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Abstract: In the next decade, further digitalisation of the entire wind energy project lifecycle is 
expected to be a major driver for reducing project costs and risks. In this paper, a literature review on 
the challenges related to implementation of digitalisation in the wind energy industry is first carried 
out, showing that there is a strong need for new solutions that enable co-innovation within and 
between organisations. Therefore, a new collaboration method called the WeDoWind Ecosystem is 
developed and demonstrated. The method is centred around specific "challenges", which are defined 
by "challenge providers" within a topical "space" and made available to participants via a digital 
platform. The data required in order to solve a particular "challenge" is provided by the "challenge 
providers" under the confidentiality conditions they s pecify. The method is demonstrated via a 
case study, the EDP Wind Turbine Fault Detection Challenge. Six submitted solutions using diverse 
approaches are evaluated. Two of the methods perform significantly better than EDP’s existing 
method in terms of Total Prediction Costs (saving up to €120,000). The WeDoWind Ecosystem is 
found to be a promising solution for enabling co-innovation in wind energy, providing a number of 
tangible benefits for both challenge and solution providers.

Keywords: wind energy; digitalisation; collaboration; co-innovation; machine learning; fault 
detection 16

1. Introduction 17

The successful exploitation of the potential benefits of digitalisation is one of the key 18

topics in the wind energy community today. Recently-formed international collaborations 19

such as IEA Wind Task 431 and the WindEurope Digitalisation Taskforce aim to bring 20

together members of the entire wind energy space in order to accelerate this process. Within 21

WindEurope, the recent publication "Wind energy digitalisation towards 2030" concludes 22

that the continued digitalisation of wind farm construction, operation and maintenance 23

(O&M) will be a major driver for reducing wind energy costs and risks in the next decade2. 24

Some results of the work within IEA Wind Task 43 include the collaborative paper "Grand 25

1 https://www.ieawindtask43.org/
2 https://windeurope.org/intelligence-platform/product/wind-energy-digitalisation-towards-2030/
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Challenges in the Digitalisation of Wind Energy" [1], the Wind Resource Assessment (WRA) 26

Data Model3 and the definition of actions required to improve data commonality in wind 27

energy [2]. The "Grand Challenges in the Digitalisation of Wind Energy" identified the 28

following three Grand Challenges of wind energy digitalisation: (1) Creating FAIR data 29

frameworks (FAIR: findable, accessible, interoperable and reusable [3]; (2) Connecting 30

people and data to foster innovation; (3) Enabling collaboration and competition between 31

organisations. Solutions to these Grand Challenges have already been investigated to some 32

extent, as described below. 33

1.1. Creating FAIR data frameworks 34

FAIR data frameworks are findable, accessible, interoperable and reusable [3], where 35

"findable" means it can be discovered by people or machines using a search engine, "ac- 36

cessible" means that it needs to be retrievable using secure but open and free protocols, 37

for example through the internet, "interoperable" means that it can be used in workflows 38

and/or applications, i.e. that the data and its relationships are machine-readable, and 39

"reusable" means that it can be applied to different settings. Data can be made findable by 40

the use of metadata, which describes the data and follows a defined schema. 41

Several efforts have already been made to encourage researchers to adopt FAIR prin- 42

ciples. This includes an initiative by the European Commission to partly assess research 43

funding applications according to their plans to provide open access to data and publica- 44

tions, and indirect funding of the development of sector-specific taxonomies. For example, 45

the Sharewind metadata registry was created by the members of the European Energy 46

Research Alliance Joint Programme on Wind Energy (EERA JP Wind Energy) as part of the 47

European FP7 Coordination Action project IRPWind [4]. As well as this, the topic of "open 48

science" has been officially adopted by the new “Horizon Europe” funding scheme4. In the 49

United States, the Department of Energy released a project funding call in 2020 on the topic 50

of artificial intelligence frameworks that utilise FAIR principles5. 51

Despite this progress, many barriers must still be overcome, including making research 52

data findable, and making data from the industry available, by for example solving the 53

problem related to the fear of losing competitive advantage. The wind energy community 54

is attempting to do this by, for example, developing a set of standard metadata with 55

specific taxonomies6 and by further developing the web-based data registry ShareWind.eu, 56

allowing tagging of research data to assign a DOI to datasets in order to improve citability. 57

However, a centralised location specifically for a particular industry sector, such as wind 58

energy, where all the available data is summarised, described and accessible (if relevant) 59

is not known to the authors. This topic is taken into account in the development of the 60

collaboration method in this present paper (see Section 2). 61

1.2. Connecting people and data to foster innovation 62

Previous work on the second Grand Challenge "connecting people and data to foster 63

innovation" includes work on internal company culture, on data-driven innovation as well 64

as on methods to incentivise data and knowledge sharing. 65

Regarding internal company culture, it has been shown that organisations need the 66

following things to foster innovation: (a) effective communication channels to spread ideas 67

across the organisation, (b) a culture which allows people to speak out openly, (c) leadership 68

that fosters critical thinking, and (d) autonomy that allows every employee to act [5]. As 69

well as this, digitalisation strategies setting out “a commitment to a set of coherent, mutually 70

reinforcing policies or behaviours aimed at achieving a specific competitive goal” have 71

been found to be valuable for exploiting the opportunities of digitalisation [6]. However, 72

3 https://github.com/IEA-Task-43/digital_wra_data_standard
4 https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future
5 https://www.energy.gov/articles/department-energy-announces-85-million-fair-data-advance-artificial-

intelligence-science
6 https://www.wedowind.ch/task-43-space
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the application of these strategies to the wind energy industry has not been discussed in 73

the literature. 74

On the topic on data-driven innovation, data is becoming increasingly important for 75

innovation and co-innovation processes within organisations. Many companies, including 76

Barilla, Twitter and Deliveroo, use digital platforms intensively to collect data from interac- 77

tions with their stakeholders and leverage it for their internal innovation processes [7]. The 78

subject of "co-innovation" refers to the process of exchanging ideas and resources via any 79

type of physical or digital collaborative channels, involving all types of stakeholders (e.g. 80

[8]). It enables people and organisations to use modern digital technologies for integrating 81

and exchanging knowledge, ideas, resources and information. It is becoming increas- 82

ingly popular due to its proven ability to solve the type of systemic, multidisciplinary, 83

multi-stakeholder problem involving Big Data typical to today’s challenges [9]. The only 84

published work on the application of "co-innovation" concepts to energy transition chal- 85

lenges to the authors’ knowledge relates to a case study of Japan and China demonstrating 86

that technology-supplying countries and technology-importing countries can both benefit 87

by co-innovating products [10]. There certainly appears to be a potential gap in experience 88

with "co-innovation" in the wind energy industry. 89

Another method of connecting people and data to foster innovation is to focus on 90

the needs and desires of the people who are supposed to be doing the data sharing. The 91

results of a survey about the barriers of data sharing carried out as part of IEA Wind Task 92

43 show that, as well as making data FAIR, people need a real and tangible incentive in 93

order to share data (and knowledge) [1]. This task is challenging due to the number of 94

different stakeholders with different needs. For example, a data scientist might be a strong 95

supporter of sharing data and knowledge in order to learn from others, but may work for 96

a company who prevents them from doing so due to legal, structural or policy reasons. 97

Some recent initiatives to incentivise data sharing include data marketplaces such as the 98

Greenbyte marketplace for wind data7 and the IntelStor Market Intelligence Ecosystem8, 99

data discovery and sharing platforms such as the Sharewind metadata catalogue9and the 100

US DOE Data Archive & Portal10, comparison and benchmarking activities such as IEA 101

Wind Task 3111, IEA Wind Task 30 (OC6) WP3 Benchmark12 and CREYAP: Comparison of 102

Resource and Energy Yield Assessment Procedures [11], and challenge-based platforms 103

such as Kaggle13, Knowledge Pit [12] and the EDP Open Data Platform14. To the authors’ 104

knowledge, there is no scientific literature that compares or evaluates these different 105

initiatives. 106

However, literature on the general topic of incentivising data and knowledge sharing 107

exists. A recent review on incentivising research data summarises the main requirements 108

for incentivising researchers to share data [13]. These include: (a) build on existing cultures 109

and practices, (b) meet people where they are and tailor interventions to support them, (c) 110

promote disciplinary data champions to model good practice and drive cultural change, (d) 111

provide robust technical infrastructure and protocols, such as labelling of data sets, data 112

standards and use of data repositories. 113

For wind energy in particular, the topic has been investigated as part of IEA Wind Task 114

43. Several interviews have been carried out regarding data sharing and sharing incentives, 115

as described in [1]. One of the findings was that making open-source tools available and 116

encouraging their use can incentivise data sharing, because the shared data gets used and 117

its added value becomes more clear. Existing open-source tools in wind energy include the 118

7 https://www.greenbyte.com/marketplace/wind-only
8 https://www.intelstor.com/
9 https://sharewind.eu/

10 https://a2e.energy.gov/about/dap
11 https://iea-wind.org/task31/
12 https://iea-wind.org/task30/
13 https://www.kaggle.com/
14 https://opendata.edp.com/
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Brightdata app15, OpenOA16 and the Data Science for Wind Energy R Library17. Existing 119

initiatives to develop open data standards include the already mentioned IEA Wind Task 120

43 WRA Data Model and Metadata Challenge, as well as the ENTR Alliance18. 121

Although there are many promising activities underway, there is limited experience 122

about how the results actually benefit the different stakeholders in the industry. This 123

present paper contributes to closing this gap. 124

1.3. Enabling collaboration and competition between organisations 125

Previous work on the third Grand Challenge, "Enabling collaboration and competition 126

between organisations", includes both co-innovation and fair evaluation methods. 127

Organisations are increasingly sharing data with various partners for collaborative 128

innovation purposes [7]. "Collaborative innovation" focuses on the development of collabo- 129

rative networks between organisations, and involves sharing knowledge, experience and 130

resources in order to develop collaborative innovations, for example by creating structured 131

partnerships and alliances [14]. As well as "collaborative innovation", the concepts of "open 132

innovation" and "co-creation" are commonly used in this context. "Open innovation" refers 133

to the acquisition of knowledge and resources from external partners, whereas "co-creation" 134

refers to the involvement of customers in companies’ product and service innovation pro- 135

cesses. In fact, the concept of "co-innovation" introduced in Section ?? is positioned at 136

the intersection of "collaborative innovation", "open innovation" and "co-creation". It is 137

therefore not only applied within companies, but also to enable collaboration and competi- 138

tion between organisations. "Co-innovation" concepts are becoming increasingly useful 139

and popular due to the recent reduction in costs and increased availability of web-based 140

technologies. They not only accelerate the processes of knowledge creation and sharing 141

(e.g. [14,15]), but allow the development of specific digital interaction platforms through 142

which flexible and dynamic "co-innovation" processes can be implemented via combination 143

with physical collaboration channels (e.g. [16]). Although several data sharing, open data 144

and challenge-based platforms already exist, as described in Section ??, there seems to be a 145

high potential for the application of "co-innovation" methods in the wind energy sector in 146

order to improve collaboration and competition between organisations. 147

Although the concept of "co-innovation" has not yet been applied in the wind en- 148

ergy sector, the idea of "co-creation" has received recent attention in order to improve 149

the acceptance of wind energy projects in local communities. For example, the links be- 150

tween "co-creation" and wind energy development were investigated, showing that new 151

roles for citizens as co-creators and co-producers of electricity and planning decisions 152

are needed [17]. A further study into the idea of treating citizens as co-producers of 153

wind energy characterised public engagement into three types of co-production: (1) Local 154

co-production, in spatially proximate wind energy projects; (2) Collective co-production, 155

performed through collaboration among different actors in the wind energy sector, joined 156

ownership or consumption of wind energy; (3) Virtual co-production, mediated through 157

information technology [18]. These studies should also be considered in the development 158

of a solution used to enable collaboration and competition between organisations. 159

Competition between organisations also has an important role to play in exploiting 160

the full potential of digitalisation in wind energy. In order for competition to be used 161

effectively to further the industry as a whole, the results need to be comparable in a 162

fair and agreed-upon way. This poses new challenges. Within the wind energy sector, 163

some experience has been gained on this topic via the benchmarking projects introduced 164

in Section 1.2. Specifically, the benchmarking within IEA Wind Task 31 has lead to the 165

development of the Wind Energy Model Evaluation Protocol19, which provides open- 166

15 https://www.brightwindanalysis.com/brightdata/
16 https://github.com/NREL/OpenOA
17 https://github.com/TAMU-AML/DSWE-Package/
18 https://www.entralliance.com/
19 https://wemep.readthedocs.io/en/latest/index.html
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source documentation on model evaluation procedures and quality-checked verification 167

and validation benchmarks for wind resource assessment. As well as this, the CREYAP 168

project has lead to recommendations for future comparison end benchmarking projects and 169

tools. Evaluation procedures can also be found on the EDP Open Data Platform20. 170

Informal comparisons of prediction models for wind energy applications have been 171

carried out by evaluating the prediction error in terms of Mean Absolute Error (MAE), 172

Maximum Absolute Error (MAXAE), Root Mean Square Error (RMSE) and correlation 173

coefficient (e.g. [19]). However, to the authors’ knowledge, no systematic study has been 174

carried out aimed at identifying relevant state-of-the-art evaluation methods that could 175

be applied to enhance collaboration and competition between organisations. Possible 176

methods that should be further investigated include Explainable Recommender Systems, 177

which have been suggested as a potential way of building fair and transparent tools for 178

evaluating Machine Learning (ML) models and work by conveying the reasoning behind 179

its predictions [20], as well as decision support methods such as the recent introduction of 180

a methods for the comparison and evaluation of Artificial Intelligence (AI) tools in a fair, 181

transparent and explainable way [21]. These methods seem to have a high potential for 182

future application to the wind sector. 183

1.4. Goals of the present work 184

It has been shown that a focused effort on overcoming the barriers to a successful 185

digital transformation of the wind energy sector is required. This could combine several 186

aspects of existing initiatives both within and beyond the wind energy sector. In this paper 187

therefore, a new collaboration method that has the potential to make wind energy data 188

FAIR, enable co-innovation within and between organisations, incentivise data sharing 189

and allow a fair evaluation of solutions is presented, together with a real case study. The 190

collaboration method is introduced in Section 2.1 and the case study is described in Section 191

3.3. This is followed by a discussion of the results and an evaluation of the new method in 192

Section 4. 193

2. The collaboration method 194

2.1. Requirements 195

As well as the requirements from the literature review summarised at the end of 196

Section 1, further requirements were defined based on the results of the IEA Wind Task 43 197

survey presented in the "Grand Challenges in the Digitalisation of Wind Energy" paper 198

[1]. The most important aspects named by the 30 interviewed members of the global wind 199

energy sector in order to improve data sharing were: 200

• Owner/operators: Getting all the data in one spot; IT issues; Cleaning/filtering raw 201

data (different time scales and resolutions, different formats); Refining and processing 202

data ready for machine learning model (80% of time); Interfaces to collecting data 203

reliably. 204

• Academia: Lack of public data; No standard format for analysing and processing data; 205

Poor data quality; Lack of willingness to share data, especially higher resolution; Lack 206

of change logs. 207

• Technology providers: Data quality; Different format and structure of data; Data 208

filtering for analyses; Data collection: different devices need to be programmed 209

differently; Time for downloading, cleaning, and training data. 210

This led to the conclusion that the new collaboration method should have the following 211

characteristics: 212

• Enable co-innovation within and between organisations. 213

• Incentivise data sharing and allow a fair evaluation of solutions, with a particular 214

focus on contextual and higher-frequency data. 215

20 https://opendata.edp.com/
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• Make wind energy data FAIR (Findable, Accessible, Interoperable and Reusable). 216

• Provide a central location for data and knowledge related to a certain topic within the 217

sector. 218

• Include solutions and code for data filtering and standard analysis tasks. 219

• Allow data standards and data structure translation solutions to be published and 220

shared. 221

2.2. Method description 222

The collaboration method developed here enables flexible and dynamic co-innovation 223

within and between organisations by combining a digital challenge-based platform with 224

moderated workshops, called the WeDoWind Ecosystem. As shown in Figure 1, the We- 225

DoWind Ecosystem is based around specific industry-relevant "challenges", which are 226

defined by "challenge providers" within a topical "space" and made available to partic- 227

ipants of the ecosystem via the digital platform. The data required in order to solve a 228

particular "challenge" is provided by the "challenge providers" under the confidentiality 229

conditions they specify. This can include only allowing specific people to access their 230

space, requiring them to sign agreements or preparing the data so that it is anonymous or 231

normalised. A "challenge" is defined as a fixed problem with a motivation, goal, expected 232

outcome and deadline. Examples of existing "challenges" being run in the WeDoWind 233

Ecosystem include: 234

• Gearbox challenge: Participants should make use of the provided Supervisory And Data 235

Acquisition (SCADA) data in order to train, test and validate methods that will provide clear 236

indicators of an upcoming gearbox related fault, as well as/or a horizon-based probability of the 237

event occurring. 238

• Metadata challenge: Propose standard metadata schemes and related semantics for sharing 239

data in the wind energy sector in three separate steps: (1) Summarise and evaluate all existing 240

initiatives; Identify the gaps; (3) Suggest solutions for filling the gaps. 241

• Brazil challenge: Define the main problems needing solutions for implementing offshore wind 242

energy in Brazil. 243

• Diversity challenge: Document existing resources for Diversity, Equity and Inclusion that 244

might be useful for the wind energy community, such as guidelines, toolboxes, techniques, 245

workshops, etc. 246

If a "challenge provider" wants a more specific solution with a defined evaluation 247

criteria and prize money, they can define a "contest" instead. If they want to discuss a more 248

general topic, such as general experience or ideas related to a certain area, they can post 249

a "request". This system allows participants to contribute ideas, code, data, videos and 250

discussion topics at any time and in any form they want or can, from all over the world. 251

They can contribute to group discussions in workshops that are run and moderated inside 252

the space, or they can contribute digitally via discussion forums and digital whiteboards. 253

All these communications are tagged and documented within the space. Regular emails are 254

sent to update the participants on activities. It allows the knowledge and ideas related to a 255

specific "challenge" to be documented and used as a knowledge base for future "challenges" 256

on similar and overlapping topics. 257

The WeDoWind Ecosystem incentivises data sharing by focusing on the needs of the 258

people in the wind energy sector. It provides incentives both to the "challenge providers", 259

who receive solutions to their challenges in exchange for contributing data to the platform, 260

and to the "solution providers", who receive data in exchange for contributing ideas and 261

solutions to the challenges. As well as this, the "challenge providers" get access to people 262

and their skills for recruiting or for student projects. The "solutions providers" have the 263

opportunity to apply and showcase their work applied to measurement data. All parties 264

benefit from sharing ideas and innovating together. The ecosystem provides equal access 265

to all people with an email address and internet connection, regardless of their background, 266

education, nationality, experience, gender, and more. Furthermore, the ecosystem offers 267

the potential to publish, develop and co-create fair methods for the evaluation of solutions. 268

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0123.v1

https://doi.org/10.20944/preprints202205.0123.v1


7 of 31

Although the community is free to develop and apply these methods themselves, the 269

ecosystem operators (OST - Eastern Switzerland University of Applied Sciences) also 270

intend to contribute to this in the future. This could be by introducing functionalities on 271

the platform such as comparison-based ranking schemes for ordering posts and documents 272

[22]. Such methods reduce the bias introduced by more popular forum ranking methods 273

such as “star ratings” and “thumbs up-down ratings”. 274

The method contributes to making wind energy data FAIR by including relevant 275

requirements on the data that is used in the ecosystem. Part of this involves providing 276

a central location for data and knowledge related to a certain topic within the sector. 277

This allows knowledge, data, code and solutions to be centralised around a particular 278

industry challenge and fosters collaboration and sharing. The ecosystem has the potential 279

to include solutions and code for data filtering and standard analysis tasks and to allow 280

data standards and data structure translation solutions to be published and shared 281

in the future. In order to achieve this, specific "challenges" could be defined for certain 282

applications. In the future, industry-agreed common data and metadata standards will 283

be incorporated into the ecosystem, as well as open data analytics such as the National 284

Renewable Energy Laboratory (NREL)’s OpenOA project21. 285

Figure 1. Schematic representation of the new collaboration method applied in this work, the
WeDoWind Ecosystem.

3. The case study 286

In order to test the new collaboration method, a case study was applied. This involved 287

publishing a "challenge" on the WeDoWind Ecosystem and then moderating and coordinat- 288

ing a co-innovation process. It resulted in a total of six new solutions. In this section, the 289

case study is introduced, the co-innovation process is described, a literature review based 290

on the "challenge" topic is presented, the individual solutions are described and then the 291

results are compared and evaluated. 292

3.1. The challenge 293

In this case study, a "challenge" provided by the company EDP was posted on the 294

WeDoWind platform. The contents of the challenge are shown in italics below: 295

In this challenge, we ask you to test your predictive brains and develop a global solution 296

for this problem, focusing on the capability of detecting early-stage failures and, consequently, 297

reduce maintenance costs. The objective is to identify the failures in five of the major Wind Turbine 298

components and advise an intervention to the wind farm operators in order to reduce corrective 299

21 https://github.com/NREL/OpenOA
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Table 1. Annotated failures provided by EDP for WT07.

Component Alarm dates
Gearbox None
Generator 21.08.2017
Generator Bearings 30.04.2016 and 20.08.2017
Transformer 10.07.2016 and 23.08.2016
Hydraulic Group 17.06.2017

maintenance costs. The components to be monitored will be the gearbox, the generator, the generator 300

bearing, the transformer and the hydraulic group. We provide two years of SCADA records from 301

five wind turbines and data from the meteorological mast to create, train, validate, and test your 302

models. This challenge is open until Sep. 30th 2021! We don’t plan to have a strict evaluation of the 303

solutions submitted. Instead, our intention is to promote an open-challenge targeting a dynamic 304

engagement with the community where new “out-of-the-box” ideas can emerge. 305

The training period was defined as 01.01.2016 to 31.08.2017 and the test period from 306

01.09.2017 to 31.12.2017. As well as the raw SCADA data, EDP also provided nearby 307

met mast data, a list of SCADA signal names, the data sheet of the wind turbine type 308

and the manufacturer’s power curve. A list of annotated failures and the SCADA logs 309

were provided for the test data period. In this work, it was decided to focus on the wind 310

turbine with the most number of annotated failures - wind turbine WT07. A summary 311

of the annotated failures for WT07 provided by EDP for the test period for each wind 312

turbine component is shown in Table 1. The measured wind rose, wind speed frequency 313

distribution and power curve (without filtering) from WT07 are shown in Figure ??. The 314

monthly averages of measurement data for WT07 in 2016, including the averages of 315

availability, wind speed, wind speed during turbine uptime and turbine downtime, as 316

well as box plots of power, wind speed and temperature are shown in Figure ??. The low 317

availability during, before and after August indicates substantial downtime due to a repair. 318

This is probably due to the annotated failure documented in the transformer in July and 319

August 2016. 320

Figure 2. Measurement data for WT07: (a) Wind rose, (b) Wind speed frequency distribution, (c)
Power curve (without filtering).
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Figure 3. Monthly averages of measurement data for WT07 in 2016: (a) Averages of availability, wind
speed, wind speed during turbine uptime and wind speed during turbine downtime, (b) Box plots of
power, wind speed and temperature, where the centre lines show the median, the edges of the boxes
the 25th percentile, the outer bars the 95th percentile and the points the outliers beyond this.

3.2. The co-innovation process 321

As part of this case study, the following activities were carried out by the ecosystem 322

operators in order to encourage a co-innovation process: 323

• A dedicated space called "EDP Challenges" was created on the WeDoWind digital 324

platform together with EDP. The challenge description, including direct links to 325

download the data, was developed together with EDP and posted inside this space. 326

• A public "call for participants" website was created with a direct link to the registration 327

form. This was shared within the wind energy community using social media. 328

• A process for allowing EDP to decide who may participate or not was set up. This 329

process was not meant to reduce accessibility to the challenge, but instead to ensure 330

that applicants were real people interested in the challenge and not robots, bots or 331

imposters. 332

• A "Getting Started Guide" to using the digital platform was created and explainer 333

videos were recorded in order to help users interact on the platform. 334

• A series of online workshops were organised for the participants - a launch workshop, 335

interim workshops every month and then a final workshop. These involved brain- 336

storming sessions in small groups as well as question and answer sessions with EDP. 337

The sessions were documented on a digital whiteboard and recordings were posted in 338

the digital space. 339

• Regular email updates were sent with specific questions and actions to encourage 340

interaction. This included requests to summarise and comment on different possible 341

methods, as well as discussions of evaluation methods. 342

• The space was regularly checked, cleaned and coordinated by the ecosystem operators 343

to ensure that the information was up-to-date and understandable. 344

• Regular updates were communicated on social media during the challenge. 345

• A downloadable docker was made available to allow beginners easy access to the 346

data and code. This was integrated into a smaller "sub-challenge" run at the Eastern 347

Switzerland University of Applied Sciences. 348

3.3. Existing methods 349

Before the solutions submitted to this challenge are introduced, existing methods for 350

wind turbine fault detection as well as for model evaluation are reviewed here. 351
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3.3.1. Wind turbine fault detection methods 352

In general, condition monitoring of wind turbines is an integral part of the operation 353

and maintenance (O&M) of the asset. Avoiding component failure can save the asset owner 354

large amounts of money. For example, an analysis of over 300 offshore wind turbines and 355

found that failure rate per offshore turbine per year is about 10, with around 80% requiring 356

minor repairs (<€1,000), 17.5% major repairs (€1,000-€10,000) and 2.5% major replacements 357

(>€10,000) [23]. As well as this, the same study identified the pitch/hydraulic, generator 358

and other subsystems as contributing the most to failure rates. Generators and converters 359

tend to have a higher level of failure rates in offshore wind turbines than onshore ones. 360

Maintenance can be reactive, preventive or predictive [24]: reactive maintenance 361

involves waiting until a component fails before replacing it, and doesn’t involve any active 362

monitoring, preventative maintenance involves scheduled replacements, and predictive 363

maintenance involves monitoring components and predicting failures before they happen. 364

Components can be monitored using the standard SCADA data produced by a wind 365

turbines [25], as well as using specialised higher frequency measurement equipment such 366

as drive train vibration sensors [26], oil debris monitoring and rotor blade pressure sensors 367

[27]. 368

The utilisation of operational SCADA data for condition monitoring has attracted 369

considerable research interest since it provides insights without the need for additional 370

equipment. For this, Machine Learning (ML) can be used to build an inductive model 371

that learns from a limited amount of data without specialist intervention. In order to 372

do this, an underlying set of structures or patterns are found, which help understand 373

relationships in data that cannot be otherwise detected. So-called ’supervised learning’ 374

predicts an output variable using labelled input data, whereas ’unsupervised learning’ 375

infers relationships from data without labelled inputs. Supervised learning models can 376

be categorised into regression and classifiers, where regression models predict a numeric 377

variable and classifiers predict a categorical variable. In addition to the two categories, 378

semi-supervised learning approach can be used when data points are partially labelled, 379

for example by training the model on the normal data and classify future observations as 380

anomalies when they deviate from the normal. Examples of this category include the use 381

of residuals from the modelled normal data on control charts to determine abnormality 382

[28–31]. 383

A wide range of ML methods have proven to be able to detect developing malfunc- 384

tions at an early stage, often months before they resulted in costly component failures 385

(see e.g. [32–35]. For a comprehensive review refer to [36]. SCADA data-based condition 386

monitoring, therefore, represents a cost-efficient and effective complement to state-of-the- 387

art condition monitoring solutions. Its primary task is to classify the state of a turbine or 388

one of its components as either healthy or faulty. However, most available SCADA data 389

represents predominantly healthy operation with no or only comparatively few instances 390

of faulty conditions. In such a setting, semi-supervised anomaly detection, often called 391

normal behaviour modelling, has proven to be useful e.g. [37]. Normal behaviour models 392

(NBMs) are trained on healthy data to represent the class corresponding to the normal 393

state. Subsequently, deviations between model output and the measured sensor values 394

can be processed and evaluated to identify anomalies. For wind turbines, performance 395

and temperature monitoring can be distinguished. The former aims to detect abnormal 396

deviations from the turbine’s usual power output, whereas the latter aims to detect devia- 397

tions from the healthy thermal equilibrium conditions. Temperature monitoring is better 398

suited for detecting malfunctions in the components along the drive train, which account 399

for the majority of turbine downtime [38]. [32] were among the first to apply the approach 400

in the wind domain and prove its feasibility. Many publications with successful early 401

detection of malfunctions followed, e.g. [34,35,39–42]. However, no particular method has 402

yet been established as being optimal, due to the difficulty of comparing and quantifying 403

the performance of different methods. 404
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Table 2. Summary of costs assumed for EDP evaluation method.

Component Costrpl (€) Costrpr (€) Costsinsp (€)
Gearbox 100,000 20,000 5,000
Generator 60,000 15,000 5,000
Generator Bearings 30,000 12,500 4,500
Transformer 50,000 3,500 1,500
Hydraulic Group 20,000 3,000 2,000

3.3.2. Model evaluation methods 405

Evaluation of time series anomaly detection (TSAD) algorithms, as required for fault 406

detection problems, is a challenging task. One reason is that classical anomaly detection 407

metrics were originally designed for point-based anomalies, whereas in TSAD we often 408

encounter range-based anomalies that are present for a certain period of time [43]. Another 409

reason is that algorithm performance is often highly sensitive to the required choice of 410

alarm threshold [44]. Lastly, false and missed alarms can have very different implications, 411

depending on the domain, and are therefore difficult to compare across applications. 412

Recent literature reported various evaluations on wind turbine fault detection. Most of 413

those evaluations are based on the distance or the difference between actual output (Y) and 414

predicted output (Ŷ). When SCADA data is used as input in the model, the evaluation is 415

commonly point-wise. For regression-based normal behaviour models, the most common 416

measures include mean absolute error (MAE), mean absolute percentage error (MAPE) [45], 417

and root mean squared error (RMSE) [46]. Classification models are typically evaluated 418

using accuracy, sensitivity, specificity and F1-measure [47–49]. All of the aforementioned 419

measures are evaluating the methods without taking into account how it will cost or benefit 420

the industry. Thus, it does not provide a direct estimate of potential savings when a 421

detection is made. 422

In order to transfer prediction performance to cost savings for the asset owner, the 423

costs and savings due to the use of a particular model compared to not using it have to be 424

estimated. As this step is very specific to the asset owner, there is no agreed-upon method 425

for doing this in the literature. On the EDP Open Data platform [50], the following method 426

is used for fault detection of subsystems within wind farms: 427

428

Step 1: The predicted faults for each wind turbine and subsystem (e.g. gearbox, generator, etc.) 429

are classified as follows: 430

• True positives (TP): a failure of the correct wind turbine and subsystem is correctly 431

predicted between two and 60 days before the actual failure. 432

• False negatives (FN): an actual failure is not detected between two and 60 days in 433

advance. 434

• False positives (FP): a failure is predicted that does not actually occur in the next two 435

to 60 days. 436

437

Step 2: Each detection type is converted into costs as follows: 438

• True positives (TP): translated into savings, TPs, which are the difference between 439

replacement costs, Costrpl , and repair costs, Costrpr. 440

• False negatives (FN): translated into costs, FNc, due to replacements, Costrpl . 441

• False positives (FP): translated into costs, FNc, due to inspections, Costsinsp. 442

The replacement, repair and inspection costs assumed by EDP on their Open Data 443

Platform are summarised in Table 2. 444

445

Step 3: The total prediction savings are calculated: 446

The costs or savings for each detection type is then summed as follows: 447
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TPs = ∑
i=nTP

(Costrpl − (Costrpr + (Costrpl − Costrpr)(1 − ∆t/60))) (1)

FNc = nFN × Costrpl (2)

FPc = nFP × Costinsp (3)

where nFN = total number of false negatives and nFP = total number of false positives. 448

The Total Prediction Savings, TPS, are then given as follows: 449

TPS = TPs − FNc − FNc (4)

This number represents the potential of a given prediction tool for reducing (preventive 450

and corrective) maintenance costs. It is used on the EDP Open Data platform in order to 451

compare and rank submitted solutions, and is used in the present work as well. 452

3.4. Description of the submitted solutions 453

In this section, the six different solutions submitted as a response to the challenge are 454

described. A summary of the solutions is given at the end of the section, together with a 455

discussion and comparison of the data pre-processing methods. 456

3.4.1. Normal Behaviour Models (NBM) 457

As mentioned in the previous section, normal behavior models (NBMs) learn from 458

historical data and can be used to infer what should be the turbine’s normal operating 459

condition. If the actual measured values from that same sensor deviate too much from the 460

NBM’s prediction, it means that the turbine is operating in an abnormal condition, and 461

therefore an alarm is raised by the algorithm. As a given component starts to degrade and a 462

failure mode starts building up in the turbine, measured values of temperatures and other 463

sensors may start increasing in a way that is not perceptible to the naked eye but can be 464

captured by the mathematical analysis of this algorithm. 465

While the NBMs are regression-based models and make predictions for the turbine 466

sensors, these are estimations of how the turbine should be behaving at a distinct time 467

period, given the other available measurements. These predictions are not forecasts for 468

the following days or weeks; they are "hindcasts" to check if recent turbine operation fits 469

inside the normal operation threshold or not. Since this approach is aimed at monitoring a 470

large fleet, comprising hundreds of wind turbines each with dozens of sensors, the NBMs 471

employ a linear regression to model the relationship between the different sensors. This 472

way, both the training process and the daily predictions can be done very quickly. Previous 473

studies [51] have showed that linear regression, although somewhat simple, is an acceptable 474

choice. An initial version of this algorithm [52] used ensemble models, but an internal 475

study concluded that the gain in prediction accuracy was small when compared to the 476

increase in computational cost. 477

The selection of inputs to predict any of the turbine sensors is done manually, from 478

expert knowledge, because an automatic selection algorithm based on correlation between 479

the candidate inputs and the target sensor may be misleading in some cases. For example, 480

when predicting the temperature of generator winding 1, such algorithm would probably 481

choose the temperature of winding 2 or 3 as the highest-correlated candidate input. But 482

it would be an input that adds no information to the system, because any kind of gener- 483

ator failure or degradation that leads to overheating would cause this effect on the three 484

windings. Therefore, if winding 2 increases in temperature and it was used as input, it 485

would lead to a higher predicted temperature for winding 1, and the failure would remain 486

undetected. 487

The objective of the training process is to minimise the error between the measured 488

values and the model predictions (for each sensor). After training, in the prediction stage, 489
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this error is averaged for each day, to condense results and reduce uncertainty and the 490

effect of possible outliers. A sensor is classified as presenting an anomaly if the normalised 491

daily error (using the daily error’s mean and standard deviation calculated from the 492

training process) exceeds a ±3 standard deviation range, meaning it is probably not part 493

of the expected error distribution. To avoid false positives and reduce the algorithm 494

sensitivity, an alarm is only raised to the user if three or more of the past seven days 495

are classified as anomalous. Figure 4 shows an example where an inverter cooling fan 496

malfunction was detected by the algorithm. The prediction error increases when the fan 497

starts malfunctioning, and alarms are sent to the operator everyday, until the problem is 498

corrected and the prediction error is reduced. 499

Figure 4. Calculated prediction error for an inverter fan malfunction for the NBM model. The
algorithm sends daily alarms to the operator until the problem is corrected and the error returns to
the acceptable range.

3.4.2. Combined Local Minimum Spanning Tree and Cumulative Sum of Multivariate Time 500

Series Data (LoMST-CUSUM) 501

Cumulative sum (CUSUM) is a memory-type control chart that works by accumulating 502

consecutive sample points over time to monitor changes in process. It is particularly known 503

to effectively detect a small shift in the process that memoryless methods would normally 504

fail to detect. Due to its ability to accumulate effectively small-magnitude early symptoms 505

over time for symptom tracking, CUSUM principles are adopted in this approach. CUSUM- 506

based approaches have been used in wind turbine monitoring in combination with ML 507

plots [29,30]. This approach also employs a chart that works like CUSUM control-chart, as 508

a mechanism to raise alarms as a warning that failures are potentially going to happen. 509

The classic CUSUM-chart uses samples measurement to establish the monitoring plot. 510

Most of the current approaches that employ CUSUM use a normal model residuals to 511

establish the plot. In this approach, the chart takes anomaly scores that are produced by 512

an unsupervised algorithm called Local Minimum Spanning Tree (LoMST) [53]. In order 513

to implement this CUSUM-inspired mechanism, three parameters need to be defined to 514

establish the chart. First, the offset that sets the boundary between the normal and anomaly 515

points; only those above the offset should be plotted on the chart. Second, the accumulation 516

windows that set the maximum time in which two consecutive anomaly points above the 517

offset will considered to come from the same cluster of alarms. When two anomaly points 518

are far apart beyond the predefined time windows, the cumulative score will be reset to 519

zero and a new cluster of accumulation will begin again. Third, the threshold that defines 520

the minimum cumulative scores to be considered as alarms. Any cumulative scores that do 521

not reach the threshold will not be considered as an alarm. In brief, this threshold acts as a 522

boundary that raises alarms to the possible future failure. 523

The LoMST algorithm works in three stages as described in [53]. First, it establishes 524

a so-called Minimum Spanning Tree (MST) using all data points. Second, it isolates the 525

cluster anomalies by removing the links of the global MST one by one. Third, it repeats 526

the second step to identify point-wise anomalies. At the end, an outlier score is assigned 527
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to each of the data points, indicating the anomaly level of the point. Because LoMST is 528

an unsupervised learning method, it uses the structure or pattern of the data instead of 529

data labels to identify any anomalies. This is an advantage because labelling can be a very 530

challenging task. Additional advantage is that it takes multivariate input and the output is 531

a univariate anomaly score. This univariate anomaly score simplifies how the chart should 532

be designed. 533

The implementation of LoMST-CUSUM requires the three aformentioned parameters 534

so called the offset, the accumulation window, and the threshold. These parameters are 535

defined based on the training data by striking the balance between maximising the failures 536

detection and minimizing the false positives. Figure 5 illustrates how an alarm is raised 537

using this approach. Latiffianti et al. [54] presents a detailed account of LoMST-CUSUM 538

approach and its implementation for wind turbine gearbox failure detection. 539

Figure 5. . Illustration of how the combined LoMST and cumulative sum of anomaly score (LoMST-
CUSUM) is used to establish failures detection. In this example, the blue line indicates the time at
which a gearbox failure happened. The parameters are defined based on the training data in five
turbines.

3.4.3. Combined Ward Hierarchical Clustering and Novelty Detection with Local Outlier 540

Factor (WHC-LOF) 541

This solution combines two methods to detect the turbine failure by comparing the 542

parameters of a group of wind turbines based on the SCADA data (e.g. nacelle temperature 543

of five wind turbines). The first method is the Ward Hierarchical Clustering [55], where 544

the AgglomerativeClustering algorithm setup with ward mode from the Python sklearn 545

package was used to separate normal and anomalous conditions in twelve clusters. The 546

’normal’ condition is considered when the parameter of the wind turbines are similar 547

(e.g. nacelle temperature is the same for all turbines). When the parameter of one wind 548

turbine is significantly different from the other wind turbines, this cluster is classified as an 549

anomalous condition. The number of neighbours is a parameter that can be tuned in the 550

algorithm according to the similarity of each cluster, where the number twenty was used 551

for this case. Thus, the training data is filtered using only the normal condition data, and 552

the clusters identified as anomalous conditions are removed. 553

The second method is the Novelty Detection with Local Outlier Factor (LOF) [56], 554

which is used to detect the outliers associated with the failures of the wind turbine. The 555

training data, pre-processed by the Ward algorithm, is used to training the LocalOutlierFactor 556

algorithm from the Python sklearn package. Thus, any new data from the test data that does 557

not match with the ’normal’ condition is detected by the LOF algorithm as an outlier. The 558

novelty detection mode is configured in LOF instead of the outlier detection mode, because 559

the outlier detection mode can only identify outliers found in training data, whereas 560

the novelty detection mode can detects unknown outliers, which is any data that is not 561

considered ’normal’ in the training data. Figure 6 shows an example of a turbine failure 562

detected using the WHC-LOF method. 563
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Figure 6. Time series of hydraulic oil temperature of the five turbines and the total anomaly per
week detected by WHC-LOF method (red bar). The red dashed line is the threshold alarm when the
cumulative anomaly event is above 100/week. The black arrow indicates the expected failure in the
next weeks.

3.4.4. Normal Behaviour Model with Lagged Inputs (NBM-LI) 564

This solution uses a random forest regression model to predict normal turbine behavior 565

by incorporating information from previous times. When the predicted turbine behavior 566

deviates significantly from the observed behavior, an alarm is raised. The Python xgboost 567

random forest library was used, specifying 50 trees and a maximum depth of two, and 568

otherwise using the default parameters. 569

New signals were added to the data set, lagging the original SCADA data channels by 570

periods of 10, 20, 30, 40, 50, and 60 minutes. Furthermore, signals were added corresponding 571

to the ratio between the original SCADA signals and the corresponding values occurring 572

in these past times. Including these additional features generally reduced the error of the 573

prediction model, as shown in Figure 7, which plots the L-2 norm of the errors associated 574

with prediction of the generator slip ring temperature as a function of the number of trees 575

used by the random forest model (80% of the training data was used to train the regression 576

model and the remaining 20% was used to compute the error). While using all the available 577

SCADA signals achieved a lower error, it was decided to only use the generator speed and 578

power produced in the final model to avoid overfitting. 579

The testing data set was used to predict normal behavior of the generator slip ring 580

temperature for each 10 minute interval. The recorded slip ring temperature was then used 581

to compute the absolute error of each prediction. Errors larger that 15 times the standard 582

deviation of the errors associated with these predictions were flagged as anomaly events. 583

The random forest was initialised with a single random number generator seed, and could 584

be improved by considering the aggregate of several random number generator seeds. 585

3.4.5. Canonical Correlation Analysis (CCA) 586

Canonical correlation analysis (CCA) focuses on maximising the correlation between 587

two sets of variables for fault detection [57]. In detail, training and testing samples are 588

first collected from input and output measurements, which are then standardised as 589

input and output matrices. The basic idea of CCA is to seek two weighting matrices 590

to maximise the correlation between input and output matrices, in which the singular value 591

decomposition is hence leveraged to achieve this. Finally, the residual vector is constructed 592

by the weighting matrices to obtain the squared prediction error (SPE) statistics. This will 593

reflect the trend of the system operation. 594

For the threshold design, the kernel density estimation (KDE) [58] is used to bound 595

the residual vectors in CCA. In principle, it is a non-parametric technique to estimate the 596

characteristics of a certain probabilistic distribution. As KDE is able to solve the problem of 597
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Figure 7. L-2 norm of the error of predicted generator slip ring temperature plotted as a function
of trees in the random forest model (NBM-LI). The solid lines show the results associated with only
using the generator speed and power produced. The dashed lines show the results associated with
all SCADA signals, excluding the generator slip ring temperature. The different colors represent
results associated with the baseline data set (without feature engineering), lagging the data set, and
examining the ratio of current to previous signal values in addition to lagging the data.

non-Gaussian assumptions, it has been widely used in fault detection techniques [59]. In 598

CCA, the threshold is determined based on the underlying probability density function 599

derived from the statistics. In the fault monitoring of WT07, the way of selecting input 600

variables is the same as for NBM, and then the CCA model is trained with the healthy 601

samples. As shown in Fig. 8, the SPE statistics will exceed the threshold, which indicates 602

the faults of the wind turbine. 603

Figure 8. An example of the fault monitoring results of CCA, where the residual vector is represented
by the SPE statistics and the threshold is computed by KDE.

3.4.6. Kernel Change-Point Detection (KCPD) 604

This solution detects change points (CPs) in single SCADA signals before any model is 605

trained. Therefore, it enables the exclusion of periods contaminated by previously present 606

faults or malfunctions. Each analysed signal is prepared by removal of non-operational 607
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periods, a normalisation with respect to operational state as well as ambient conditions, 608

and a final re-sampling with reduced temporal resolution. Then, a kernel change-point 609

detection algorithm is applied in order to screen the prepared signals and flag changes 610

induced by irregular variations of the underlying physical system. The methodology is 611

described in greater detail in [60]. Note that the method works offline and is therefore not 612

suitable to predict failures, but to detect them in existing training data sets. Therefore, this 613

solution is evaluated separately from the other online methods. 614

Application of the algorithm to the data from WT07 with the settings suggested in [60] 615

resulted in the detection of two CPs (compare Figure 9). The first one coincides with the 616

reported damage of generator bearings and is detected in the temperature measurement 617

of generator bearing 2, therefore providing additional information as to which of the two 618

bearings was presumably affected. The second CP is detected in early November 2016 in 619

one of the transformer phase temperatures which was reported to have been abnormally 620

high in the preceding months. Visual inspection of the processed signal indeed confirms a 621

change in the behaviour. Additionally, the SCADA log files show several hours of downtime 622

and local access to the turbine on the day the change point was flagged. However, the 623

operator has not reported any relevant maintenance activity in close temporal proximity 624

and therefore conclusions about the change-points origin remain speculative despite the 625

suggestive evidence from the data. 626

Figure 9. Results of the KCPD algorithm for the generator bearing (left) and the transformer (right)
with processed measurement over time (black), annotated malfunctions of the respective component
(grey dashed), and detected change points (red dashed).

3.4.7. Summary of solutions 627

In Table 3, a summary of the solutions in terms of the solution providers, the method 628

type, the detection type, the previous application to wind turbines and if it is used for the 629

comparison in this paper. 630

Table 3. Summary of the solutions examined in this work.

Solution NBM LoMST-
CUSUM

WHC-
LOF

NBM-
LI CCA KCPD

Contributer Voltalia,
France

TAMU,
USA

Fed. Inst.
Santa
Catarina,
Brazil

Univ.
Colorado,
USA

TU Delft,
NL

TU Berlin,
Germany

Type22 S SS S S U U
Real time? Yes No Yes Yes Yes No
Type of detection23 PW CB PW CB CB CB
Previous application
to wind turbines? Yes [52] No No No Yes [61] Yes [60]

Used in comparison? Yes Yes Yes Yes Yes No

Additionally, it is important to discuss and compare the data pre-processing methods, 631

because data quality is a major concern in SCADA data analysis [62]. Researchers have 632
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developed various approaches ranging from manual data screening [32] via automated 633

threshold checks [33] to advanced statistical filtering methods [34]. The discussion between 634

the solution providers has revealed that results are indeed often sensitive to pre-processing 635

settings, which is why we want to give a concise overview on the approaches taken. 636

Mandatory data quality checks, such as identification of missing values, constant values 637

or parameter range checks were mostly conducted manually by domain experts. Other 638

choices for automated pre-processing were filtering out non-operational periods, reduction 639

of temporal resolution, unsupervised clustering methods and iteratively excluding data 640

points with poor training performance from the training set. Table 4 gives an overview of 641

the pre-processing methods applied within each solution in the present work. In general, 642

we encourage reporting pre-processing in detail, due to their importance for reproducing 643

reported results. 644

Table 4. Overview of data pre-processing approaches by solution.

Solution NBM
LoMST-
CUSUM

WHC-
LOF NBM-LI CCA KCPD

Filtering

Iterative
during
training

Manual /
Domain
expert

Ward
Cluster
Algorithm

Manual /
Domain
expert

Manual /
Domain
expert

Non-
operational
based on
power

Time reso-
lution 10 min 1 h 10 min 10 min 10 min 24 hr

3.5. Evaluation of solutions 645

The solutions were first evaluated using EDP’s method described in Section 3.3.2 [50]. 646

EDP’s own model is included in the analysis as well as the five models NBM-LI, NBM, 647

LoMST-CUSUM, CCA and WHC-LOF. No information about EDP’s own model is known 648

to the authors. 649

The results of the predictions for the wind turbine WT07 for each model applied to 650

the training data and the test data are shown in Figure 10. The coloured dots mark the 651

dates of the predicted failure of each component considered for each model, and the area 652

shaded blue on the right marks the test period. The red circles refer to the annotated failures 653

provided (labelled "SCADA"). The one annotated failure that was identified in the test 654

period was not known to the participants of the challenge, and therefore the test period 655

represented a blind test. However, due to the very short test period and the corresponding 656

lack of annotated failures during this period, both periods will be considered in this analysis. 657

For CCA, the detected faults in the test period were not specific to a particular component 658

and therefore are labelled "Fault". 659

22 "S" = Supervised, "U" = Unsupervised, "SS" = Semi-supervised
23 "PW" = Point-wise, "CB" = Chart-based
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Figure 10. Comparison of fault predictions for each model for WT07.

The time between the predicted alarms and each annotated failure was first calculated 660

for each component and model. Figure 11 shows this time in the upper figure (a negative 661

value refers to "before") for each component and model using the same colours as the 662

previous plot. The lower plot shows a frequency distribution of these times, split into bins 663

of 30 days. The most frequent time differences are in the -30, 0 and 30 day bins, as expected. 664

Figure 11. Time before annotated failure for each model and the its distribution.

Next, each predicted fault was classified as True Positive (TP), False Negative (FN) or 665

False Positive (FP) as described in Section 3.3.2. A summary of the number of each type 666

of fault for each model is given in Table 5, split into the training and test periods. For the 667

CCA model in the test period, because the component experiencing the alarm could not 668

be identified, the first fault prediction within 2-60 days before an annotated failure was 669

treated as a TP and the savings were calculated for the damaged component (the Hydraulic 670

Group). As well as this, the same prediction was assigned an FP, and inspection costs were 671

included for all the components except for the Hydraulic Group. Further faults detected 672

after this were classified as FPs, and inspection costs were included for all the components 673

except for the Hydraulic Group. 674

The resulting savings due to TPs and the costs due to FNs and FPs as defined in 675

Section 3.3.2 are summarised in Figure 12. For the training period, it can be seen that the FN 676

costs dominate for all models. This is because it is assumed that FNs lead to replacement 677

costs, which are high. For the test period, the costs and savings are generally much lower 678
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Table 5. Number of each type of predicted fault for each model for the training and test periods.

NBM LoMST-CUSUM WHC-LOF NBM-LI CCA EDP
Test Train Test Train Test Train Test Train Test Train Test Train

TP 0 0 4 1 1 1 1 0 1 1 1 0
FN 6 1 2 0 5 0 5 1 5 0 5 1
FP 3 2 7 3 2 2 2 1 0 4 1 0

because only one annotated failure occurred, and the models predicted fewer FNs. The 679

dominating fault type is FP, which are assumed to lead to an inspection. 680

(a) Training period

(b) Test period
Figure 12. Savings and costs due to different fault type for each model, EDP evaluation method (2-60
days)

The Total Prediction Savings (TPS) as defined in Section 3.3.2 are shown in Figure 681

13 for each model for the training and test periods. A positive value refers to positive 682

savings compared to the situation if no prediction tool would be used. It is very interesting 683

that all the models lead to losses for the training period, ranging from €50,000 to €250,000 684

depending on the model. This means that even models that have been trained with 685

historical data could perform worse than no predictions, and asset owners should not 686
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automatically assume that prediction tools lead to savings. For the training data, two of the 687

models, LoMST-CUSUM and WHC-LOF, lead to small savings of up to €10,000 compared 688

to no predictions. The other models, including the EDP model, all lead to losses between 689

€20,000 and €40,000. It should be noted that, because the time period was short and only 690

one failure occurred in this time, these results should be treated with care. Further analyses 691

over longer periods would increase the confidence in the results. 692

(a) Training period

(b) Test period
Figure 13. Total Prediction Savings (TPS) for each model, EDP evaluation method (2-60 days).

In order to quantify the value of the results of this challenge to the challenge providers 693

EDP, the differences between the TPS obtained with each model submitted for the challenge 694

and the TPS using the EDP model were calculated. These represent the expected savings 695

brought by a switch from the EDP model to another model, and are summarised in Table 6 696

and Table 7. The LoMST-CUSUM model performs significantly better than the EDP model 697

for the training period, and would have saved EDP €122,242. For the test period, which is 698

more important for assessing performance for unknown faults, the LoMST-CUSUM model 699

saves EDP €24,867 and the WHC-LOF model would save them €30,500. 700

As well as this, the difference between the average of all the TPS values obtained with 701

each model and the TPS using the EDP model was calculated to be €2,424 for the training 702

period and €3,781 for the test period. This represents the improvement EDP would expect 703
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Table 6. Total Prediction Savings (TPS) and improvement over EDP (∆TPS) for each model for
training period.

Average NBM
LoMST-
CUSUM

WHC-
LOF NBM-LI CCA EDP

TPS -€175’826 -€251’000 -€56’008 -€176’250 -€205’000 -€188’450 -€178’250
∆TPS - -€72’750 €122’242 €2’000 -€26’750 -€10’200 -

Table 7. Total Prediction Savings (TPS) and improvement over EDP (∆TPS) for each model for test
period.

Average NBM
LoMST-
CUSUM

WHC-
LOF NBM-LI CCA EDP

TPS -€16’219 -€29’500 €4’867 €10’500 -€24’500 -€38’683 -€20’000
∆TPS - -€9’500 €24’867 €30’500 -€4’500 -€18’683 -

using this collaboration method rather than if they had chosen one random partner from 704

the five. 705

4. Discussion 706

The application of the EDP evaluation method has allowed the submitted solutions to 707

the case study challenge to be compared and evaluated. However, the evaluation method 708

includes several assumptions, some of which are investigated in this section. Following 709

this, each method is evaluated qualitatively, further challenges of the evaluation method 710

are discussed and finally, the new collaboration method itself is discussed. 711

4.1. Assumptions of EDP evaluation method 712

The following key assumptions were thought to affect the evaluation results: 713

1. A predicted alarm may lead to savings if detected even earlier than 60 days before the 714

fault. Figure 14 shows the effect of altering the definition of TP from 2-60 days to 2-90 715

days (including adjusting equation (1)). 716

2. A predicted alarm may lead to savings if detected even later than two days before the 717

fault. Figure 14 shows the effect of altering the definition of TP from 2-60 days to 1-90 718

days. 719

3. It may very well be the case that not every annotated failure leads to a failure that 720

requires complete replacement or a component. This would reduce the costs of an FN. 721

Figure 14 shows the effect of halving the replacement costs for each component on 722

the TPS for each model (using 2-60 days). 723

4. An asset owner may decide not to inspect repeating alarms for the same components. 724

This would reduce the number of FPs. Figure 14 shows the effect of removing 725

inspection costs for repeat alarms for each component on the TPS for each model 726

(using 2-60 days). 727

The effect of the variations on the TPS are different depending on the model. Altering 728

the TP period from 2-60 days to 2-90 days generally has a positive effect on the TPS for 729

the training data, the difference ranging from about €20,000 for LoMST-CUSUM to more 730

than €100,000 for WHC-LOF. This is because the faults previously classified as FPs are now 731

classified as TPs. For CCA and EDP, there is no effect because no extra TPs are captured. For 732

the test data, altering the TP period from 2-60 days to 2-90 days only has a small effect. This 733

is due to the fact that no new TPs have been captured. However, the formula for calculating 734

the TP savings has changed slightly due to the change from 60 to 90 days, increasing the 735

TP savings slightly. 736

Altering the lower bound of the TP period from two to one days only has an effect on 737

TPS for the CCA model for the training data. This is because three faults were predicted 738

within one day of the annotated failure with the CCA. These faults were classified as FPs 739
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for a range of 2-60 days but as TPs for a range of 1-90 days. There is no effect for the test 740

data. 741

Halving the replacement costs for each component leads to a large reduction in TPS 742

for each model for the training period (compared to the original case). This is because 743

the replacement costs dominate for this period and therefore have a large effect on the 744

savings. This is not the case for the test period because of the low number of FNs. For the 745

NBM-LI, NBM and EDP models, the savings are increased on the order of €10,000, and for 746

the LoMST-CUSUM, the CCA and WHC-LOF, the savings are decreased by about €10,000. 747

These differences are due to the different numbers of FNs and TPs, which are both affected 748

by the replacement costs. 749

Removing inspection costs for repeat alarms only affects the TPS of the model LoMST- 750

CUSUM for the training data because this is the only model that contained repeat alarms 751

(for the generator bearing). Even then, the effect is fairly small (on the order of €10,000. For 752

the test data, it only affects the TPS for the CCA model. In this case, the TPS is increased 753

quite significantly (on the order of €50,000) because five repeat alarm predictions occurred. 754

In conclusion, the evaluation method assumptions can have a large effect on the results. 755

The assumptions mainly affected all the models in the same way, meaning that the final 756

choice of model remained the same, regardless of the assumptions. Further analysis with a 757

longer test data period would be useful for understanding these effects in more detail. 758
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(a) Training period

(b) Test period
Figure 14. Effect of variations on Total Prediction Savings (TPS) for each model.

4.2. Qualitative evaluation of each method 759

4.2.1. NBM 760

The NBM model generated alarms for most of the analysed failures. Nevertheless, 761

since they were raised with higher anticipation, the evaluation criteria classified most 762

of them as FPs. This highlights the difficulty in comparing prediction models that have 763

different characteristics. One of the drawbacks of the NBM model is that it is unable to 764

detect failures that happen suddenly (such as a sensor malfunction), being more targeted 765

at detecting components’ degradation over time. It did not identify the problem at the 766

hydraulic group because it probably had poor correlation to the other available turbine 767

sensors, leading to a prediction with increased uncertainty. 768
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4.2.2. LoMST-CUSUM 769

The LoMST-CUSUM has a high hit rate in most of the components. Because the 770

method has an advantage in accumulating effectively small-magnitude early symptoms 771

over time, it performs well at detecting wear-out component failures (i.e. due to a longtime 772

running in poor working conditions) rather than the temporary and random type of failures. 773

In some of the cases, i.e. using different data (turbines), the method produces too many 774

FPs. This is the focal point that can be improved. Finding the right subset of signals is the 775

key to detection. 776

4.2.3. WHC-LOF 777

The WHC-LOF method was able to detect most of the failure events in this challenge. 778

It has the advantage to predict unknown outliers and does not need a large dataset to 779

train every specific failure, because the algorithm is trained with only data considered 780

normal. There is no time dependence because it is possible to find patterns by comparing 781

the parameter from multiple turbines instead of using the time series of one or more 782

parameters. This time independence was probably the success to detect the failure of the 783

hydraulic group in the test period. This method has the disadvantage to be site-specific 784

and the pre-processing analysis to identify the anomaly clusters is necessary for each group 785

of turbines and failure type. 786

4.2.4. NBM-LI 787

Introducing lagged variables increased the predictive capability of the model. This 788

information from previous times can be informative by providing context to the current 789

state of the turbine. For example, if there is a trend of decreasing rotor speed, this would 790

mean that the rotor was previously running quickly, so we might expect hotter main bearing 791

temperatures than in the case of an increasing rotor speed. 792

This method requires choosing which SCADA signals to predict the normal behaviour 793

of, associating abnormalities with potential failures in an associated component. During 794

analysis of the data set, errors in the predicted generator slip ring bearing temperature 795

were found to be indicative of failures in the generator bearing, so the normal behaviour of 796

this signal was associated with the health of this component. 797

4.2.5. CCA 798

The CCA method can detect faults of most components by training the model with 799

normal data and describing the trend of the wind turbine operational state with statistics. 800

When a fault occurs during the test, the statistics will exceed the threshold, so the model 801

can identify the known and unknown wind turbine abnormal states. The selection of 802

measurement variables and training samples has a great influence on the performance 803

of the model, so it is necessary to select different variables and training samples for a 804

large number of experiments. In addition, CCA is an anomaly detection method. In this 805

challenge, the model is constructed for the whole wind turbine, so it is impossible to obtain 806

specific fault types. It could be used to monitor specific component conditions in the future 807

by modelling specific components separately. 808

4.2.6. KCPD 809

KCPD was able to demonstrate its abilities as a data pre-processing method by iden- 810

tifying change-points in SCADA signals that are caused by changes in the underlying 811

data-generating process. The resulting benefits are threefold. Firstly, it enables clean 812

training data for NBMs, a necessary precondition for the approach to work, through the 813

exclusion of training periods containing change-points. Secondly, it adds information to 814

the malfunctions annotated by operators, e.g. which signal and therefore sub-component 815

was affected specifically by a certain maintenance action. And lastly, it enables the data 816

scientist to pose further specific inquiries (signal, component and time) regarding potential 817
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Table 8. Overview of data post-processing approaches by solution.

Solution Alarm KPI
Temporal
resolution

Threshold Remark

NBM Model error 24 hr +/- 3std (training)
Alarm if on >3 out of last 7
days

LoMST-
CUSUM

Cost func-
tion

1 hr Different by component Empirical from training data

WHC-LOF Cumulative 1 week >100 total anomaly per week

NBM-LI Model error 10 min +/- 15std (training) All anomalies raised alarms

CCA SPE 10 min 13.42 –

KCPD
Cost func-
tion

24 hr 80
Empirical from different exter-
nal SCADA data sets

maintenance actions not reported. All in all, the method is a valuable addition to reduce 818

ambiguities in real-world SCADA data processing. 819

4.3. Challenges of the evaluation method 820

One of the main challenges encountered in the evaluation process was quantifying 821

the financial gain. When an algorithm raises an alarm and a team is sent to perform 822

maintenance, it is impossible to know for sure how would this failure mode evolve if it 823

had remained undetected, and therefore it is difficult to estimate the theoretical future 824

maintenance/replacement cost and the achieved gain in detecting the failure early. As 825

well as this, it is difficult to estimate the lead-time when the algorithm raises an alarm, and 826

therefore the success of a model depends highly upon the definition of a true positive. 827

Another source for evaluation-related challenges is the heterogeneity of the provided 828

solutions. This becomes clear when comparing the rules the different algorithms apply 829

to generate alarms (see Table 8). Formally, it can be difficult to directly compare models 830

that generate different alarm KPIs (Key Performance Indicator), different outputs and 831

formats. A more profound difficulty, however, arises from the potential multitude of 832

hyperparameters involved in alarm generation for each algorithm. Every anomaly detection 833

algorithm requires some threshold to distinguish between normal and abnormal conditions, 834

and its choice usually depends on the the domain specific risks associated with false 835

classifications [44]. In SCADA-based wind turbine monitoring this manifests itself for 836

example in averaging of anomaly metrics over time or specific rules, such as ’alarms on 837

x consecutive days’, to increase algorithm robustness against false alarms. The results, 838

however, can be highly sensitive to the choice of such alarm generation thresholds and rules 839

which complicates an effective evaluation and comparison between methods. As a starting 840

point, we encourage reporting of performance metric sensitivity to hyperparameter choices 841

rather than results for one specific setting only (threshold, averaging, etc...). Moreover, ML 842

research has suggested evaluation metrics independent from specific threshold choices, 843

such as the area under the receiver operating curve (AUROC or simply ROC, see e.g. 844

[44,63,64]) and their adoption is therefore suggested in the future. 845

4.4. Evaluation of the collaboration method 846

The collaboration method applied in this work resulted in the successful creation of 847

six new fault detection models for the challenge providers to use. A total of 80 people 848

from 26 different countries signed up to participate, with a diverse range of backgrounds 849

and experiences. We carried out a total eight different workshops attended by different 850

participants. There was an active exchange of ideas on the digital platform. The people who 851

did not contribute a solution had access to all the discussions and results, and ultimately 852

benefited from the process as well. 853

The benefits of the methods can be summarised as follows: 854
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• EDP received six new solutions to their challenge, two of which performed signifi- 855

cantly better than their own method for the provided datasets. The average perfor- 856

mance of all solutions was slightly better than the EDP method. 857

• EDP got access to the knowledge and code exchanged during the workshops and on 858

the digital platform, as well as to the people participating. They were able to further 859

their understanding on the topics of fault detection, data pre-processing and model 860

evaluation. 861

• The monthly meetings combined with the digital platform provided an excellent 862

opportunity for participants to exchange ideas and knowledge, as well as to ensure 863

continued motivation and guidance. 864

• A range of people with different backgrounds got access to the challenge, leading to a 865

large diversity of solutions and to some interesting exchanges, which would not have 866

otherwise happened. 867

• The participants got to apply their methods to measurement data from a real wind 868

farm under real conditions in collaboration with a real customer. 869

• The participants learned the difference between theoretical studies and real studies 870

together with customers, when the required data is not always available in exactly the 871

required format or volume. 872

• All the participants received access to the documentation of the workshops and the all 873

of the knowledge related to the topic shared within the project. 874

• All the participants made new contacts and connections. 875

• Both EDP and the participants got the opportunity to discuss and test various evalua- 876

tion methods. 877

This first case study also allowed a number of key things to be learned for future 878

co-innovation processes: 879

• The digital platform requires further functionalities, such as automatic notifications 880

and regular summaries, in order to improve activity. 881

• It is important for the ecosystem operators to ensure that the challenge provider 882

remains fully engaged throughout the project. 883

• Further datasets over longer time periods and including more faults would improve 884

the evaluation process. 885

• More information about the actual maintenance activities that took place in the turbine, 886

with information such as what was done (component fixed or replaced?) and the 887

associated cost would be useful in the future. 888

• A pre-defined evaluation method would help direct the efforts more clearly from the 889

start. 890

• A co-innovation process allowing different solutions to be combined may improve the 891

results even more. 892

• A more formally-defined set of workshops including pre-defined goals and steps for 893

each workshop would help the co-innovation effort. 894

• Definition of standard data formats or even the provision of a standardised docker 895

for uploading code would reduce the evaluation effort and make the results more 896

accessible to the challenge providers. 897

5. Conclusions 898

A literature review on the challenges related to implementation of digitalisation in 899

the wind energy industry showed that there is a strong need for new solutions that enable 900

co-innovation within and between organisations. 901

Therefore a new collaboration method called the WeDoWind Ecosystem was devel- 902

oped and demonstrated. The method incentivises data sharing and allow a fair evaluation 903

of solutions, makes wind energy data FAIR, provides a central location for data and 904

knowledge related to a certain topic within the sector, includes solutions and code for 905

data filtering and standard analysis tasks, and allows data standards and data structure 906

translation solutions to be published and shared. 907
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WeDoWind is centred around specific industry-relevant "challenges", which are de- 908

fined by "challenge providers" within a topical "space" and made available to participants 909

of the ecosystem via the digital platform. The data required in order to solve a particular 910

"challenge" is provided by the "challenge providers" under the confidentiality conditions 911

they specify. This can include only allowing specific people to access their space, requiring 912

them to sign agreements or preparing the data so that it is anonymous or normalised. A 913

"challenge" is defined as a fixed problem with a motivation, goal, expected outcome and 914

deadline. 915

The method was demonstrated via a case study, the EDP Wind Turbine Fault Detection 916

Challenge. The aim of this challenge was to identify failures in five of the major Wind 917

Turbine components and advise an intervention to the wind farm operators in order to 918

reduce corrective maintenance costs. The collaboration method was applied via a dedicated 919

space created on the WeDoWind digital platform. The ecosystem owners supported the 920

challenge providers by coordinating the entire challenge process, including the acquisition 921

of participants, moderating and documenting workshops, offering support using the 922

digital platform, sending regular email updates and providing a downloadable docker for 923

beginners. 924

Six solutions using Normal Behaviour Models, Combined Local Minimum Spanning 925

Tree and Cumulative Sum of Multivariate Time Series Data, Combined Ward Hierarchical 926

Clustering and Novelty Detection with Local Outlier Factor, Normal Behaviour Model 927

with Lagged Inputs, Canonical Correlation Analysis and Kernel Change-Point Detection 928

were submitted to this challenge. Evaluation of the results showed several advantages and 929

disadvantages of the different methods. Two of the methods performed significantly better 930

than EDP’s existing method in terms of Total Prediction Costs (order of €120,000), and the 931

average of all the solutions was slightly better (order of €2,000). During the evaluation 932

process, several challenges were experienced relating to the heterogeneity of the provided 933

solutions, such as different alarm KPIs, different outputs and different formats. 934

The case study demonstrated that the the WeDoWind Ecosystem is a promising 935

solution for enabling co-creation in wind energy. It provided a number of benefits for both 936

challenge and solution providers, including access to data, code, knowledge and people 937

skills. Future improvements being developed include more formal evaluation methods, 938

digital platform notifications as well as standardised data and data structures for improved 939

evaluation and access to the results. 940
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