without a strong would provide a more
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Vapor Deposition
(CVD): Reactions
Kinetics and the

Deposition

Mechanisms [130]

parameter effects on

and efficiency.

Emphasizing sustainable comprehensive, it could

practices, the article
discusses optimizing

CVD to reduce waste and

energy use.

The article provides

detailed insights into the

methodological aspects
of CVD, making it a
valuable resource for
researchers and
practitioners aiming to
improve the efficiency

and sustainability of their

processes.

ceramic thin film quality engineering or materials

background in chemical holistic view and increase
the applicability of the
findings across different
industries.

science.

While the review is

Investigating how

benefit from more temperature, pressure,

extensive experimental and precursor flow rates
data to validate the affect CVD could
theoretical aspects optimize the process

discussed. under various conditions.

The focus on ceramic- A lifecycle analysis of the

CVD process would offer
a complete view of its

based thin films may
limit the applicability of
the findings to other

. sustainability.
materials.

The use of CVD for

synthesizing high-quality

Fe304 nanosheets is a

significant advancement,
offering a controlled and

scalable method for
producing two-
dimensional materials

with desirable properties.

The combination of
Raman spectroscopy, X-
ray diffraction, and

Chemical Vapor
Deposition of Two-

The study emphasizes
Fe304 nanosheet
synthesis and initial
characterization, less on

Investigating nanosheet
stability under various
conditions would
provide insights into

practical device 1/ bility and reliability.

integration.

While the study details
the oxidation process, it Exploring dynamic CVD

Dimensional . . could benefit froma  conditions like varying
. atomic force microscopy . it
Magnetite . deeper exploration of the gas compositions and
provides a thorough iy .
Nanosheets and L. conditions affecting the flow rates would deepen
characterization of the 1 .
Raman Study of Heat- . oxidation rate and the understanding of
o nanosheets, ensuring a s . .
Induced Oxidation . ; stability of the resulting  synthesis parameters.
. detailed understanding
Reaction [138] . a-Fe203 phase.
of their structural and
chemical properties.
The findings have . L
. S Functional testing in
potential applications in Challenges and . .
. ) . o device applications
spintronic devices and  optimizations for large-
would enhance the
other advanced scale CVD nanosheet , .
. . study’s practical
technologies, where the production are not
. . ) relevance and showcase
magnetic properties of  extensively addressed. .
real-world potential.
these nanosheets could
be exploited.
Chemical Vapor The study offers a Focusing on elemental Including a wider range

Deposition of thorough examination of

crystallogens may limit of materials would

d0i:10.20944/preprints202405.2117.v1
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Elemental CVD techniques, generalizability to other  enhance the findings’
Crystallogen Thin providing detailed CVD materials. generalizability and
Films [139] insights into reaction applicability across CVD
kinetics, deposition processes.

mechanisms, and the
influence of various
process parameters.
Focusing on elemental
crystallogens, it
addresses crucial

While the study is Testing under varying
detailed, more extensive temperatures and

. experimental validation pressures would provide
materials for

. under varying conditions a comprehensive
semiconductor and .
. . would strengthen the understanding of the
microelectronics s i
. . reliability of the results.  deposition process.
industries.

The article outlines
strategies for optimizing Optimization strategies
CVD conditions to may need sophisticated
enhance film quality, = equipment and precise

Studying long-term
stability and performance
under operational
conditions would offer

valuable for control, challenging in o
. X valuable insights for
manufacturing large-scale production. ) D
o practical applications.
applications.

6. Challenges and Opportunities in CVD Modeling Including Heat and Mass Transfer Aspects

Recently, various articles have discussed the challenges and limitations in chemical vapor
deposition (CVD) modeling, as well as future directions and opportunities.

Filho et al. describe the modeling challenges in scaling up AACVD processes, including the
prediction of aerosol behavior, heat and mass transfer coefficients, and reaction rate constants under
uncertainty [141].

Lee et al. discuss technical challenges in MOCVD growth of 2D materials, emphasizing the need
for control over nucleation and growth stages to enable practical applications [142].

Jiang et al. highlight recent advances and challenges in the CVD growth of 2D vertical
heterostructures, focusing on controllable synthesis, growth temperature, precursor design, and
substrate engineering [143].

Dong et al. present a theoretical framework for 2D material CVD synthesis, discussing
challenges and opportunities in exploring CVD mechanisms to better understand 2D material
synthesis [144].

Qun Wang et al. focus on challenges in the controllable CVD fabrication of high-quality TMD
films, emphasizing the importance of controlling precursor concentration, nucleation density, and
oriented growth [145].

Heat and mass transfer modeling for CVD processes presents both challenges and opportunities.
Considering the challenges, the following points can be noted:

o Modeling heat and mass transfer for CVD processes requires addressing complex interactions
between different phases (gas and solid), necessitating advanced modeling techniques and
considerable computational resources.

o Achieving accurate modeling of flow fields is essential but challenging, as it requires accounting
for heat transfer contributions from multiple phases.

o The significant computational demands of accurate simulations present a major challenge,
requiring the use of advanced hardware and optimization techniques, such as GPU acceleration.

o Ensuring the accuracy and applicability of numerical models is challenging and necessitates
extensive validation against experimental data, which can be resource-intensive. Without proper
validation, the predictive power of these models is limited.
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o Incorporating advanced techniques such as fuzzy logic and artificial intelligence into CVD
modeling can improve predictive capabilities. However, these methods require sophisticated
implementation and validation, posing additional challenges.

Considering the opportunities, the following points can be noted:

o Advanced simulation tools such as CFD facilitate the creation and validation of numerical
models without requiring physical prototypes, potentially streamlining the design process and
lowering costs.

o  CFD and other advanced modeling techniques provide significant opportunities for optimizing
the design and performance of heat exchangers, which are crucial components in CVD
processes.

o  Methods such as fuzzy logic-based models can effectively predict heat transfer coefficients,
offering valuable tools for optimizing industrial processes and enhancing model accuracy.

o  Incorporating Al and machine learning into CVD modeling enhances predictive capabilities and
optimizes process parameters by uncovering patterns not evident through traditional methods.

o  Real-time monitoring and control in CVD processes ensure optimal conditions, enhancing
product quality and reducing material waste.

o  Collaboration among material science, engineering, and computer science researchers can create
more accurate CVD models, addressing the complex challenges of these processes.

o Using dimpled surfaces can enhance heat transfer and reduce flow resistance, making CVD
processes more efficient.

Considering the opportunities, it is worth focusing on parallel programming, which can
significantly advance the modeling of CVD processes by providing the computational power
necessary to tackle these systems’ inherent complexities. By enabling high-resolution, real-time, and
scalable simulations, parallel programming enhances our ability to optimize and control CVD
processes, paving the way for innovations in materials science and manufacturing. The potential roles
and benefits include:

o  CVD processes involve multiscale phenomena, and parallel programming efficiently simulates
these models by distributing tasks across multiple processors, allowing simultaneous solving of
molecular dynamics and continuum mechanics equations.

o  CVD processes often involve solving large PDE systems for heat, mass, and momentum transfer.
Parallel programming reduces computation time by dividing the domain into sub-domains and
solving them concurrently, which is crucial for real-time process optimization and control.

o Parallel programming distributes computational demands, enabling high-resolution
simulations to capture detailed CVD process features like intricate temperature gradients and
concentration profiles.

o Conducting parametric studies on CVD outcomes is computationally intensive. Parallel
programming allows simultaneous simulations with different parameters, drastically reducing
time and crucially optimizing process parameters and product quality.

o In advanced manufacturing, real-time control and monitoring of CVD processes are vital.
Parallel computing enables real-time simulations and adjustments, ensuring the process stays
within desired parameters and reduces defects.

o  As CVD models grow in complexity and size, scaling simulations across multiple processors is
crucial. Parallel programming provides the scalability to handle larger models without
exponentially increasing computation time.

o CVD processes often involve coupled phenomena, like fluid flow and chemical reactions.
Parallel programming allows simultaneous solving of these models, ensuring more accurate and
realistic simulations.

Parallel programming can model the deposition of advanced materials, requiring detailed
simulations of multicomponent systems. High-fidelity simulations optimize reactor design for better
uniformity and efficiency in thin-film deposition. Combining parallel computing with machine
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learning enhances predictive modeling, enabling faster convergence to optimal conditions and more
robust control strategies.

7. Conclusions

This review has provided an overview of recent advancements in heat and mass transfer
modeling for Chemical Vapor Deposition (CVD) processes. Through a comprehensive analysis of
literature published over the past decade, several key findings and trends have emerged.

Firstly, significant progress has been made in developing sophisticated computational models
that accurately capture the complex interplay of thermal, fluid, and chemical phenomena inherent in
CVD processes. These models range from continuum-based approaches such as finite element
analysis and computational fluid dynamics to atomistic methods like molecular dynamics and kinetic
Monte Carlo simulations. Each approach offers unique insights into different length and time scales,
enabling a deeper understanding of the fundamental mechanisms governing heat and mass
transport.

Furthermore, advancements in numerical techniques, parallel computing, and high-
performance computing have enabled the simulation of increasingly complex CVD systems with
greater accuracy and efficiency. Coupled with experimental studies, these models have facilitated the
optimization of process parameters, the prediction of deposition rates and film properties, and the
exploration of novel materials and processes.

However, several challenges remain. The integration of experimental data with computational
models continues to pose difficulties, particularly in reconciling discrepancies in spatial and temporal
resolutions and ensuring the quality and consistency of experimental validation data. Additionally,
the complexity of multiphysics interactions and the sheer scale of parameter spaces in CVD present
ongoing challenges for model development and validation.

Looking ahead, future research directions should focus on addressing these challenges through
interdisciplinary collaborations, advanced experimental techniques, and the continued development
of computational methodologies. By leveraging emerging technologies such as machine learning,
data assimilation, and in-situ monitoring, researchers can enhance the predictive capabilities of CVD
models and further accelerate innovation in materials science and engineering.

8. Future Directions

Taking into account future directions of activities, a review article is planned that will provide a
comprehensive overview of the current state and future potential of Chemical Vapor Deposition
(CVD) modeling. It will include recent advancements in CVD modeling techniques, focusing on
advanced computational methods that improve simulation precision and efficiency, the integration
of detailed surface chemistry for better prediction accuracy, recent developments in real-time
monitoring and control strategies, and high-throughput computational methods for process
optimization. The practical applications of advanced CVD modeling will be demonstrated across
various fields, including semiconductor device fabrication, thin film coatings for energy applications,
advanced materials synthesis, and emerging nanotechnology applications. The paper will also
address current challenges and limitations in CVD modeling, such as complex reaction mechanisms,
high computational costs, lack of experimental validation, and the need for realistic boundary
conditions. Finally, it will outline future directions and opportunities, highlighting the integration of
computational models with experimental techniques, the development of predictive models,
advancements in multi-scale modeling, and the application of artificial intelligence and machine
learning to optimize CVD processes and accelerate material discovery.
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