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Abstract: In the next decade, further digitalisation of the entire wind energy project lifecycle is 1
expected to be a major driver for reducing project costs and risks. In this paper, a literature review on
the challenges related to implementation of digitalisation in the wind energy industry is first carried s
out, showing that there is a strong need for new solutions that enable co-innovation within and 4
between organisations. Therefore, a new collaboration method called the WeDoWind Ecosystemis s
developed and demonstrated. The method is centred around specific "challenges", which are defined 6
by "challenge providers" within a topical "space" and made available to participants via a digital -
platform. The data required in order to solve a particular "challenge" is provided by the "challenge
providers" under the confidentiality conditions they s pecify. The method is demonstrated viaa  »
case study, the EDP Wind Turbine Fault Detection Challenge. Six submitted solutions using diverse 1o
approaches are evaluated. Two of the methods perform significantly better than EDP’s existing 11
method in terms of Total Prediction Costs (saving up to €120,000). The WeDoWind Ecosystem is 12
found to be a promising solution for enabling co-innovation in wind energy, providing a number of 13

tangible benefits for both challenge and solution providers. 14
Keywords: wind energy; digitalisation; collaboration; co-innovation; machine learning; fault 15
detection 16
1. Introduction 17

The successful exploitation of the potential benefits of digitalisation is one of the key 1.
topics in the wind energy community today. Recently-formed international collaborations 1.
such as IEA Wind Task 43! and the WindEurope Digitalisation Taskforce aim to bring 2
together members of the entire wind energy space in order to accelerate this process. Within =~ 2
WindEurope, the recent publication "Wind energy digitalisation towards 2030" concludes 22
that the continued digitalisation of wind farm construction, operation and maintenance s
(O&M) will be a major driver for reducing wind energy costs and risks in the next decade’. 2
Some results of the work within IEA Wind Task 43 include the collaborative paper "Grand =5

1 https:/ /www.ieawindtask43.org/
2 https:/ /windeurope.org/intelligence-platform /product/wind-energy-digitalisation-towards-2030/
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Challenges in the Digitalisation of Wind Energy" [1], the Wind Resource Assessment (WRA) 26
Data Model® and the definition of actions required to improve data commonality in wind 27
energy [2]. The "Grand Challenges in the Digitalisation of Wind Energy" identified the 2.
following three Grand Challenges of wind energy digitalisation: (1) Creating FAIR data 2.
frameworks (FAIR: findable, accessible, interoperable and reusable [3]; (2) Connecting o
people and data to foster innovation; (3) Enabling collaboration and competition between s
organisations. Solutions to these Grand Challenges have already been investigated to some a2
extent, as described below. 33

1.1. Creating FAIR data frameworks 34

FAIR data frameworks are findable, accessible, interoperable and reusable [3], where s
"findable" means it can be discovered by people or machines using a search engine, "ac- s
cessible" means that it needs to be retrievable using secure but open and free protocols, 7
for example through the internet, "interoperable" means that it can be used in workflows  ss
and/or applications, i.e. that the data and its relationships are machine-readable, and 3¢
"reusable” means that it can be applied to different settings. Data can be made findable by 40
the use of metadata, which describes the data and follows a defined schema. a1

Several efforts have already been made to encourage researchers to adopt FAIR prin- 42
ciples. This includes an initiative by the European Commission to partly assess research 4
funding applications according to their plans to provide open access to data and publica- s
tions, and indirect funding of the development of sector-specific taxonomies. For example, s
the Sharewind metadata registry was created by the members of the European Energy s
Research Alliance Joint Programme on Wind Energy (EERA JP Wind Energy) as part of the 47
European FP7 Coordination Action project IRPWind [4]. As well as this, the topic of "open 4
science'" has been officially adopted by the new “Horizon Europe” funding scheme®. In the 4
United States, the Department of Energy released a project funding call in 2020 on the topic  so
of artificial intelligence frameworks that utilise FAIR principles’. 51

Despite this progress, many barriers must still be overcome, including making research =2
data findable, and making data from the industry available, by for example solving the s
problem related to the fear of losing competitive advantage. The wind energy community  se
is attempting to do this by, for example, developing a set of standard metadata with s
specific taxonomies® and by further developing the web-based data registry ShareWind.eu, s
allowing tagging of research data to assign a DOI to datasets in order to improve citability. s7
However, a centralised location specifically for a particular industry sector, such as wind  ss
energy, where all the available data is summarised, described and accessible (if relevant) se
is not known to the authors. This topic is taken into account in the development of the o
collaboration method in this present paper (see Section 2). 61

1.2. Connecting people and data to foster innovation 62

Previous work on the second Grand Challenge "connecting people and data to foster s
innovation" includes work on internal company culture, on data-driven innovation as well s
as on methods to incentivise data and knowledge sharing. o5

Regarding internal company culture, it has been shown that organisations need the s
following things to foster innovation: (a) effective communication channels to spread ideas e
across the organisation, (b) a culture which allows people to speak out openly, (c) leadership s
that fosters critical thinking, and (d) autonomy that allows every employee to act [5]. As e
well as this, digitalisation strategies setting out “a commitment to a set of coherent, mutually
reinforcing policies or behaviours aimed at achieving a specific competitive goal” have 7.
been found to be valuable for exploiting the opportunities of digitalisation [6]. However, 7

3 https://github.com /IEA-Task-43/digital_wra_data_standard
https://ec.europa.eu/info/research-and-innovation/strategy /strategy-2020-2024 / our-digital-future

https:/ /www.energy.gov/articles / department-energy-announces-85-million-fair-data-advance-artificial-
intelligence-science
https:/ /www.wedowind.ch/task-43-space


https://doi.org/10.20944/preprints202205.0123.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 doi:10.20944/preprints202205.0123.v1

30f31

the application of these strategies to the wind energy industry has not been discussed in 7
the literature. 74

On the topic on data-driven innovation, data is becoming increasingly important for
innovation and co-innovation processes within organisations. Many companies, including 7
Barilla, Twitter and Deliveroo, use digital platforms intensively to collect data from interac- 77
tions with their stakeholders and leverage it for their internal innovation processes [7]. The 7
subject of "co-innovation" refers to the process of exchanging ideas and resources via any 7
type of physical or digital collaborative channels, involving all types of stakeholders (e.g. o
[8]). It enables people and organisations to use modern digital technologies for integrating e
and exchanging knowledge, ideas, resources and information. It is becoming increas- e
ingly popular due to its proven ability to solve the type of systemic, multidisciplinary, s
multi-stakeholder problem involving Big Data typical to today’s challenges [9]. The only &
published work on the application of "co-innovation" concepts to energy transition chal- s
lenges to the authors’ knowledge relates to a case study of Japan and China demonstrating s
that technology-supplying countries and technology-importing countries can both benefit &
by co-innovating products [10]. There certainly appears to be a potential gap in experience s
with "co-innovation" in the wind energy industry. 80

Another method of connecting people and data to foster innovation is to focus on o
the needs and desires of the people who are supposed to be doing the data sharing. The o
results of a survey about the barriers of data sharing carried out as part of IEA Wind Task 2
43 show that, as well as making data FAIR, people need a real and tangible incentive in s
order to share data (and knowledge) [1]. This task is challenging due to the number of s
different stakeholders with different needs. For example, a data scientist might be a strong o5
supporter of sharing data and knowledge in order to learn from others, but may work for e
a company who prevents them from doing so due to legal, structural or policy reasons. o7
Some recent initiatives to incentivise data sharing include data marketplaces such as the s
Greenbyte marketplace for wind data” and the IntelStor Market Intelligence Ecosystem®, oo
data discovery and sharing platforms such as the Sharewind metadata catalogue’and the 100
US DOE Data Archive & Portal'?, comparison and benchmarking activities such as IEA 10
Wind Task 31'!, IEA Wind Task 30 (OC6) WP3 Benchmark'? and CREYAP: Comparison of 102
Resource and Energy Yield Assessment Procedures [11], and challenge-based platforms o3
such as Kaggle'®, Knowledge Pit [12] and the EDP Open Data Platform'*. To the authors’ 10s
knowledge, there is no scientific literature that compares or evaluates these different 1os
initiatives. 106

However, literature on the general topic of incentivising data and knowledge sharing 107
exists. A recent review on incentivising research data summarises the main requirements 108
for incentivising researchers to share data [13]. These include: (a) build on existing cultures 1o0
and practices, (b) meet people where they are and tailor interventions to support them, (c) 110
promote disciplinary data champions to model good practice and drive cultural change, (d) 11
provide robust technical infrastructure and protocols, such as labelling of data sets, data 112
standards and use of data repositories. 113

For wind energy in particular, the topic has been investigated as part of IEA Wind Task 114
43. Several interviews have been carried out regarding data sharing and sharing incentives, 11s
as described in [1]. One of the findings was that making open-source tools available and 116
encouraging their use can incentivise data sharing, because the shared data gets used and 117
its added value becomes more clear. Existing open-source tools in wind energy include the 115

https:/ /www.greenbyte.com/marketplace /wind-only
https:/ /www.intelstor.com/
°  https://sharewind.eu/
10 https://a2e.energy.gov/about/dap
1 https:/ /iea-wind.org/task31/
12 https:/ /iea-wind.org/task30/
13 https:/ /www.kaggle.com/
4 https:/ /opendata.edp.com/


https://doi.org/10.20944/preprints202205.0123.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 doi:10.20944/preprints202205.0123.v1

4 of 31

Brightdata app'®, OpenOA'® and the Data Science for Wind Energy R Library'”. Existing 110
initiatives to develop open data standards include the already mentioned IEA Wind Task 120
43 WRA Data Model and Metadata Challenge, as well as the ENTR Alliance'®. 121

Although there are many promising activities underway, there is limited experience 122
about how the results actually benefit the different stakeholders in the industry. This 123
present paper contributes to closing this gap. 124

1.3. Enabling collaboration and competition between organisations 126

Previous work on the third Grand Challenge, "Enabling collaboration and competition 126
between organisations”, includes both co-innovation and fair evaluation methods. 127

Organisations are increasingly sharing data with various partners for collaborative 12s
innovation purposes [7]. "Collaborative innovation" focuses on the development of collabo- 120
rative networks between organisations, and involves sharing knowledge, experience and 130
resources in order to develop collaborative innovations, for example by creating structured 13
partnerships and alliances [14]. As well as "collaborative innovation", the concepts of "open 132
innovation" and "co-creation" are commonly used in this context. "Open innovation" refers 1ss
to the acquisition of knowledge and resources from external partners, whereas "co-creation" 13
refers to the involvement of customers in companies’ product and service innovation pro- 1ss
cesses. In fact, the concept of "co-innovation" introduced in Section ?? is positioned at 136
the intersection of "collaborative innovation", "open innovation" and "co-creation". Itis s
therefore not only applied within companies, but also to enable collaboration and competi- 138
tion between organisations. "Co-innovation" concepts are becoming increasingly useful 13e
and popular due to the recent reduction in costs and increased availability of web-based 140
technologies. They not only accelerate the processes of knowledge creation and sharing 1
(e.g. [14,15]), but allow the development of specific digital interaction platforms through 1a2
which flexible and dynamic "co-innovation" processes can be implemented via combination 1
with physical collaboration channels (e.g. [16]). Although several data sharing, open data 144
and challenge-based platforms already exist, as described in Section ??, there seems tobe a 145
high potential for the application of "co-innovation" methods in the wind energy sector in 146
order to improve collaboration and competition between organisations. 147

Although the concept of "co-innovation" has not yet been applied in the wind en- 14
ergy sector, the idea of "co-creation" has received recent attention in order to improve 1
the acceptance of wind energy projects in local communities. For example, the links be-  1s0
tween "co-creation" and wind energy development were investigated, showing that new  1s:
roles for citizens as co-creators and co-producers of electricity and planning decisions 1s2
are needed [17]. A further study into the idea of treating citizens as co-producers of s
wind energy characterised public engagement into three types of co-production: (1) Local 1se
co-production, in spatially proximate wind energy projects; (2) Collective co-production, 1ss
performed through collaboration among different actors in the wind energy sector, joined  1se
ownership or consumption of wind energy; (3) Virtual co-production, mediated through s
information technology [18]. These studies should also be considered in the development  1ss
of a solution used to enable collaboration and competition between organisations. 150

Competition between organisations also has an important role to play in exploiting 1eo
the full potential of digitalisation in wind energy. In order for competition to be used 1e
effectively to further the industry as a whole, the results need to be comparable in a 12
fair and agreed-upon way. This poses new challenges. Within the wind energy sector, e
some experience has been gained on this topic via the benchmarking projects introduced  1es
in Section 1.2. Specifically, the benchmarking within IEA Wind Task 31 has lead to the 1es
development of the Wind Energy Model Evaluation Protocol'’, which provides open- 1es

15 https:/ /www.brightwindanalysis.com/brightdata/

16 https://github.com/NREL/OpenOA
17" https://github.com/TAMU-AML/DSWE-Package /
18 https:/ /www.entralliance.com/

19 https:/ /wemep.readthedocs.io/en/latest/index.html
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source documentation on model evaluation procedures and quality-checked verification e
and validation benchmarks for wind resource assessment. As well as this, the CREYAP 1es
project has lead to recommendations for future comparison end benchmarking projects and 160
tools. Evaluation procedures can also be found on the EDP Open Data Platform?’. 170

Informal comparisons of prediction models for wind energy applications have been 17
carried out by evaluating the prediction error in terms of Mean Absolute Error (MAE), 172
Maximum Absolute Error (MAXAE), Root Mean Square Error (RMSE) and correlation 17s
coefficient (e.g. [19]). However, to the authors’ knowledge, no systematic study has been 17
carried out aimed at identifying relevant state-of-the-art evaluation methods that could 17
be applied to enhance collaboration and competition between organisations. Possible 176
methods that should be further investigated include Explainable Recommender Systems, 17z
which have been suggested as a potential way of building fair and transparent tools for 17
evaluating Machine Learning (ML) models and work by conveying the reasoning behind 17
its predictions [20], as well as decision support methods such as the recent introduction of  1s0
a methods for the comparison and evaluation of Artificial Intelligence (Al) tools in a fair, 1e
transparent and explainable way [21]. These methods seem to have a high potential for s
future application to the wind sector. 183

1.4. Goals of the present work 188

It has been shown that a focused effort on overcoming the barriers to a successful 1es
digital transformation of the wind energy sector is required. This could combine several 1ss
aspects of existing initiatives both within and beyond the wind energy sector. In this paper e
therefore, a new collaboration method that has the potential to make wind energy data s
FAIR, enable co-innovation within and between organisations, incentivise data sharing se
and allow a fair evaluation of solutions is presented, together with a real case study. The 100
collaboration method is introduced in Section 2.1 and the case study is described in Section 101
3.3. This is followed by a discussion of the results and an evaluation of the new method in 102

Section 4. 103
2. The collaboration method 104
2.1. Requirements 195

As well as the requirements from the literature review summarised at the end of 106
Section 1, further requirements were defined based on the results of the IEA Wind Task 43  1e7
survey presented in the "Grand Challenges in the Digitalisation of Wind Energy" paper 1es
[1]. The most important aspects named by the 30 interviewed members of the global wind 10
energy sector in order to improve data sharing were: 200

*  Owner/operators: Getting all the data in one spot; IT issues; Cleaning/filtering raw 201
data (different time scales and resolutions, different formats); Refining and processing 202
data ready for machine learning model (80% of time); Interfaces to collecting data =zos
reliably. 208

*  Academia: Lack of public data; No standard format for analysing and processing data; zos
Poor data quality; Lack of willingness to share data, especially higher resolution; Lack 206
of change logs. 207

e  Technology providers: Data quality; Different format and structure of data; Data 208
filtering for analyses; Data collection: different devices need to be programmed 200

differently; Time for downloading, cleaning, and training data. 210
This led to the conclusion that the new collaboration method should have the following 21
characteristics: 212
¢  Enable co-innovation within and between organisations. 213
¢ Incentivise data sharing and allow a fair evaluation of solutions, with a particular 21
focus on contextual and higher-frequency data. 215

20 https:/ /opendata.edp.com/
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*  Make wind energy data FAIR (Findable, Accessible, Interoperable and Reusable). 216
¢ Provide a central location for data and knowledge related to a certain topic within the 217
sector. 218
* Include solutions and code for data filtering and standard analysis tasks. 210
* Allow data standards and data structure translation solutions to be published and 220
shared. 22
2.2. Method description 222

The collaboration method developed here enables flexible and dynamic co-innovation 223
within and between organisations by combining a digital challenge-based platform with 22e
moderated workshops, called the WeDoWind Ecosystem. As shown in Figure 1, the We- 225
DoWind Ecosystem is based around specific industry-relevant "challenges", which are 2z
defined by "challenge providers" within a topical "space” and made available to partic- 227
ipants of the ecosystem via the digital platform. The data required in order to solve a 22
particular "challenge” is provided by the "challenge providers" under the confidentiality 22
conditions they specify. This can include only allowing specific people to access their =2s0
space, requiring them to sign agreements or preparing the data so that it is anonymous or  za:
normalised. A "challenge" is defined as a fixed problem with a motivation, goal, expected 232
outcome and deadline. Examples of existing "challenges" being run in the WeDoWind 233
Ecosystem include: 230

*  Gearbox challenge: Participants should make use of the provided Supervisory And Data =35
Acquisition (SCADA) data in order to train, test and validate methods that will provide clear 236
indicators of an upcoming gearbox related fault, as well as/or a horizon-based probability of the 237
event occurring. 238

*  Metadata challenge: Propose standard metadata schemes and related semantics for sharing  =3e
data in the wind energy sector in three separate steps: (1) Summarise and evaluate all existing 2o

initiatives; Identify the gaps; (3) Suggest solutions for filling the gaps. 201
*  DBrazil challenge: Define the main problems needing solutions for implementing offshore wind  2a2
energy in Brazil. 243

e Diversity challenge: Document existing resources for Diversity, Equity and Inclusion that — 2aa
might be useful for the wind energy community, such as guidelines, toolboxes, techniques, zas
workshops, etc. 246

If a "challenge provider" wants a more specific solution with a defined evaluation 247
criteria and prize money, they can define a "contest” instead. If they want to discuss a more 24
general topic, such as general experience or ideas related to a certain area, they can post 24
a "request’. This system allows participants to contribute ideas, code, data, videos and  2s0
discussion topics at any time and in any form they want or can, from all over the world. 25
They can contribute to group discussions in workshops that are run and moderated inside  =zs:
the space, or they can contribute digitally via discussion forums and digital whiteboards. s
All these communications are tagged and documented within the space. Regular emails are  2sa
sent to update the participants on activities. It allows the knowledge and ideas related to a  2ss
specific "challenge" to be documented and used as a knowledge base for future "challenges”  2s6
on similar and overlapping topics. 257

The WeDoWind Ecosystem incentivises data sharing by focusing on the needs of the 2se
people in the wind energy sector. It provides incentives both to the "challenge providers", s
who receive solutions to their challenges in exchange for contributing data to the platform, 2o
and to the "solution providers", who receive data in exchange for contributing ideas and 26
solutions to the challenges. As well as this, the "challenge providers" get access to people  ze2
and their skills for recruiting or for student projects. The "solutions providers" have the 263
opportunity to apply and showcase their work applied to measurement data. All parties zes
benefit from sharing ideas and innovating together. The ecosystem provides equal access  zes
to all people with an email address and internet connection, regardless of their background, zes
education, nationality, experience, gender, and more. Furthermore, the ecosystem offers 2o
the potential to publish, develop and co-create fair methods for the evaluation of solutions. zes
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Although the community is free to develop and apply these methods themselves, the 2
ecosystem operators (OST - Eastern Switzerland University of Applied Sciences) also 270
intend to contribute to this in the future. This could be by introducing functionalities on 27
the platform such as comparison-based ranking schemes for ordering posts and documents 27
[22]. Such methods reduce the bias introduced by more popular forum ranking methods 27
such as “star ratings” and “thumbs up-down ratings”. 274

The method contributes to making wind energy data FAIR by including relevant 27
requirements on the data that is used in the ecosystem. Part of this involves providing 7
a central location for data and knowledge related to a certain topic within the sector. 277
This allows knowledge, data, code and solutions to be centralised around a particular =27
industry challenge and fosters collaboration and sharing. The ecosystem has the potential 27
to include solutions and code for data filtering and standard analysis tasks and to allow  zs0
data standards and data structure translation solutions to be published and shared :e
in the future. In order to achieve this, specific "challenges" could be defined for certain zs:
applications. In the future, industry-agreed common data and metadata standards will = 2es
be incorporated into the ecosystem, as well as open data analytics such as the National zsa
Renewable Energy Laboratory (NREL)’s OpenOA project?’.

WeDoWind ecosystem

Collabora
tions
/70
People Qbe h’/ New
’7@ 0@ Requests business

Inclusive

knowledge Challenge
sharmg New ideas solullons

Challenges @

Personal

New connection:
collaborative
@ mindset

Sludenl
projects

Figure 1. Schematic representation of the new collaboration method applied in this work, the
WeDoWind Ecosystem.

3. The case study 286

In order to test the new collaboration method, a case study was applied. This involved ez
publishing a "challenge" on the WeDoWind Ecosystem and then moderating and coordinat-  2ss
ing a co-innovation process. It resulted in a total of six new solutions. In this section, the 2s
case study is introduced, the co-innovation process is described, a literature review based  ze0
on the "challenge" topic is presented, the individual solutions are described and then the 201

results are compared and evaluated. 202
3.1. The challenge 203

In this case study, a "challenge" provided by the company EDP was posted on the 204
WeDoWind platform. The contents of the challenge are shown in italics below: 205

In this challenge, we ask you to test your predictive brains and develop a global solution  zee
for this problem, focusing on the capability of detecting early-stage failures and, consequently, o7
reduce maintenance costs. The objective is to identify the failures in five of the major Wind Turbine  zee
components and advise an intervention to the wind farm operators in order to reduce corrective  ze0

21 https://github.com/NREL/OpenOA
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Table 1. Annotated failures provided by EDP for WT07.

Component Alarm dates

Gearbox None

Generator 21.08.2017

Generator Bearings 30.04.2016 and 20.08.2017
Transformer 10.07.2016 and 23.08.2016
Hydraulic Group 17.06.2017

maintenance costs. The components to be monitored will be the gearbox, the generator, the generator  soo
bearing, the transformer and the hydraulic group. We provide two years of SCADA records from s
five wind turbines and data from the meteorological mast to create, train, validate, and test your soz
models. This challenge is open until Sep. 30th 2021! We don’t plan to have a strict evaluation of the  sos
solutions submitted. Instead, our intention is to promote an open-challenge targeting a dynamic  sos
engagement with the community where new “out-of-the-box” ideas can emerge. 305

The training period was defined as 01.01.2016 to 31.08.2017 and the test period from  sos
01.09.2017 to 31.12.2017. As well as the raw SCADA data, EDP also provided nearby o
met mast data, a list of SCADA signal names, the data sheet of the wind turbine type o
and the manufacturer’s power curve. A list of annotated failures and the SCADA logs 300
were provided for the test data period. In this work, it was decided to focus on the wind 310
turbine with the most number of annotated failures - wind turbine WT07. A summary s
of the annotated failures for WT07 provided by EDP for the test period for each wind = s:2
turbine component is shown in Table 1. The measured wind rose, wind speed frequency s
distribution and power curve (without filtering) from WT07 are shown in Figure ??. The 314
monthly averages of measurement data for WT07 in 2016, including the averages of s
availability, wind speed, wind speed during turbine uptime and turbine downtime, as s
well as box plots of power, wind speed and temperature are shown in Figure ??. The low sz
availability during, before and after August indicates substantial downtime due to a repair. s
This is probably due to the annotated failure documented in the transformer in July and s
August 2016. 320

(a) o

16%
300° 12% 60°
8%
= 18-20ms -
./ = 200 ms 2
]
270 90 &
6
4
240° 120°
’ I
o I..--_,
210 150 0 5 10 15 20
180° Average wind speed (m/s)

g
ﬂ A4 .

Average power (kW)

Average wind speed (m/s)

Figure 2. Measurement data for WT07: (a) Wind rose, (b) Wind speed frequency distribution, (c)
Power curve (without filtering).
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Figure 3. Monthly averages of measurement data for WT07 in 2016: (a) Averages of availability, wind
speed, wind speed during turbine uptime and wind speed during turbine downtime, (b) Box plots of
power, wind speed and temperature, where the centre lines show the median, the edges of the boxes
the 25" percentile, the outer bars the 95/ percentile and the points the outliers beyond this.

3.2. The co-innovation process 321

As part of this case study, the following activities were carried out by the ecosystem 22
operators in order to encourage a co-innovation process: 323

* A dedicated space called "EDP Challenges" was created on the WeDoWind digital sz
platform together with EDP. The challenge description, including direct links to s2s
download the data, was developed together with EDP and posted inside this space. 326

* A public "call for participants" website was created with a direct link to the registration 27
form. This was shared within the wind energy community using social media. 328

* A process for allowing EDP to decide who may participate or not was set up. This 320
process was not meant to reduce accessibility to the challenge, but instead to ensure 3o
that applicants were real people interested in the challenge and not robots, bots or = s:

imposters. 332
* A "Getting Started Guide" to using the digital platform was created and explainer sss
videos were recorded in order to help users interact on the platform. 334

* A series of online workshops were organised for the participants - a launch workshop, 335
interim workshops every month and then a final workshop. These involved brain- sss
storming sessions in small groups as well as question and answer sessions with EDP. 37
The sessions were documented on a digital whiteboard and recordings were posted in  sss
the digital space. 339

*  Regular email updates were sent with specific questions and actions to encourage s«
interaction. This included requests to summarise and comment on different possible 34

methods, as well as discussions of evaluation methods. 342
*  The space was regularly checked, cleaned and coordinated by the ecosystem operators e
to ensure that the information was up-to-date and understandable. 348
*  Regular updates were communicated on social media during the challenge. 345

* A downloadable docker was made available to allow beginners easy access to the s
data and code. This was integrated into a smaller "sub-challenge" run at the Eastern  sar
Switzerland University of Applied Sciences. 248

3.3. Existing methods 340

Before the solutions submitted to this challenge are introduced, existing methods for sso
wind turbine fault detection as well as for model evaluation are reviewed here. 351
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3.3.1. Wind turbine fault detection methods 352

In general, condition monitoring of wind turbines is an integral part of the operation sss
and maintenance (O&M) of the asset. Avoiding component failure can save the asset owner sa
large amounts of money. For example, an analysis of over 300 offshore wind turbines and  sss
found that failure rate per offshore turbine per year is about 10, with around 80% requiring  sse
minor repairs (<€1,000), 17.5% major repairs (€1,000-€10,000) and 2.5% major replacements sz
(>€10,000) [23]. As well as this, the same study identified the pitch/hydraulic, generator sss
and other subsystems as contributing the most to failure rates. Generators and converters sso
tend to have a higher level of failure rates in offshore wind turbines than onshore ones. 360

Maintenance can be reactive, preventive or predictive [24]: reactive maintenance se
involves waiting until a component fails before replacing it, and doesn’t involve any active ez
monitoring, preventative maintenance involves scheduled replacements, and predictive e
maintenance involves monitoring components and predicting failures before they happen. ses
Components can be monitored using the standard SCADA data produced by a wind  ses
turbines [25], as well as using specialised higher frequency measurement equipment such  ses
as drive train vibration sensors [26], oil debris monitoring and rotor blade pressure sensors ez
[27]. 368

The utilisation of operational SCADA data for condition monitoring has attracted e
considerable research interest since it provides insights without the need for additional 7
equipment. For this, Machine Learning (ML) can be used to build an inductive model 37
that learns from a limited amount of data without specialist intervention. In order to a7
do this, an underlying set of structures or patterns are found, which help understand sz
relationships in data that cannot be otherwise detected. So-called 'supervised learning’ 7
predicts an output variable using labelled input data, whereas ‘unsupervised learning” s7s
infers relationships from data without labelled inputs. Supervised learning models can 7
be categorised into regression and classifiers, where regression models predict a numeric s7s
variable and classifiers predict a categorical variable. In addition to the two categories, s
semi-supervised learning approach can be used when data points are partially labelled, 37
for example by training the model on the normal data and classify future observations as  sso
anomalies when they deviate from the normal. Examples of this category include the use = se
of residuals from the modelled normal data on control charts to determine abnormality e
[28-31]. 383

A wide range of ML methods have proven to be able to detect developing malfunc- sss
tions at an early stage, often months before they resulted in costly component failures sss
(see e.g. [32-35]. For a comprehensive review refer to [36]. SCADA data-based condition s
monitoring, therefore, represents a cost-efficient and effective complement to state-of-the- s
art condition monitoring solutions. Its primary task is to classify the state of a turbine or  zes
one of its components as either healthy or faulty. However, most available SCADA data e
represents predominantly healthy operation with no or only comparatively few instances o0
of faulty conditions. In such a setting, semi-supervised anomaly detection, often called 3o
normal behaviour modelling, has proven to be useful e.g. [37]. Normal behaviour models o2
(NBMs) are trained on healthy data to represent the class corresponding to the normal ses
state. Subsequently, deviations between model output and the measured sensor values o4
can be processed and evaluated to identify anomalies. For wind turbines, performance ses
and temperature monitoring can be distinguished. The former aims to detect abnormal s
deviations from the turbine’s usual power output, whereas the latter aims to detect devia- o7
tions from the healthy thermal equilibrium conditions. Temperature monitoring is better o8
suited for detecting malfunctions in the components along the drive train, which account e
for the majority of turbine downtime [38]. [32] were among the first to apply the approach 4c0
in the wind domain and prove its feasibility. Many publications with successful early a0
detection of malfunctions followed, e.g. [34,35,39-42]. However, no particular method has 402
yet been established as being optimal, due to the difficulty of comparing and quantifying 4os
the performance of different methods. 404


https://doi.org/10.20944/preprints202205.0123.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 doi:10.20944/preprints202205.0123.v1

11 of 31

Table 2. Summary of costs assumed for EDP evaluation method.

Component Costyy € Costrpr (€) Costsipsp (€)

Gearbox 100,000 20,000 5,000

Generator 60,000 15,000 5,000

Generator Bearings 30,000 12,500 4,500

Transformer 50,000 3,500 1,500

Hydraulic Group 20,000 3,000 2,000
3.3.2. Model evaluation methods 405

Evaluation of time series anomaly detection (TSAD) algorithms, as required for fault aos
detection problems, is a challenging task. One reason is that classical anomaly detection o7
metrics were originally designed for point-based anomalies, whereas in TSAD we often  a0s
encounter range-based anomalies that are present for a certain period of time [43]. Another 400
reason is that algorithm performance is often highly sensitive to the required choice of 410
alarm threshold [44]. Lastly, false and missed alarms can have very different implications, 411
depending on the domain, and are therefore difficult to compare across applications. a12

Recent literature reported various evaluations on wind turbine fault detection. Most of 413
those evaluations are based on the distance or the difference between actual output (Y) and  «1a
predicted output (Y). When SCADA data is used as input in the model, the evaluation is s
commonly point-wise. For regression-based normal behaviour models, the most common 416
measures include mean absolute error (MAE), mean absolute percentage error (MAPE) [45], a7
and root mean squared error (RMSE) [46]. Classification models are typically evaluated s
using accuracy, sensitivity, specificity and F1-measure [47-49]. All of the aforementioned 410
measures are evaluating the methods without taking into account how it will cost or benefit 420
the industry. Thus, it does not provide a direct estimate of potential savings when a 422
detection is made. az2

In order to transfer prediction performance to cost savings for the asset owner, the 423
costs and savings due to the use of a particular model compared to not using it have to be 424
estimated. As this step is very specific to the asset owner, there is no agreed-upon method 425
for doing this in the literature. On the EDP Open Data platform [50], the following method 426
is used for fault detection of subsystems within wind farms: az7

Step 1: The predicted faults for each wind turbine and subsystem (e.g. gearbox, generator, etc.) aze

are classified as follows: a30
*  True positives (TP): a failure of the correct wind turbine and subsystem is correctly a1
predicted between two and 60 days before the actual failure. 432

e  False negatives (FN): an actual failure is not detected between two and 60 days in a3
advance. 434

¢  False positives (FP): a failure is predicted that does not actually occur in the next two  a3s
to 60 days. 436

437

Step 2: Each detection type is converted into costs as follows: 438

*  True positives (TP): translated into savings, TP;, which are the difference between 3o
replacement costs, Costrpl, and repair costs, Cost ;. 440

*  False negatives (FN): translated into costs, FN,, due to replacements, Costrp,. 441
*  False positives (FP): translated into costs, FN¢, due to inspections, Costsjysp. aa2
The replacement, repair and inspection costs assumed by EDP on their Open Data 443
Platform are summarised in Table 2. a4a
445

Step 3: The total prediction savings are calculated: 446

The costs or savings for each detection type is then summed as follows: aa7
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TP = 2 (Cost,py — (Costypr + (Costryp — Costypr) (1 — At/60))) 1)
i=nrtp
FN, = npy X COSfrpl )
FP, = nrep X COStl’nsp (3)
where npy = total number of false negatives and npp = total number of false positives. ass
The Total Prediction Savings, TPS, are then given as follows: as9
TPS =TP; — FN;, — FN, 4)

This number represents the potential of a given prediction tool for reducing (preventive sso
and corrective) maintenance costs. It is used on the EDP Open Data platform in order to a5
compare and rank submitted solutions, and is used in the present work as well. a52

3.4. Description of the submitted solutions a53

In this section, the six different solutions submitted as a response to the challenge are  ase
described. A summary of the solutions is given at the end of the section, together with a s
discussion and comparison of the data pre-processing methods. 456

3.4.1. Normal Behaviour Models (NBM) 457

As mentioned in the previous section, normal behavior models (NBMs) learn from  ase
historical data and can be used to infer what should be the turbine’s normal operating sso
condition. If the actual measured values from that same sensor deviate too much from the e0
NBM’s prediction, it means that the turbine is operating in an abnormal condition, and 4
therefore an alarm is raised by the algorithm. As a given component starts to degrade and a 42
failure mode starts building up in the turbine, measured values of temperatures and other aes
sensors may start increasing in a way that is not perceptible to the naked eye but can be  4ss
captured by the mathematical analysis of this algorithm. a65

While the NBMs are regression-based models and make predictions for the turbine 4ss
sensors, these are estimations of how the turbine should be behaving at a distinct time 467
period, given the other available measurements. These predictions are not forecasts for ass
the following days or weeks; they are "hindcasts" to check if recent turbine operation fits 6o
inside the normal operation threshold or not. Since this approach is aimed at monitoringa a7
large fleet, comprising hundreds of wind turbines each with dozens of sensors, the NBMs 472
employ a linear regression to model the relationship between the different sensors. This a7
way, both the training process and the daily predictions can be done very quickly. Previous s
studies [51] have showed that linear regression, although somewhat simple, is an acceptable 474
choice. An initial version of this algorithm [52] used ensemble models, but an internal 47s
study concluded that the gain in prediction accuracy was small when compared to the a7
increase in computational cost. 477

The selection of inputs to predict any of the turbine sensors is done manually, from 7
expert knowledge, because an automatic selection algorithm based on correlation between 47
the candidate inputs and the target sensor may be misleading in some cases. For example, 4s0
when predicting the temperature of generator winding 1, such algorithm would probably  se:
choose the temperature of winding 2 or 3 as the highest-correlated candidate input. But s
it would be an input that adds no information to the system, because any kind of gener- e
ator failure or degradation that leads to overheating would cause this effect on the three 4es
windings. Therefore, if winding 2 increases in temperature and it was used as input, it ass
would lead to a higher predicted temperature for winding 1, and the failure would remain  ass
undetected. as7

The objective of the training process is to minimise the error between the measured s
values and the model predictions (for each sensor). After training, in the prediction stage, ass
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this error is averaged for each day, to condense results and reduce uncertainty and the o0
effect of possible outliers. A sensor is classified as presenting an anomaly if the normalised 492
daily error (using the daily error’s mean and standard deviation calculated from the o2
training process) exceeds a 3 standard deviation range, meaning it is probably not part 4es
of the expected error distribution. To avoid false positives and reduce the algorithm aes
sensitivity, an alarm is only raised to the user if three or more of the past seven days ass
are classified as anomalous. Figure 4 shows an example where an inverter cooling fan s
malfunction was detected by the algorithm. The prediction error increases when the fan  so7
starts malfunctioning, and alarms are sent to the operator everyday, until the problem is 408
corrected and the prediction error is reduced. 499

. &
N
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Normalized Prediction Error
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Figure 4. Calculated prediction error for an inverter fan malfunction for the NBM model. The
algorithm sends daily alarms to the operator until the problem is corrected and the error returns to
the acceptable range.

3.4.2. Combined Local Minimum Spanning Tree and Cumulative Sum of Multivariate Time soo
Series Data (LoMST-CUSUM) s01

Cumulative sum (CUSUM) is a memory-type control chart that works by accumulating  se2
consecutive sample points over time to monitor changes in process. It is particularly known  sos
to effectively detect a small shift in the process that memoryless methods would normally  ses
fail to detect. Due to its ability to accumulate effectively small-magnitude early symptoms  sos
over time for symptom tracking, CUSUM principles are adopted in this approach. CUSUM-  sos
based approaches have been used in wind turbine monitoring in combination with ML sor
plots [29,30]. This approach also employs a chart that works like CUSUM control-chart, as  sos
a mechanism to raise alarms as a warning that failures are potentially going to happen. 509

The classic CUSUM-chart uses samples measurement to establish the monitoring plot. s
Most of the current approaches that employ CUSUM use a normal model residuals to s
establish the plot. In this approach, the chart takes anomaly scores that are produced by = s:2
an unsupervised algorithm called Local Minimum Spanning Tree (LoMST) [53]. In order s
to implement this CUSUM-inspired mechanism, three parameters need to be defined to s
establish the chart. First, the offset that sets the boundary between the normal and anomaly  sis
points; only those above the offset should be plotted on the chart. Second, the accumulation sis
windows that set the maximum time in which two consecutive anomaly points above the  sir
offset will considered to come from the same cluster of alarms. When two anomaly points s
are far apart beyond the predefined time windows, the cumulative score will be reset to s
zero and a new cluster of accumulation will begin again. Third, the threshold that defines szo
the minimum cumulative scores to be considered as alarms. Any cumulative scores that do s
not reach the threshold will not be considered as an alarm. In brief, this threshold actsasa sz
boundary that raises alarms to the possible future failure. 523

The LoMST algorithm works in three stages as described in [53]. First, it establishes sze
a so-called Minimum Spanning Tree (MST) using all data points. Second, it isolates the szs
cluster anomalies by removing the links of the global MST one by one. Third, it repeats sz
the second step to identify point-wise anomalies. At the end, an outlier score is assigned  s27
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to each of the data points, indicating the anomaly level of the point. Because LOMST is  s2s
an unsupervised learning method, it uses the structure or pattern of the data instead of sz
data labels to identify any anomalies. This is an advantage because labelling can be a very sso
challenging task. Additional advantage is that it takes multivariate input and the outputis ss:
a univariate anomaly score. This univariate anomaly score simplifies how the chart should  ss2
be designed. 533

The implementation of LoMST-CUSUM requires the three aformentioned parameters sss
so called the offset, the accumulation window, and the threshold. These parameters are sas
defined based on the training data by striking the balance between maximising the failures sss
detection and minimizing the false positives. Figure 5 illustrates how an alarm is raised ss7
using this approach. Latiffianti ef al. [54] presents a detailed account of LoMST-CUSUM 35

approach and its implementation for wind turbine gearbox failure detection. 530
60 days
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Figure 5. . Illustration of how the combined LoMST and cumulative sum of anomaly score (LoMST-
CUSUM) is used to establish failures detection. In this example, the blue line indicates the time at
which a gearbox failure happened. The parameters are defined based on the training data in five
turbines.

3.4.3. Combined Ward Hierarchical Clustering and Novelty Detection with Local Outlier s
Factor (WHC-LOF) 541

This solution combines two methods to detect the turbine failure by comparing the s
parameters of a group of wind turbines based on the SCADA data (e.g. nacelle temperature sas
of five wind turbines). The first method is the Ward Hierarchical Clustering [55], where saa
the AgglomerativeClustering algorithm setup with ward mode from the Python sklearn sas
package was used to separate normal and anomalous conditions in twelve clusters. The  sas
‘normal’ condition is considered when the parameter of the wind turbines are similar s
(e.g. nacelle temperature is the same for all turbines). When the parameter of one wind s
turbine is significantly different from the other wind turbines, this cluster is classified as an  sas
anomalous condition. The number of neighbours is a parameter that can be tuned in the sso
algorithm according to the similarity of each cluster, where the number twenty was used ss
for this case. Thus, the training data is filtered using only the normal condition data, and ss
the clusters identified as anomalous conditions are removed. 553

The second method is the Novelty Detection with Local Outlier Factor (LOF) [56], ssa
which is used to detect the outliers associated with the failures of the wind turbine. The sss
training data, pre-processed by the Ward algorithm, is used to training the LocalOutlierFactor  sse
algorithm from the Python sklearn package. Thus, any new data from the test data that does sz
not match with the 'normal’ condition is detected by the LOF algorithm as an outlier. The sss
novelty detection mode is configured in LOF instead of the outlier detection mode, because  sso
the outlier detection mode can only identify outliers found in training data, whereas seo
the novelty detection mode can detects unknown outliers, which is any data that is not se:
considered 'normal’ in the training data. Figure 6 shows an example of a turbine failure se:
detected using the WHC-LOF method. 503
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Figure 6. Time series of hydraulic oil temperature of the five turbines and the total anomaly per
week detected by WHC-LOF method (red bar). The red dashed line is the threshold alarm when the
cumulative anomaly event is above 100/week. The black arrow indicates the expected failure in the
next weeks.

3.4.4. Normal Behaviour Model with Lagged Inputs (NBM-LI) s6e

This solution uses a random forest regression model to predict normal turbine behavior ses
by incorporating information from previous times. When the predicted turbine behavior ses
deviates significantly from the observed behavior, an alarm is raised. The Python xgboost  ser
random forest library was used, specifying 50 trees and a maximum depth of two, and  ses
otherwise using the default parameters. 569

New signals were added to the data set, lagging the original SCADA data channels by sz
periods of 10, 20, 30, 40, 50, and 60 minutes. Furthermore, signals were added corresponding sz
to the ratio between the original SCADA signals and the corresponding values occurring sz
in these past times. Including these additional features generally reduced the error of the s
prediction model, as shown in Figure 7, which plots the L-2 norm of the errors associated sz
with prediction of the generator slip ring temperature as a function of the number of trees s
used by the random forest model (80% of the training data was used to train the regression sz
model and the remaining 20% was used to compute the error). While using all the available s
SCADA signals achieved a lower error, it was decided to only use the generator speed and sz
power produced in the final model to avoid overfitting. 579

The testing data set was used to predict normal behavior of the generator slip ring  sso
temperature for each 10 minute interval. The recorded slip ring temperature was then used  ss:
to compute the absolute error of each prediction. Errors larger that 15 times the standard  ss:
deviation of the errors associated with these predictions were flagged as anomaly events. ses
The random forest was initialised with a single random number generator seed, and could  ssa
be improved by considering the aggregate of several random number generator seeds. ses

3.4.5. Canonical Correlation Analysis (CCA) s86

Canonical correlation analysis (CCA) focuses on maximising the correlation between ser
two sets of variables for fault detection [57]. In detail, training and testing samples are sss
first collected from input and output measurements, which are then standardised as sss
input and output matrices. The basic idea of CCA is to seek two weighting matrices seo
to maximise the correlation between input and output matrices, in which the singular value se
decomposition is hence leveraged to achieve this. Finally, the residual vector is constructed  se2
by the weighting matrices to obtain the squared prediction error (SPE) statistics. This will  ses
reflect the trend of the system operation. 594

For the threshold design, the kernel density estimation (KDE) [58] is used to bound  ses
the residual vectors in CCA. In principle, it is a non-parametric technique to estimate the sos
characteristics of a certain probabilistic distribution. As KDE is able to solve the problem of ser
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Figure 7. L-2 norm of the error of predicted generator slip ring temperature plotted as a function
of trees in the random forest model (NBM-LI). The solid lines show the results associated with only
using the generator speed and power produced. The dashed lines show the results associated with
all SCADA signals, excluding the generator slip ring temperature. The different colors represent
results associated with the baseline data set (without feature engineering), lagging the data set, and
examining the ratio of current to previous signal values in addition to lagging the data.

non-Gaussian assumptions, it has been widely used in fault detection techniques [59]. In  ses
CCA, the threshold is determined based on the underlying probability density function ses
derived from the statistics. In the fault monitoring of WT07, the way of selecting input eoo
variables is the same as for NBM, and then the CCA model is trained with the healthy o
samples. As shown in Fig. 8, the SPE statistics will exceed the threshold, which indicates o2
the faults of the wind turbine. 603
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Figure 8. An example of the fault monitoring results of CCA, where the residual vector is represented
by the SPE statistics and the threshold is computed by KDE.

3.4.6. Kernel Change-Point Detection (KCPD) 604

This solution detects change points (CPs) in single SCADA signals before any model is  eos
trained. Therefore, it enables the exclusion of periods contaminated by previously present eos
faults or malfunctions. Each analysed signal is prepared by removal of non-operational eor
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periods, a normalisation with respect to operational state as well as ambient conditions, eos
and a final re-sampling with reduced temporal resolution. Then, a kernel change-point  eos
detection algorithm is applied in order to screen the prepared signals and flag changes 10
induced by irregular variations of the underlying physical system. The methodology is e
described in greater detail in [60]. Note that the method works offline and is therefore not e
suitable to predict failures, but to detect them in existing training data sets. Therefore, this e
solution is evaluated separately from the other online methods. 614

Application of the algorithm to the data from WT07 with the settings suggested in [60] e1s
resulted in the detection of two CPs (compare Figure 9). The first one coincides with the 616
reported damage of generator bearings and is detected in the temperature measurement 617
of generator bearing 2, therefore providing additional information as to which of the two  es
bearings was presumably affected. The second CP is detected in early November 2016 in 610
one of the transformer phase temperatures which was reported to have been abnormally 20
high in the preceding months. Visual inspection of the processed signal indeed confirms a ez
change in the behaviour. Additionally, the SCADA log files show several hours of downtime 622
and local access to the turbine on the day the change point was flagged. However, the e2s
operator has not reported any relevant maintenance activity in close temporal proximity eza
and therefore conclusions about the change-points origin remain speculative despite the ezs
suggestive evidence from the data. 626
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Figure 9. Results of the KCPD algorithm for the generator bearing (left) and the transformer (right)
with processed measurement over time (black), annotated malfunctions of the respective component
(grey dashed), and detected change points (red dashed).

3.4.7. Summary of solutions 627

In Table 3, a summary of the solutions in terms of the solution providers, the method eze
type, the detection type, the previous application to wind turbines and if it is used for the 20
comparison in this paper. 630

Table 3. Summary of the solutions examined in this work.

LoMST- WHC- NBM-

Solution NBM CUSUM  LOF LI CCA KCPD
Fed. Inst. Univ.
. ) TU Delft, TU Berlin,
Contributer Voltalia, TAMU, ?ﬁ?:;?ma Colorado, NL ¢ G ern? ;nm
France  USA A, ysa y
Brazil
Type?? S SS S S U U
Real time? Yes No Yes Yes Yes No
Type of detection® PW CB PW CB CB CB
Previous application
to wind turbines? Yes [52] No No No Yes [61]  Yes [60]
Used in comparison?  Yes Yes Yes Yes Yes No

Additionally, it is important to discuss and compare the data pre-processing methods, 31
because data quality is a major concern in SCADA data analysis [62]. Researchers have es2
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developed various approaches ranging from manual data screening [32] via automated 33
threshold checks [33] to advanced statistical filtering methods [34]. The discussion between s34
the solution providers has revealed that results are indeed often sensitive to pre-processing ess
settings, which is why we want to give a concise overview on the approaches taken. e:s
Mandatory data quality checks, such as identification of missing values, constant values s
or parameter range checks were mostly conducted manually by domain experts. Other e:s
choices for automated pre-processing were filtering out non-operational periods, reduction ess
of temporal resolution, unsupervised clustering methods and iteratively excluding data eso
points with poor training performance from the training set. Table 4 gives an overview of s
the pre-processing methods applied within each solution in the present work. In general, a2
we encourage reporting pre-processing in detail, due to their importance for reproducing eas
reported results. 644

Table 4. Overview of data pre-processing approaches by solution.

LoMST- WHC-

Solution NBM CUSUM LOF NBM-LI CCA KCPD
Non-

Iterative Manual / Ward Manual / Manual / operational

during Domain Cluster Domain Domain based on
Filtering training expert Algorithm  expert expert power
Time reso-
lution 10 min 1h 10 min 10 min 10 min 24 hr

3.5. Evaluation of solutions 645

The solutions were first evaluated using EDP’s method described in Section 3.3.2 [50].  ess
EDP’s own model is included in the analysis as well as the five models NBM-LI, NBM, 647
LoMST-CUSUM, CCA and WHC-LOEF. No information about EDP’s own model is known e
to the authors. 649

The results of the predictions for the wind turbine WTO07 for each model applied to  eso
the training data and the test data are shown in Figure 10. The coloured dots mark the es:
dates of the predicted failure of each component considered for each model, and the area sz
shaded blue on the right marks the test period. The red circles refer to the annotated failures ess
provided (labelled "SCADA"). The one annotated failure that was identified in the test ess
period was not known to the participants of the challenge, and therefore the test period ess
represented a blind test. However, due to the very short test period and the corresponding  ese
lack of annotated failures during this period, both periods will be considered in this analysis. es
For CCA, the detected faults in the test period were not specific to a particular component ess
and therefore are labelled "Fault". 059

22 "S" = Supervised, "U" = Unsupervised, "SS" = Semi-supervised

23 "PW" = Point-wise, "CB" = Chart-based
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Figure 10. Comparison of fault predictions for each model for WTO07.

The time between the predicted alarms and each annotated failure was first calculated  eso
for each component and model. Figure 11 shows this time in the upper figure (a negative e
value refers to "before") for each component and model using the same colours as the ee
previous plot. The lower plot shows a frequency distribution of these times, split into bins  ees
of 30 days. The most frequent time differences are in the -30, 0 and 30 day bins, as expected. ess
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Figure 11. Time before annotated failure for each model and the its distribution.

Next, each predicted fault was classified as True Positive (TP), False Negative (FN) or ees
False Positive (FP) as described in Section 3.3.2. A summary of the number of each type ees
of fault for each model is given in Table 5, split into the training and test periods. For the es7
CCA model in the test period, because the component experiencing the alarm could not ess
be identified, the first fault prediction within 2-60 days before an annotated failure was eso
treated as a TP and the savings were calculated for the damaged component (the Hydraulic s70
Group). As well as this, the same prediction was assigned an FP, and inspection costs were 671
included for all the components except for the Hydraulic Group. Further faults detected  e72
after this were classified as FPs, and inspection costs were included for all the components 73
except for the Hydraulic Group. 674

The resulting savings due to TPs and the costs due to FNs and FPs as defined in s
Section 3.3.2 are summarised in Figure 12. For the training period, it can be seen that the FN  e76
costs dominate for all models. This is because it is assumed that FNs lead to replacement ez
costs, which are high. For the test period, the costs and savings are generally much lower e7s
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Table 5. Number of each type of predicted fault for each model for the training and test periods.

NBM LoMST-CUSUM | WHC-LOF NBM-LI CCA EDP
Test | Train | Test Train Test | Train | Test | Train | Test | Train | Test | Train
TP 0 0 4 1 1 1 1 0 1 1 1 0
FN 6 1 2 0 5 0 5 1 5 0 5 1
FP 3 2 7 3 2 2 2 1 0 4 1 0

because only one annotated failure occurred, and the models predicted fewer FNs. The 7

dominating fault type is FP, which are assumed to lead to an inspection. 680
Training dataset (2-60 days)
NBM-LI NBM LoMST CccA WHC-LOF EDP
300000
H Saving of TPs
250000 OCost of FNs
] OCost of FPs
@ 200000 ]
> ] ] —
%]
c
O 150000
=
100000
50000
o MR M ! ] B
(a) Training period
Test dataset (2-60 days)
NBM-LI NBM LoMST CCA WHC-LOF EDP
60'000
mSaving of TPs
— OCost of FNs
50'000
OCost of FPs
@ 40000
>
()
c
O 30000
=
20'000
o H_‘ I H
(b) Test period
Figure 12. Savings and costs due to different fault type for each model, EDP evaluation method (2-60

days)

The Total Prediction Savings (TPS) as defined in Section 3.3.2 are shown in Figure s
13 for each model for the training and test periods. A positive value refers to positive s
savings compared to the situation if no prediction tool would be used. It is very interesting ees
that all the models lead to losses for the training period, ranging from €50,000 to €250,000 ess
depending on the model. This means that even models that have been trained with ees
historical data could perform worse than no predictions, and asset owners should not s
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automatically assume that prediction tools lead to savings. For the training data, two of the  eer
models, LoMST-CUSUM and WHC-LOE, lead to small savings of up to €10,000 compared ess
to no predictions. The other models, including the EDP model, all lead to losses between  ess
€20,000 and €40,000. It should be noted that, because the time period was short and only eso
one failure occurred in this time, these results should be treated with care. Further analyses oo
over longer periods would increase the confidence in the results. 692

Training dataset (2-60 days)
NBM-LI NBM LoMST CCA WHC-LOF EDP

-50'000

-100'000

-150'000

-200'000

-250'000 -

Total Prediction Savings (€)

-300'000

(a) Training period

Test dataset (2-60 days)
40°000
30'000

20000
10'000 .

-10'000

-20'000

-30'000

Total Prediction Savings (€)

-40'000

-50'000
NBM-LI NBM LoMST CCA WHC-LOF EDP

(b) Test period
Figure 13. Total Prediction Savings (TPS) for each model, EDP evaluation method (2-60 days).

In order to quantify the value of the results of this challenge to the challenge providers ees
EDP, the differences between the TPS obtained with each model submitted for the challenge ess
and the TPS using the EDP model were calculated. These represent the expected savings oees
brought by a switch from the EDP model to another model, and are summarised in Table 6 06
and Table 7. The LoMST-CUSUM model performs significantly better than the EDP model o7
for the training period, and would have saved EDP €122,242. For the test period, which is ees
more important for assessing performance for unknown faults, the LoMST-CUSUM model 5o
saves EDP €24,867 and the WHC-LOF model would save them €30,500. 700

As well as this, the difference between the average of all the TPS values obtained with 701
each model and the TPS using the EDP model was calculated to be €2,424 for the training 7o
period and €3,781 for the test period. This represents the improvement EDP would expect 7o
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Table 6. Total Prediction Savings (TPS) and improvement over EDP (ATPS) for each model for
training period.

LoMST- WHC-

Average NBM CUSUM LOF NBM-LI CCA EDP
TPS -€175’826  -€251’000  -€56'008 -€176'250  -€205°000  -€188'450  -€178'250
ATPS - -€72'750 €122'242  €2’000 -€26'750 -€107200 -

Table 7. Total Prediction Savings (TPS) and improvement over EDP (ATPS) for each model for test

period.
LoMST- WHC-
Average NBM CUSUM LOF NBM-LI CCA EDP
TPS -€16'219 -€29'500 €4'867 €10°500 -€24'500 -€38'683 -€20’000
ATPS - -€9'500 €24'867 €30'500 -€4’500 -€18'683 -

using this collaboration method rather than if they had chosen one random partner from 704
the five. 705

4. Discussion 706

The application of the EDP evaluation method has allowed the submitted solutions to 707
the case study challenge to be compared and evaluated. However, the evaluation method  7os
includes several assumptions, some of which are investigated in this section. Following 7o
this, each method is evaluated qualitatively, further challenges of the evaluation method 710

are discussed and finally, the new collaboration method itself is discussed. 711
4.1. Assumptions of EDP evaluation method 712
The following key assumptions were thought to affect the evaluation results: 713

1. A predicted alarm may lead to savings if detected even earlier than 60 days before the 714
fault. Figure 14 shows the effect of altering the definition of TP from 2-60 days to 2-90 75
days (including adjusting equation (1)). 716

2. A predicted alarm may lead to savings if detected even later than two days before the 717
fault. Figure 14 shows the effect of altering the definition of TP from 2-60 days to 1-90  71s
days. 719

3. It may very well be the case that not every annotated failure leads to a failure that 720
requires complete replacement or a component. This would reduce the costs of an FN. 72
Figure 14 shows the effect of halving the replacement costs for each component on 722
the TPS for each model (using 2-60 days). 723

4. An asset owner may decide not to inspect repeating alarms for the same components. 724
This would reduce the number of FPs. Figure 14 shows the effect of removing 72
inspection costs for repeat alarms for each component on the TPS for each model 7z
(using 2-60 days). 727
The effect of the variations on the TPS are different depending on the model. Altering 72s

the TP period from 2-60 days to 2-90 days generally has a positive effect on the TPS for 72

the training data, the difference ranging from about €20,000 for LoMST-CUSUM to more 730

than €100,000 for WHC-LOF. This is because the faults previously classified as FPs are now 7

classified as TPs. For CCA and EDP, there is no effect because no extra TPs are captured. For 7s:

the test data, altering the TP period from 2-60 days to 2-90 days only has a small effect. This 73

is due to the fact that no new TPs have been captured. However, the formula for calculating  7ss

the TP savings has changed slightly due to the change from 60 to 90 days, increasing the 735

TP savings slightly. 736
Altering the lower bound of the TP period from two to one days only has an effect on  7s7

TPS for the CCA model for the training data. This is because three faults were predicted 7ss

within one day of the annotated failure with the CCA. These faults were classified as FPs 73
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for a range of 2-60 days but as TPs for a range of 1-90 days. There is no effect for the test 740
data. 741

Halving the replacement costs for each component leads to a large reduction in TPS  7s2
for each model for the training period (compared to the original case). This is because 74
the replacement costs dominate for this period and therefore have a large effect on the 74
savings. This is not the case for the test period because of the low number of FNs. For the 745
NBM-LI, NBM and EDP models, the savings are increased on the order of €10,000, and for 74
the LoMST-CUSUM, the CCA and WHC-LOF, the savings are decreased by about €10,000. 747
These differences are due to the different numbers of FNs and TPs, which are both affected 74s
by the replacement costs. 749

Removing inspection costs for repeat alarms only affects the TPS of the model LoMST- 750
CUSUM for the training data because this is the only model that contained repeat alarms 751
(for the generator bearing). Even then, the effect is fairly small (on the order of €10,000. For 7s:
the test data, it only affects the TPS for the CCA model. In this case, the TPS is increased  7ss
quite significantly (on the order of €50,000) because five repeat alarm predictions occurred. 7ss

In conclusion, the evaluation method assumptions can have a large effect on the results. zss
The assumptions mainly affected all the models in the same way, meaning that the final 7s6
choice of model remained the same, regardless of the assumptions. Further analysis witha s
longer test data period would be useful for understanding these effects in more detail. 758
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Figure 14. Effect of variations on Total Prediction Savings (TPS) for each model.
4.2. Qualitative evaluation of each method 750
4.2.1. NBM 760

The NBM model generated alarms for most of the analysed failures. Nevertheless, e
since they were raised with higher anticipation, the evaluation criteria classified most e
of them as FPs. This highlights the difficulty in comparing prediction models that have 7es
different characteristics. One of the drawbacks of the NBM model is that it is unable to  7es
detect failures that happen suddenly (such as a sensor malfunction), being more targeted es
at detecting components’ degradation over time. It did not identify the problem at the 7es
hydraulic group because it probably had poor correlation to the other available turbine 77
sensors, leading to a prediction with increased uncertainty. 768


https://doi.org/10.20944/preprints202205.0123.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 doi:10.20944/preprints202205.0123.v1

25 of 31

4.2.2. LoMST-CUSUM 769

The LoMST-CUSUM has a high hit rate in most of the components. Because the 770
method has an advantage in accumulating effectively small-magnitude early symptoms 77
over time, it performs well at detecting wear-out component failures (i.e. due to a longtime 772
running in poor working conditions) rather than the temporary and random type of failures. 77s
In some of the cases, i.e. using different data (turbines), the method produces too many 77
FPs. This is the focal point that can be improved. Finding the right subset of signals is the 7s5
key to detection. 776

4.2.3. WHC-LOF 777

The WHC-LOF method was able to detect most of the failure events in this challenge. 77
It has the advantage to predict unknown outliers and does not need a large dataset to 77
train every specific failure, because the algorithm is trained with only data considered e
normal. There is no time dependence because it is possible to find patterns by comparing 7s:
the parameter from multiple turbines instead of using the time series of one or more 7.
parameters. This time independence was probably the success to detect the failure of the e
hydraulic group in the test period. This method has the disadvantage to be site-specific 7z
and the pre-processing analysis to identify the anomaly clusters is necessary for each group zes
of turbines and failure type. 786

4.2.4. NBM-LI 787

Introducing lagged variables increased the predictive capability of the model. This 7es
information from previous times can be informative by providing context to the current 7ss
state of the turbine. For example, if there is a trend of decreasing rotor speed, this would e
mean that the rotor was previously running quickly, so we might expect hotter main bearing 71
temperatures than in the case of an increasing rotor speed. 702

This method requires choosing which SCADA signals to predict the normal behaviour zes
of, associating abnormalities with potential failures in an associated component. During zes
analysis of the data set, errors in the predicted generator slip ring bearing temperature o5
were found to be indicative of failures in the generator bearing, so the normal behaviour of  7es
this signal was associated with the health of this component. 797

4.25. CCA 708

The CCA method can detect faults of most components by training the model with 70
normal data and describing the trend of the wind turbine operational state with statistics. soo
When a fault occurs during the test, the statistics will exceed the threshold, so the model so:
can identify the known and unknown wind turbine abnormal states. The selection of o2
measurement variables and training samples has a great influence on the performance sos
of the model, so it is necessary to select different variables and training samples for a sos
large number of experiments. In addition, CCA is an anomaly detection method. In this sos
challenge, the model is constructed for the whole wind turbine, so it is impossible to obtain  sos
specific fault types. It could be used to monitor specific component conditions in the future eor
by modelling specific components separately. s08

4.2.6. KCPD 800

KCPD was able to demonstrate its abilities as a data pre-processing method by iden- e10
tifying change-points in SCADA signals that are caused by changes in the underlying e
data-generating process. The resulting benefits are threefold. Firstly, it enables clean e
training data for NBMs, a necessary precondition for the approach to work, through the e
exclusion of training periods containing change-points. Secondly, it adds information to e
the malfunctions annotated by operators, e.g. which signal and therefore sub-component s
was affected specifically by a certain maintenance action. And lastly, it enables the data  sis
scientist to pose further specific inquiries (signal, component and time) regarding potential s~
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Table 8. Overview of data post-processing approaches by solution.

Solution Alarm KPI Temporal Threshold Remark
resolution

NBM Model error 24 hr +/- 3std (training) dA;;rSm if on >3 out of last 7
LoMST- Cost  func- . .. .
CUSUM tion 1hr Different by component  Empirical from training data
WHC-LOF  Cumulative 1 week >100 total anomaly per week
NBM-LI Model error 10 min +/-15std (training) All anomalies raised alarms
CCA SPE 10 min 13.42 -

Cost  func- Empirical from different exter-
KCPD tion 24 hr 80 nal SCADA data sets

maintenance actions not reported. All in all, the method is a valuable addition to reduce e
ambiguities in real-world SCADA data processing. 810

4.3. Challenges of the evaluation method 820

One of the main challenges encountered in the evaluation process was quantifying ez
the financial gain. When an algorithm raises an alarm and a team is sent to perform sz
maintenance, it is impossible to know for sure how would this failure mode evolve if it e2s
had remained undetected, and therefore it is difficult to estimate the theoretical future szs
maintenance/replacement cost and the achieved gain in detecting the failure early. As sz
well as this, it is difficult to estimate the lead-time when the algorithm raises an alarm, and  s2s
therefore the success of a model depends highly upon the definition of a true positive. 827

Another source for evaluation-related challenges is the heterogeneity of the provided sz
solutions. This becomes clear when comparing the rules the different algorithms apply sz
to generate alarms (see Table 8). Formally, it can be difficult to directly compare models 30
that generate different alarm KPIs (Key Performance Indicator), different outputs and e
formats. A more profound difficulty, however, arises from the potential multitude of a3
hyperparameters involved in alarm generation for each algorithm. Every anomaly detection ess
algorithm requires some threshold to distinguish between normal and abnormal conditions, esa
and its choice usually depends on the the domain specific risks associated with false 35
classifications [44]. In SCADA-based wind turbine monitoring this manifests itself for ese
example in averaging of anomaly metrics over time or specific rules, such as ‘alarms on sz
x consecutive days’, to increase algorithm robustness against false alarms. The results, ess
however, can be highly sensitive to the choice of such alarm generation thresholds and rules es»
which complicates an effective evaluation and comparison between methods. As a starting s
point, we encourage reporting of performance metric sensitivity to hyperparameter choices sa
rather than results for one specific setting only (threshold, averaging, etc...). Moreover, ML  sa2
research has suggested evaluation metrics independent from specific threshold choices, 43
such as the area under the receiver operating curve (AUROC or simply ROC, see e.g. a4
[44,63,64]) and their adoption is therefore suggested in the future. aas

4.4. Evaluation of the collaboration method a4

The collaboration method applied in this work resulted in the successful creation of esr
six new fault detection models for the challenge providers to use. A total of 80 people e
from 26 different countries signed up to participate, with a diverse range of backgrounds sss
and experiences. We carried out a total eight different workshops attended by different sso
participants. There was an active exchange of ideas on the digital platform. The people who  &s:
did not contribute a solution had access to all the discussions and results, and ultimately es2
benefited from the process as well. 853

The benefits of the methods can be summarised as follows: a54
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EDP received six new solutions to their challenge, two of which performed signifi-
cantly better than their own method for the provided datasets. The average perfor-
mance of all solutions was slightly better than the EDP method.

EDP got access to the knowledge and code exchanged during the workshops and on
the digital platform, as well as to the people participating. They were able to further
their understanding on the topics of fault detection, data pre-processing and model
evaluation.

The monthly meetings combined with the digital platform provided an excellent
opportunity for participants to exchange ideas and knowledge, as well as to ensure
continued motivation and guidance.

A range of people with different backgrounds got access to the challenge, leading to a
large diversity of solutions and to some interesting exchanges, which would not have
otherwise happened.

The participants got to apply their methods to measurement data from a real wind
farm under real conditions in collaboration with a real customer.

The participants learned the difference between theoretical studies and real studies
together with customers, when the required data is not always available in exactly the
required format or volume.

All the participants received access to the documentation of the workshops and the all
of the knowledge related to the topic shared within the project.

All the participants made new contacts and connections.

Both EDP and the participants got the opportunity to discuss and test various evalua-
tion methods.

This first case study also allowed a number of key things to be learned for future

co-innovation processes:

The digital platform requires further functionalities, such as automatic notifications
and regular summaries, in order to improve activity.

It is important for the ecosystem operators to ensure that the challenge provider
remains fully engaged throughout the project.

Further datasets over longer time periods and including more faults would improve
the evaluation process.

More information about the actual maintenance activities that took place in the turbine,
with information such as what was done (component fixed or replaced?) and the
associated cost would be useful in the future.

A pre-defined evaluation method would help direct the efforts more clearly from the
start.

A co-innovation process allowing different solutions to be combined may improve the
results even more.

A more formally-defined set of workshops including pre-defined goals and steps for
each workshop would help the co-innovation effort.

Definition of standard data formats or even the provision of a standardised docker
for uploading code would reduce the evaluation effort and make the results more
accessible to the challenge providers.

5. Conclusions

A literature review on the challenges related to implementation of digitalisation in

the wind energy industry showed that there is a strong need for new solutions that enable
co-innovation within and between organisations.

Therefore a new collaboration method called the WeDoWind Ecosystem was devel-

oped and demonstrated. The method incentivises data sharing and allow a fair evaluation
of solutions, makes wind energy data FAIR, provides a central location for data and
knowledge related to a certain topic within the sector, includes solutions and code for
data filtering and standard analysis tasks, and allows data standards and data structure
translation solutions to be published and shared.
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WeDoWind is centred around specific industry-relevant "challenges", which are de- sos
fined by "challenge providers" within a topical "space" and made available to participants sos
of the ecosystem via the digital platform. The data required in order to solve a particular o0
"challenge" is provided by the "challenge providers" under the confidentiality conditions 1
they specify. This can include only allowing specific people to access their space, requiring o2
them to sign agreements or preparing the data so that it is anonymous or normalised. A o1
"challenge" is defined as a fixed problem with a motivation, goal, expected outcome and o1
deadline. 015

The method was demonstrated via a case study, the EDP Wind Turbine Fault Detection 6
Challenge. The aim of this challenge was to identify failures in five of the major Wind e1r
Turbine components and advise an intervention to the wind farm operators in order to o1
reduce corrective maintenance costs. The collaboration method was applied via a dedicated o0
space created on the WeDoWind digital platform. The ecosystem owners supported the 20
challenge providers by coordinating the entire challenge process, including the acquisition e2:
of participants, moderating and documenting workshops, offering support using the o2
digital platform, sending regular email updates and providing a downloadable docker for 23
beginners. 024

Six solutions using Normal Behaviour Models, Combined Local Minimum Spanning  ezs
Tree and Cumulative Sum of Multivariate Time Series Data, Combined Ward Hierarchical sz
Clustering and Novelty Detection with Local Outlier Factor, Normal Behaviour Model o7
with Lagged Inputs, Canonical Correlation Analysis and Kernel Change-Point Detection  sze
were submitted to this challenge. Evaluation of the results showed several advantages and o2
disadvantages of the different methods. Two of the methods performed significantly better o30
than EDP’s existing method in terms of Total Prediction Costs (order of €120,000), and the o3
average of all the solutions was slightly better (order of €2,000). During the evaluation 32
process, several challenges were experienced relating to the heterogeneity of the provided s
solutions, such as different alarm KPIs, different outputs and different formats. 034

The case study demonstrated that the the WeDoWind Ecosystem is a promising e3s
solution for enabling co-creation in wind energy. It provided a number of benefits for both 36
challenge and solution providers, including access to data, code, knowledge and people o3z
skills. Future improvements being developed include more formal evaluation methods, s3s
digital platform notifications as well as standardised data and data structures for improved o3s
evaluation and access to the results. 040
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