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Article

Selkov’s Dynamic System of Fractional Variable Order
with Non-Constant Coefficients
Roman Parovik

Laboratory of Physical Process Modeling, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034
Paratunka, Russia; parovik@ikir.ru

Abstract: The article uses an approach based on the triad model-algorithm-program. The model is
a nonlinear dynamic Selkov system with non-constant coefficients and fractional derivatives of the
Gerasimov-Caputo type. The Adams-Bashforth-Multon numerical method from the predictor-corrector
family of methods is selected as an algorithm for studying this system. The ABMSelkovFracSim
software package acts as a program, in which a numerical algorithm with the ability to visualize
the research results was implemented: to build oscillograms and phase trajectories. Examples of
the ABMSelkovFracSim software package operation for various values of the model parameters are
given. It is shown that with an increase in the values of the parameter responsible for the characteristic
time scale, regular and chaotic modes are observed. Further in the work, bifurcation diagrams were
constructed, which confirmed this. Aperiodic modes were also detected and a singularity was revealed.

Keywords: fractional Selkov dynamic system; fractional derivative of variable order;
Adams–Bashforth–Moulton method; software package ABMSelkovFracSim; phase trajectories; oscillo-
grams; bifurcation diagrams; Python

1. Introduction
Dynamic systems play an important role in various fields of knowledge and it often happens

that the same dynamic system of different nature can describe similar processes. The Selkov dynamic
system is no exception. It is often encountered in biology when studying glycolytic reactions that have
self-oscillatory modes [1].

Further in the article [2] it was proposed to use the Selkov dynamic system to describe self-
oscillatory modes of microseisms — small-amplitude oscillations of the earth’s surface, the source of
which are natural and man-made processes.

In the work [3,4] a generalization of a dynamic system to the case of heredity is carried out. This
is the property of a dynamic system to retain the memory of its evolution, i.e. the current state of
the system depends on its previous states. It is known that viscoelastic and plastic media can have
heredity and they are considered within the framework of hereditary mechanics [5], heredity naturally
arises in biology during the spread of viruses [6], in economics to describe cycles and crises [7]. From a
mathematical point of view, heredity in the general case can be described using Volterra-type integro-
differential equations [8], and under certain conditions using derivatives of fractional constants or
variables of order, which are studied within the framework of the theory of fractional calculus [9,10].
Therefore, we will further call Selkov’s dynamic system with fractional derivatives a fractional dynamic
Selkov system.

A quantitative and qualitative analysis of the Sel’kov dynamic system with constant coefficients
and taking into account heredity, which was described using derivatives of fractional constant orders
in the Gerasimov-Caputo sense, was carried out. The following aspects of this dynamic system
were investigated: equilibrium points, spectra of maximum Lyapunov exponents were constructed, a
numerical algorithm based on the Adams-Bashforth-Multon method was developed and investigated.
The main results of the study were reflected in the article [4]. Further, in the articles [11,12], a
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generalization of the Sel’kov system with constant coefficients was carried out for the case of derivatives
of fractional variables of the Gerasimov-Caputo type. Numerical algorithms for finding a solution to
the system were developed, and the Test 0-1 algorithms were applied to study regular and chaotic
regimes.

In this paper, within the framework of the triad model-algorithm-program, a further general-
ization of the fractional dynamic Selkov system is proposed, associated with the dependence of its
coefficients on time and on a certain parameter - the characteristic time scale. To obtain a solution to
the generalized dynamic Selkov system, the Adams-Bashforth-Multon numerical algorithm is used,
which was adapted for it. Then, based on the previously obtained results, as well as new results, the
ABMSelkovFracSim software package was developed in the Python programming language [13] in
the PyCharm environment [14]. Then, using the software package, calculations of oscillograms and
phase trajectories are carried out, characterizing various dynamic modes on bifurcation diagrams.

The research plan in the article has the following structure: the introduction reveals the problems
of the article, Section 2 provides a description of the fractional dynamic Selkov system with non-
constant coefficients, Section 3 provides a numerical algorithm for solving the proposed system based
on the Adams-Bashforth-Multon method, Section 4 describes the software package in which the
numerical algorithm is implemented, Section 5 provides examples of the software package operation,
Section 6 studies bifurcation diagrams for various parameters of the system under study using the
software package, Section 7 provides conclusions based on the research results.

2. Statement of the Problem
Consider the following dynamic system:∂

α1(t)
0t x(t) = −v1(t)x(t) + w1(t)y(t) + h1(t)x2(t)y(t), x(0) = x0,

∂
α2(t)
0t y(t) = v2(t)− w2(t)y(t)− h2(t)x2(t)y(t), y(0) = y0.

(1)

where x(t), y(t) ∈ C1[0, T] are the solution functions, v1(t) = θ1−α1(t), v2(t) = v0θ1−α2(t) ,
w1(t) = w0θ1−α1(t), w2(t) = w0θ1−α2(t), h1(t) = h0θ1−α1(t), h2(t) = h0θ1−α2(t) — functions from class
C[0, T], θ — parameter with time dimension, v0, w0, h0 — given constants, t ∈ [0, T] — current process
time, T > 0 — simulation time; x0, y0 — positive constants responsible for the initial conditions;
fractional derivative operators have the form:

∂
α1(t)
0t x(t) =

1
Γ(1 − α1(t))

t∫
0

ẋ(τ)dτ

(t − τ)α1(t)
, ∂

α2(t)
0t y(t) =

1
Γ(1 − α2(t))

t∫
0

ẏ(τ)dτ

(t − τ)α2(t)
,

are understood in the sense of Gerasimov-Caputo [15,16], the orders of which are
0 < α1(t), α2(t) < 1 are functions from the class C[0, T].

Definition 1. We will call the system (1) a fractional dynamic Selkov system with variable memory or simply a
fractional dynamic Selkov system.

Definition 2. The system (1) with the parameter value α1(t) = α2(t) = 1 will be called the classical dynamic
Selkov system.

Remark 1. The parameter θ has the dimension of time, it determines a certain characteristic time scale in the
process under consideration [17], and also coordinates the dimensions between the left and right parts of the
equations in the system (1). Note that if θ = 1 in the system (1), then we arrive at the results of [11,12]. If the
orders of the fractional derivatives α1(t) and α2(t) do not depend on time t and θ = 1, then we arrive at the
fractional dynamic Selkov system considered in the author’s articles [3,4]. In the case when α1 = α2 = 1 we
obtain the classical dynamic Selkov system [1].
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Remark 2. Note that more detailed information on fractional derivatives of variable order can be found in the
review articles [18,19].

3. Adams-Bashforth-Multon Method
To study the fractional dynamical Selkov system (1), we use the Adams-Bashforth-Moulton

numerical method from the family of predictor-corrector methods. The Adams-Bashforth-Moulton
method has been studied and discussed in detail in [20–22]. We adapt this method to solve fractional
dynamical Selkov system (1). To do this on a uniform grid N with step τ = T/N we introduce
the functions xp

k+1, yp
k+1, k = 0, ..., N − 1, which will be determined by the Adams-Bashforth formula

(predictor): 
xp

k+1 = x0 +
τα1,k

Γ(α1,k + 1)

k
∑

j=0
θ1

j,k+1

(
−v1,jxj + w1,jyj + h1,jx2

j yj

)
,

yp
k+1 = y0 +

τα2,k

Γ(α2,k + 1)

k
∑

j=0
θ2

j,k+1

(
v2,j − w2,jyj − h2,jx2

j yj

)
,

θi
j,k+1 = (k − j + 1)αi,k − (k − j)αi,k , i = 1, 2.

(2)

For the corrector (Adams-Moulton formula) we get:

xk+1 = x0 + K1,k

(
−v1,k+1xp

k+1 + w1,k+1yp
k+1 + h1,k+1xp 2

k+1yp
k+1

)
+

+ K1.k

(
k

∑
j=0

ρ1
j,k+1

(
−v1,jxj + w1,jyj + h1,jx2

j yj

))
,

yk+1 = y0 + K2,k

(
v2,k+1 − w2,k+1yp

k+1 − h2,k+1xp 2
k+1yp

k+1

)
+

+ K2,k

k

∑
j=0

ρ2
j,k+1

(
v2,j − w2,jyj − h2,jx2

j yj

)
.

(3)

where K1,k =
τα1,k

Γ(α1,k + 2)
, K2,k =

τα2,k

Γ(α2,k + 2)
, and weight coefficients in (3) are determined by the

formula:

ρi
j,k+1 =



kαi,k+1 − (k − αi,k)(k + 1)αi,k , j = 0,

(k − j + 2)αi,k+1 + (k − j)αi,k+1-2(k − j + 1)αi,k+1, 1 ≤ j ≤ k,

1, j = k + 1,

i = 1, 2.

Remark 3. The study of the properties of the Adams-Bashforth-Multon method was carried out in the article by
the author [11].

4. Software Package ABMSelkovFracSim
The Adams-Bashforth-Multon numerical algorithm (2), (3) is implemented in the Python program-

ming language in the PyCharm 2024.1 environment in the form of the ABMSelkovFracSim software
package. The ABMSelkovFracSim application has a clear user interface (Figure 1).
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Figure 1. Interface of the software package ABMSelkovFracSim.

The user can enter the values of the parameters of the fractional dynamic Selkov system (1) in
the left part of the interface, and the right part has the ability to visualize the simulation results:
oscillograms and phase trajectories are displayed.

The ABMSelkovFracSim application implements the ability to perform calculations using the
model (1) (ABMSelkovFracConst method), as well as the model proposed in the article [4] (ABM-
SelkovFracCos method). The ABMSelkovFracConst method implements the case when the orders of
the fractional derivatives α1 and α2 are constants.

The ABMSelkovFracCos method, when the orders of fractional derivatives are functions of the
form:

α1(t) = α1 − k1 cos(ϕ2 + f1), α2(t) = α2 − k2 cos(ϕ2 + f2),

where α1, α2 are given constants, k1, k2 are amplitudes, ϕ1, ϕ2 are frequencies, f1, f2 are phases.

5. Simulation Results
Using the ABMSelkovFracSim software package, we will calculate oscillograms and phase tra-

jectories for different values of θ. We will select the following parameters for calculation within
the framework of the fractional dynamic Selkov system: v0 = 0.6, w0 = 0.03, h0 = 1.3, x0 = 1,
y0 = 0.5, t ∈ [0, 300], N = 2000 (Figure 2).
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(a) (b)

(c) (d)

Figure 2. Calculation results: (a) α1 = 0.8, α2 = 0.9, θ = 1 [4]. (b) α1 = 0.8, α2 = 0.9, k1 = 0.02, k2 = 0.01, ϕ1 =

3, ϕ2 = 1.5, f1 = 0.01, f2 = 0.03, θ = 0.5. (c) α1 = 0.8, α2 = 0.9, k1 = 0.02, k2 = 0.01, ϕ1 = 3, ϕ2 = 1.5, f1 =

0.01, f2 = 0.03, θ = 1.5. (d) α1 = 0.8, α2 = 0.9, k1 = 0.02, k2 = 0.01, ϕ1 = 3, ϕ2 = 1.5, f1 = 0.01, f2 = 0.03, θ = 3.

Figure 2a shows the case obtained by the ABMSelkovFracConst method, when the orders of the
fractional derivatives α1(t) and α2(t) are constants and the value of the parameter θ = 1. This case was
considered in the article [4]. The remaining graphs (Figures 2b,c,d) correspond to the case when α1(t)
and α2(t) are functions and are constructed by the ABMSelkovFracCos method for different values of
the parameter θ.

We see that with increasing values of θ, a transition from regular to chaotic modes occurs.
Therefore, we need to analyze dynamic modes. We will analyze them using the construction of
bifurcation diagrams.

6. Bifurcation Diagrams
Definition 3. A bifurcation diagram is a graphical representation of changes in the structure of solutions of a
dynamic system when the parameters change. It shows how the stable and unstable states of the system change
depending on the values of the parameters.

Let’s look at some examples of constructing bifurcation diagrams.

Example 1. The Figure 3 shows a graph of 3D surfaces x(α1, α2) and y(α1, α2), where α1, α2 ∈ [0.1, 1],
v0 = 0.6, w0 = 0.03, h0 = 1.3, θ = 1, x0 = 0.1, y0 = 0.1, t ∈ [0, 100], N = 3000, α1, α2 are constants.
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Figure 3. Surfaces: a) x = x(α1, α2); b) y = y(α1, α2).

Figure 3 shows bifurcation diagrams in the form of surfaces of the sought solution x and y from
the values of the orders of fractional derivatives α1 and α2. Note that on the surfaces of Figure 3a and
Figure 3b there are regions that are responsible for regular modes, for example, damped oscillations
correspond to regions without spikes, in the region of spikes limit cycles can form, as well as pre-
chaotic or chaotic modes. In addition, we see a region of torn regions, which, as we will show further,
is associated with singularity.

In the Figure 4 a bifurcation diagram is given — a section of the surface in the Figure 3 at α2 = 1
for the solution x (Figure 4a) and at α1 = 1 for the solution y (Figure 4b). We see in these bifurcation
diagrams, for example, in the Figure 4a three regimes, first there is a decaying regime up to α1 = 0.6,
and the dashed line at the beginning indicates a singularity. Then there are bursts that indicate a limit
cycle. Moreover, in the Figure 4a bursts with increasing amplitude indicate that the orbit of the limit
cycle increases. This is confirmed by the phase trajectories in the insets to Figure 4a and Figure 4b.

Figure 4. Calculated curves: a) x(α1), α2 = 1; b) y(α2), α1 = 1.

Figure 5 shows bifurcation diagrams constructed for other parameter values with insets of phase
trajectories for different sections of the diagrams. Here we can note, for example, that in Figure 5a
the bursts occur with decreasing amplitude, which indicates a decrease in the orbit of the limit cycle.
There is no singularity here.
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Figure 5. Calculated curves: a) x(α1), α2 = 0.8; b) y(α2), α1 = 0.8.

In Figure 5b the bursts first occur with increasing amplitude, then with decreasing amplitude, etc.
However, if such alternation is inconsistent or has a chotic character, then we will arrive at chaotic or
pre-chaotic regimes.

Note that in Figure 5b we also see an aperiodic regime – a regime in which there are no oscillations,
which corresponds to a curve without bursts on the bifurcation diagram.

Let us now consider another example of a fractional dynamical Selkov system, when α1(t) and
α2(t) are functions of t.

Example 2. We will choose the following values of the parameters: N = 10000, t ∈ [0, 1000], the remaining
parameters will be taken from Example 1. The orders of the fractional derivatives change in time t according to
the following laws:

α1(t) = 0.8 − 1
100

cos(0.1πt), α2(t) = 0.8 − 9
1000

sin(0.1πt). (4)

Let us construct bifurcation diagrams in the form of surfaces for solutions x(α1, α2) and y(α1, α2)

(Figure 6).

Figure 6. 3D surfaces: a) x(α1, α2); b) y(α1, α2).

We see that in the Figure 6 the surfaces represent a completely regular cylindrical figure.
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Figure 7 shows the calculated curves α1(t) and α2(t) obtained by formulas (4) (Figure 7a,b). Sec-
tions of the surface by planes x(α1) and y(α2) (Figure 7,c,d), as well as the phase trajectory (Figure 7e).

Figure 7. Calculated curves: a) α1(t); b) α2(t); c) x(α1); d) y(α2); e) y = y(x).

Here we also see on the bifurcation diagrams (Figure 8) that there are "calm" sections, and there
are sections with bursts. All this indicates the presence of different dynamic regimes.

Figure 8. Bifurcation diagrams of the dependence of the solution x and y on various values of the model
parameters.

7. Conclusions
A fractional dynamic Selkov system with non-constant coefficients is proposed, which is studied

using the Adams-Bashforth-Multon numerical algorithm. The numerical algorithm is implemented in
the ABMSelkovFracSim software package. The software package is written in the Python programming
language in the PyCharm 2014.1 environment. Using the software package, calculations can be
performed in two modes, when the orders of fractional derivatives and coefficients are constant and
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when they are functions of time. The simulation results can be displayed using graphs, which can also
be saved for subsequent analysis. The calculation results themselves can be saved to a text file. Phase
trajectories and oscillograms were obtained using the ABMSelkovFracSim software package.

Various bifurcation diagrams for the fractional dynamic Selkov system are studied in the case
when θ = 1. It is shown that the calculated curves of the dependences of the solution of the fractional
dynamic Selkov system on the values of the orders of fractional derivatives characterize the change in
dynamic modes, i.e. are bifurcation diagrams. The presence of regular and chaotic modes, as well as
the presence of singularity, is shown.

Further study of bifurcation diagrams is related to the construction of dynamic mode maps [23,24],
as well as in the case when θ ̸= 1. For these purposes, it is necessary to involve more powerful
computing resources, for example, computing servers with the ability to use CPU or GPU processors.

One of the further continuations of the research development is the expansion of the functionality
of the ABMSelkovFracSim software package. In particular, it is possible to provide for the addition
of modules for the qualitative analysis of the fractional dynamic Selkov system: construction of
bifurcation diagrams, Test 0-1 [25,26], maximum Lyapunov exponents, etc.

Funding: The work was carried out within the framework of the state assignment of IKIR FEB RAS (reg. No.
124012300245-2), and the development of the ABMSelkovFracSim software package was financed by the Russian
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