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Abstract 

Intratumoral heterogeneity is a major ongoing challenge in the effective therapeutic targeting 

of cancer. Accumulating evidence suggests that a fraction of cells within a tumor termed 

Cancer Stem Cells (CSCs) are primarily responsible for this diversity resulting in therapeutic 

resistance and metastasis. Adding to this complexity, recent studies have shown that there can 

be different subpopulations of CSCs with varying biochemical and biophysical traits resulting 

in varied dissemination and drug-resistance potential. Moreover, cancer cells can exhibit a high 

level of plasticity or the ability to dynamically switch between CSC and non-CSC states or 

among different subsets of CSCs. The molecular mechanisms underlying such plasticity has 

been under extensive investigation and the trans-differentiation process of Epithelial to 

Mesenchymal transition (EMT) has been identified as a major contributing factor. Besides 

genetic and epigenetic factors, CSC plasticity is also shaped by non-cell-autonomous effects 

such as the tumor microenvironment. In this review, we discuss the recent developments in 

understanding CSC plasticity in tumor progression at biochemical and biophysical levels, and 

the latest in silico approaches being taken for characterizing cancer cell plasticity with 

implications in improving existing therapeutic approaches. 
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Introduction 

Heterogeneity in cancer biology has long been recognized and exploited in the clinical 

management of the disease (Rich 2016). Intertumoral heterogeneity within breast cancer 

patients for example, exhibiting different molecular subtypes based on immunohistochemical 

markers like Estrogen Receptor (ER) or Her2 has been the basis of successful targeted 

therapeutic approaches (Turashvili and Brogi 2017, Januskeviciene and Petrikaite 2019). The 

inbuilt cellular variation within a tumor has been shown to be an important driver for the 

emergence of therapy resistant clones which ultimately lead to recurrence and spread of the 

cancer cells resulting in patient mortality(Somasundaram, Villanueva et al. 2012, Dagogo-Jack 

and Shaw 2018, Akgul, Patch et al. 2019).  

The development of intratumoral divergence in tumor cells has been widely attributed to two 

contrasting processes (Shackleton, Quintana et al. 2009, Prasetyanti and Medema 2017). The 

clonal evolution theory takes into account the intrinsic differences between all cells based on 

genetic and epigenetic programs as well as the influence of the tumor microenvironment 

(TME). The fitter clones are selected for and contribute to the diversity of the tumor cell 

population (McGranahan and Swanton 2017). The second model - Cancer Stem Cell (CSC) 

model - proposes that there are a sub set of cells (termed CSCs) which are predisposed to drive 

the tumor progression, metastatic and therapeutic resistance of the entire tumor. In this 

hierarchical model, CSCs can differentiate into less self-renewing populations of non-CSCs 

which form the bulk of the tumor, in an analogous fashion to stem cell development 

(Vermeulen, de Sousa e Melo et al. 2012). More recently, the ability of cells to switch states 

via different programs like Epithelial-Mesenchymal Transition (EMT) has given rise to the 

concept that plasticity can allow CSCs to interchangeably develop into non-CSCs and vice-

versa (Chaffer, Brueckmann et al. 2011, Marjanovic, Weinberg et al. 2013, Gupta, Pastushenko 

et al. 2019). Moreover, different subsets of CSCs can lie on various points on the epithelial-

mesenchymal axis (Liu, Cong et al. 2014, Bocci, Jolly et al. 2018, Bocci, Gearhart-Serna et al. 

2019). The indirect implication of this plasticity model is that the clonal evolution and CSC 

models are not mutually exclusive and ushers in more complexity to the manner in which 

heterogeneous cell populations arise within a tumor (Cabrera, Hollingsworth et al. 2015).   

The direct consequence of evolving populations in a tumor through inter conversion by 

plasticity programs is the rise of drug resistant and metastatic cells which are ultimately 
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responsible for the mortality associated with cancer (Biddle, Gammon et al. 2016, Doherty, 

Smigiel et al. 2016). The need of the hour is hence to understand the molecular underpinnings 

for CSC plasticity with a focus on discerning a detailed characterization and decoding the 

impact of bidirectional nature of CSC plasticity on the clinical management of the disease.  

 

 CSC heterogeneity and plasticity in tumor progression  

The concept that CSCs are dynamic populations and can undergo spontaneous state transitions 

has been strengthened by various studies (Chaffer, Brueckmann et al. 2011, Gupta, Fillmore et 

al. 2011, Chaffer, Marjanovic et al. 2013). In the study done by Chaffer et al. (Chaffer, 

Brueckmann et al. 2011). using basal-like breast cancer cells, non-stem cells were shown to 

spontaneously switch to stem-like cells in vitro and in vivo; this plasticity was later found to be 

regulated by ZEB1 – a key regulator of EMT (Jia, Jolly et al. 2017). CSC heterogeneity and 

plasticity has been observed in different cancers. Just like their non-cancerous counterparts, 

identification of CSCs has been mainly based on the expression of cell surface markers (Chen, 

Dong et al. 2016). However, even within a single tumor type, different markers can identify 

distinct CSCs which are phenotypically distinct and could vary from patient to patient 

depending on the genetic make-up of the tumor (Tang 2012). For instance, in glioblastoma, 

multiple markers like CD133, CD44, A2B5, SSEA have been utilized for identifying the stem 

cell populations (Singh, Hawkins et al. 2004, Ogden, Waziri et al. 2008, Son, Woolard et al. 

2009). However, the use of CD133 marker is controversial as CD133- cells have also been 

shown to form tumors in glioma and CD133+ cells could be derived from CD133- cells in vivo, 

implying the underlying plasticity (Wang, Sakariassen et al. 2008).  A recent study by Dirkse 

et al found that in glioblastoma, the cell- membrane associated CSC markers such as CD133, 

A2B5, SSEA and CD15 does not represent a clonal entity but a plastic state which can be 

adapted by most of the cells in response to varying conditions in the microenvironment. They 

also proposed that the enhanced tumorigenic potential of CSC-like state is a result of faster 

adaptation of the cells to the microenvironment (Dirkse, Golebiewska et al. 2019).  

The evidence for plasticity of CSC states comes from melanoma as well. A slow cycling 

population of melanoma CSC-like cells were identified using H3K4 demethylase JARID1B as 

a biomarker (Roesch, Fukunaga-Kalabis et al. 2010). Intriguingly, the expression of this marker 

was dynamically regulated and JARID1B-negative cells could re-express the marker indicating 

the dynamic nature of the stemness trait. Another seminal study done on melanoma supports 
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the phenotypic plasticity model of stem-like cells. In this study, they found that in melanomas 

from patients, phenotypically distinct cells can recapitulate the original tumor and these cells 

can undergo reversible phenotypic changes in vivo (Quintana, Shackleton et al. 2010). In breast 

cancer, different subsets of CSCs were identified based on ALDH1, CD44, and CD24; and the 

two subpopulations (epithelial-like ALDH1+, mesenchymal like CD44+/CD24-) were shown 

to be capable of inter converting among themselves as well as give rise to non-CSCs (Liu, 

Cong et al. 2014). Moreover, in breast cancer, CSCs and non-CSCs were shown to exhibit 

dynamic equilibrium maintained by cytokine-mediated crosstalk among these distinct 

populations (Iliopoulos, Hirsch et al. 2011). These results suggest that at least in some cancers, 

phenotypic plasticity is reversible and does not necessarily depend on genetic alterations (Jolly, 

Kulkarni et al. 2018).  

Another compelling evidence for CSC plasticity in tumor progression comes from studies on 

colorectal cancer. Targeted ablation of Lgr5+ CSC did not lead to tumor regression in vivo as 

the differentiated marker negative cells could give rise to marker positive population which 

sustained the tumor growth. But interestingly they could not form liver metastases (de Sousa e 

Melo, Kurtova et al. 2017), suggesting that the contribution of CSCs in primary tumor 

formation and that in metastatic settings may be different. More recently, some markers for 

metastatic CSCs have been identified across cancers (Celia-Terrassa and Jolly 2019). 

CSC plasticity has also been observed alongside vasculogenic mimicry (VM) – a hallmark 

process of cancer cell plasticity in which cancer cells transdifferentiate and acquire endothelial 

cell like characteristics (Fernandez-Cortes, Delgado-Bellido et al. 2019). In triple negative 

breast cancer, a CD133+ cell population with CSC-like traits was found to show the ability to 

form tube-like structures (Liu, Sun et al. 2013). In renal cell carcinoma, using 

immunohistochemistry analysis of patient samples, the expression of stem cell like markers 

CD133 and CD44 was found to correlate with VM  and high CSC marker expression and VM 

correlated with poor survival (Zhang, Sun et al. 2013).  

Biochemical characterization of cancer stem cells and their subsets 

The concept of cancer stem cell plasticity relies on the dynamic ability to shift from a CSC 

state to a non-CSC state and vice versa (Cabrera, Hollingsworth et al. 2015). CSC plasticity 

can be instigated by various  components in the microenvironment such as the secretion of 

cytokines and chemokines, communication with different stromal cell types and extracellular 

matrix and hypoxia (Agliano, Calvo et al. 2017). Consequent activation of transcription factors 
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and/or epigenetic modifications have been shown to mediate this interconversion. To 

understand the biology of CSC plasticity and the mechanisms underlying their functional 

phenotype with the aim of developing efficient treatment strategies, an essential requirement 

is the characterization and methods to selectively isolate the plastic CSC population from 

heterogeneous tumors. 

 

One of the serious and longstanding challenges in studying CSCs is the determination of 

appropriate methodology for the isolation and characterization of CSCs (Agliano, Calvo et al. 

2017). One of the most widely applied method to identify CSCs is to sort the cells based on the 

expression of cell surface markers such as CD44, CD133, CD24, CD26, EPCAM, CD166 

(Jaggupilli and Elkord 2012, Chen, Huang et al. 2013) or based on enzymatic activity of 

intracellular proteins like ALDH1 (Pattabiraman and Weinberg 2014). However, even these 

markers are not universally expressed on all CSCs, limiting their use in few cancers (Jaggupilli 

and Elkord 2012). To overcome this limitation, more than one markers are used together in 

several cancers (Agliano, Calvo et al. 2017). Although multiple markers have been described, 

the lack of reliable and accurate markers is still a stumbling block in the identification of CSCs. 

Moreover, recent single cell transcriptome analyses revealed  that many CSC markers could be 

co-expressed by a single cell at the same time (Patel, Tirosh et al. 2014, Eun, Ham et al. 2017) 

and the expression of CSC markers could vary in vivo as a consequence of plasticity and 

adaptation to the microenvironment (Dirkse, Golebiewska et al. 2019).  This clearly highlights 

the heterogeneity of CSCs and inefficiency of the markers currently in use in distinguishing 

CSCs and non-CSCs. These results pinpoint the need for better understanding of CSC 

heterogeneity and also the necessity to re-evaluate the idea of developing CSC marker-based 

therapeutic approaches. Therefore, combining marker-based isolation strategies with 

functional assays such as in vitro clonogenic and in vivo limiting dilution xenotransplantation 

assays are of paramount importance to validate the stemness trait of the cells (Dirkse, 

Golebiewska et al. 2019, Prager, Xie et al. 2019). 

 

 

 

Biophysical characterization of CSCs and their subsets 
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The properties of stem cells such as self-renewal, multipotency and maintenance of an 

undifferentiated cell state have been shown to be governed by intracellular and extracellular 

components present in their microenvironment constituting the stem cell niche (Morrison and 

Spradling 2008). Similar to stem cells, properties of cancer stem cells (CSCs) are regulated by 

the tumor microenvironment (TME) which can enhance metastasis and tumor initiation 

capabilities of CSCs (Aponte and Caicedo 2017). CSCs, on the other hand, can also remodel 

ECM more strongly as compared to bulk cancer population (Srinivasan, Ashok et al. 2017); 

thereby setting a complex feedback loop among the CSC and its niche. Biochemical 

constituents of such loops have been well-characterized earlier (Korkaya, Liu et al. 2011). 

Recent evidence suggests how biophysical cues such as matrix stiffness, cell contractility and 

cell-matrix adhesion strengths can regulate the tumor-initiating properties of CSCs. For 

instance, blocking ROCK (Rho-associated protein kinase) can inhibit cell contractility and 

invasion potential of breast cancer stem cells (Srinivasan, Ashok et al. 2017). At a biophysical 

level, TME is often characterized by increased stiffness due to ECM remodeling, increased 

compressive stress due to confined growth, enhanced interstitial pressure and an increased 

interstitial fluid flow (Zanotelli, Goldblatt et al. 2018). Extrinsic mechanical forces exerted by 

ECM constituents can trigger biochemical changes inside cells such as cytoskeleton 

rearrangement, and changes in gene expression, protein-protein interactions and enzyme 

modifications, thus converging on various mechano-transduction and mechano-chemical axes 

(Ogden, Waziri et al. 2008, Broders-Bondon, Nguyen Ho-Bouldoires et al. 2018, Roy 

Choudhury, Gupta et al. 2019) 

Cancer cells display variations in response to extrinsic biomechanical stimuli, leading to 

heterogeneity in their biophysical properties, which influences the overall nature of cells such 

as stemness and differentiation. Recent studies have shown that mechano-biological cues 

greatly influences the generation and maintenance of CSCs and eventually metastasis (Chen 

and Kumar 2017). In addition, mechanical properties such as deformability and adhesiveness 

are different for CSCs as compared to the bulk tumor population (Saliba, Saias et al. 2010, 

Zhang, Kai et al. 2012, Babahosseini, Ketene et al. 2014, Chen, Zhou et al. 2016). These 

advances have enabled attempts to isolate and identify CSCs based on biophysical marker using 

engineering techniques such as microfluidic devices (Saliba, Saias et al. 2010, Gossett, Tse et 

al. 2012, Zhang, Kai et al. 2012, Liu, Lee et al. 2015, Chen, Zhou et al. 2016) in a label-free 

manner.  
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For instance, CSCs were enriched based on their adhesive traits using a microfluid chip having 

micro-channels coated with basement membrane extract. The cells entered into the chip driven 

by hydrodynamic forces. While highly adhesive cells were captured in micro-channels, less 

adhesive cells were collected from the outlet, which were shown to be enriched in cancer stem 

cells, had greater motility and were resistant to chemotherapeutic  drugs (Zhang, Wu et al. 

2015). This study emphasizes the interconnections between EMT, stemness, and drug 

resistance (Jolly, Somarelli et al. 2019), and the use of microfluidics in investigating these 

associations (Nath, Bidkar et al. 2019). Similarly, a microfluidic device fitted with 

microbarriers was used to isolate cancer cells based on their deformability in vitro. The more 

deformable flexible phenotype was associated with expression of many genes involved in 

motility, metastasis and greater mammosphere formation efficiency (Zhang, Kai et al. 2012). 

Consistently, in vivo, deformability has been shown to be crucial for efficient extravasation of 

tumor-repopulating cells during metastasis as seen in zebrafish models (Chen, Zhou et al. 

2016). 

Similar to biochemical heterogeneity observed within CSCs (Bocci, Gearhart-Serna et al. 2019, 

Moreira, Brayner et al. 2019), CSCs can be biophysically strikingly different too In a recent 

study, Chen et al., showed the association of biophysical properties of CSCs and their ability 

to invade, migrate, and initiate tumors, using the SUM149 inflammatory breast cancer (IBC) 

stem cells (Chen, Allen et al. 2019). In this study, the authors sorted SUM149 CSCs based on 

the expression of aldehyde dehydrogenase enzyme (ALDH) and assayed biophysical properties 

of ALDH+ and ALDH- cells in terms of deformability, adhesion strength and contractility. 

ALDH+ cells displayed greater deformability, lower adhesion strength and reduced 

contractility relative to ALDH- cells, and resulted into enhanced functional phenotypes in vitro 

and greater tumor development in vivo. In addition, to validate the contribution of biophysical 

properties in metastasis, the authors isolated IBC cells based on their adhesive property using 

a microfluidic device and showed that the less adhesive cell population was ALDH+ enriched, 

displayed enhanced in vitro invasion and migration as well as increased in vivo tumor 

development. Further, exogenous alteration of cell stiffness also resulted in changes in 

metastatic potential of these cells with less stiff cells showing greater invasion and migration 

(Chen, Allen et al. 2019). The results observed in this study corroborated well with earlier 

studies  showing that cancer cells with greater deformability, lower adhesion strength and lower 

contractile force show enhanced metastatic potential (Swaminathan, Mythreye et al. 2011, 
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Kraning-Rush, Califano et al. 2012, Byun, Son et al. 2013, Sun, Luo et al. 2016, Bongiorno, 

Gura et al. 2018). 

Therefore, with increasingly detailed characterization of biomechanical properties of various 

subpopulations of cancer cells and ECM, a ‘mechanosome’ or ‘matrisome’ signature may be 

helpful in identifying and isolating the most aggressive cancer cell subpopulations (Roy 

Choudhury, Gupta et al. 2019). 

 

Single cell methods to identify CSCs and their subsets 

Much of our current understanding about CSCs comes from studies performed on bulk cancer 

cell populations. However, bulk analysis masks the underlying intra-tumor heterogeneity and 

does not inform much about rare cell subpopulations within the tumor (Navin 2015, Bhatia, 

Monkman et al. 2019). Therefore, it becomes extremely critical to study the cancer cells at a 

single-cell resolution to better comprehend the CSC heterogeneity and plasticity (Etzrodt, 

Endele et al. 2014). Flow cytometry and Fluorescence Associated cell Sorting (FACS) is a 

widely used method for the isolation and characterization of single CSCs (Greve, Kelsch et al. 

2012, Etzrodt, Endele et al. 2014). In an interesting work done by Dirkse et al., by combining 

FACS analysis of CSC markers and functional assays such as proliferation, self-renewal and 

multipotency tests, they found that glioblastoma stem cell heterogeneity results from tumor 

plasticity which is determined by the microenvironment cues (Dirkse, Golebiewska et al. 

2019). Lineage tracing methods have also been utilized by researchers to decipher the 

properties of CSCs and has huge potential in understanding the transition of cell states. Using 

intra-vital in vivo lineage tracing method in a genetic mouse model of breast cancer, Zomer et 

al, have shown the existence of CSCs in unperturbed mammary tumor for the first time. They 

also found that CSC state is plastic and can be activated, lost or deactivated (Zomer, Ellenbroek 

et al. 2013). In another study, lineage tracing and transcriptional analysis of Notch1 expressing 

cells of intestinal tumors has led to the identification of a previously uncharacterized and 

undifferentiated stem cell population that contribute to tumor progression and heterogeneity 

(Mourao, Jacquemin et al. 2019).  

The advent of single-cell omics approaches has revolutionized our knowledge on CSC biology. 

Single cell genomic and transcriptomic analyses have provided invaluable insights regarding 

the intra-tumor heterogeneity and clonal evolution in different cancers (Patel, Tirosh et al. 

2014, Eirew, Steif et al. 2015, Hou, Guo et al. 2016, Puram, Tirosh et al. 2017). In addition to 
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discerning the dynamics of clonal evolution, single cell OMIC methods have also enabled the 

identification of cancer stem cell state transitioning and its contribution to drug resistance 

(Puram, Parikh et al. 2018, Sharma, Cao et al. 2018). Considering the rarity of a cancer stem 

cell, combining single cell transcriptomics with enrichment strategies like flow cytometry or 

sphere assays will drastically improve the characterization of CSC (Akrap, Andersson et al. 

2016, Jonasson, Ghannoum et al. 2019). Single cell multi-omics approaches which involves 

obtaining information from multiple components within a single cell is also gaining significant 

interest as it allows the assessment of genotype and phenotype relationship in regulating the 

cell states (Macaulay, Ponting et al. 2017, Liu, Liu et al. 2019).   

Nonetheless, most of the single-cell omics analyses does not preserve spatial information as it 

requires the cells to be isolated from their microenvironment (Yuan, Cai et al. 2017). Another 

limitation is that a snap-shot analysis is inadequate to evaluate the dynamic nature of cellular 

processes and therefore lack the details regarding the temporal regulation of the cellular states 

(Skylaki, Hilsenbeck et al. 2016). Transcriptomic profiling of cells in-situ using fluorescence 

in-situ hybridization or sequencing will enable the decoding of the spatial regulation of cellular 

heterogeneity at single-cell resolution (Lee, Daugharthy et al. 2014, Chen, Boettiger et al. 2015, 

Suva and Tirosh 2019). Single cell RNA sequencing data can be mapped to spatial 

transcriptomic data using advanced computational methods (Satija, Farrell et al. 2015, Edsgard, 

Johnsson et al. 2018). Although acquisition techniques have greatly improved, better analysis 

tools are still lacking. Using a newly developed high-throughput automated single cell image 

analysis (HASCIA), the spatio-temporal factors regulating glioblastoma stem cell state 

transitions has been recently investigated (Chumakova, Hitomi et al. 2019). Integrating the 

transcriptomic and spatial data can significantly improve the interpretation of the CSC 

plasticity (Satija, Farrell et al. 2015, Yuan, Cai et al. 2017). A recent work coupling large scale 

single cell-resolution 3D imaging strategy, lineage tracing and RNA sequencing in pTEN/ 

Trp53 deficient mice models, observed extensive molecular heterogeneity and clonal plasticity 

within tumors and found that EMT is not a rare event within the tumors (Rios, Capaldo et al. 

2019). Live single-cell imaging techniques are also being developed which overcomes the 

limitation of static snap-shot analyses in studying the temporal regulation of cellular state 

changes (Fumagalli, Bruens et al. 2019). The number of genes analyzed by such studies are 

much less than snap-shot studies and the lack of specialized tools and computational methods 

for handling the large amount of data generated through such studies is a major challenge 

(Skylaki, Hilsenbeck et al. 2016).   
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Single-cell analysis has emerged as a powerful tool over the past few years and has the 

enormous potential to understand the biology of CSCs. Development of newer tools and 

analysis methods and integrative approach are required for better comprehending the cell state 

transitions and improved therapeutic strategies.  

 

Computational methods to identify CSCs 

With the deluge of preclinical and clinical data being generated at a high-dimensional level, 

computational approaches to extract meaningful information and generate testable hypotheses 

are becoming more common (Suhail, Cain et al. 2019). Various ‘top-down’ and ‘bottom-up’ 

computational methods provide a framework to unravel novel insights into various aspects of 

the dynamics of cancer progression such as role of intra-tumoral heterogeneity, dynamics of 

EMT, CSCs and its role in metastases, evolutionary dynamics of cancer initiation and 

progression, prediction of treatment response and therapy resistance. While ‘top-down’ 

methods use high-dimensional data and apply an inferential metric to identify patterns through 

machine learning and/or network reconstruction, the ‘bottom-up’ approaches aim to elucidate 

the emergent dynamics of a phenomenon based on its mechanism-based description through 

mathematical modeling. Both approaches can be synergistically used to predict and/or interpret 

cellular behavior (Altrock, Liu et al. 2015, Jolly, Tripathi et al. 2017).  

Mechanism-based, i.e. ‘bottom-up’, mathematical models have been useful in understanding 

the dynamics of complex regulatory networks that modulate cancer stem cell behavior such as 

stem cell state transitions and dedifferentiation (Sehl and Wicha 2018). Recent studies using 

mathematical models have predicted that cells in one or more hybrid E/M phenotypes are 

associated more with stemness as compared to cells in purely mesenchymal or purely epithelial 

(Jolly, Huang et al. 2014). These predictions have since been validated in vitro and in vivo 

(Grosse-Wilde, Fouquier d'Herouel et al. 2015, Bierie, Pierce et al. 2017, Pastushenko, 

Brisebarre et al. 2018, Kroger, Afeyan et al. 2019) and has been supported by clinical data 

(Jolly, Somarelli et al. 2019). How are the pathways of EMT and stemness interconnected with 

each other? These questions can be addressed by investigating in silico the coupling between 

core regulatory circuits of EMT, CSCs and other connected signaling pathways such as Notch 

signaling; this model predicted that altering the coupling strength between EMT and CSC 

networks and/or modulating Notch signaling can change the position of ‘stemness window’ on 

the ‘EMT axis’, thus generating various subsets of CSCs in terms of EMT phenotypes (Bocci, 
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Jolly et al. 2018). Such CSC heterogeneity has been extensively seen across cancers (Liu, Cong 

et al. 2014, Giraddi, Chung et al. 2018, Zheng, Pomyen et al. 2018). A common unifying 

principle that has emerged upon investigating the regulatory networks underlying EMT, CSCs 

and related traits such as drug resistance has been the role of feedback loops in enabling 

multiple phenotypes (i.e. heterogeneity) and the ability to switch among them (i.e. plasticity) 

(Huang, Jolly et al. 2015, Mooney, Talebian et al. 2017, Tripathi, Fahrmann et al. 2017, Jolly, 

Preca et al. 2018, Saha, Kumar et al. 2018). 

‘Data-based’ models have also been valuable in decoding CSC signatures. A stemness index 

was derived using one-class logistic regression and observed to be higher in the metastatic 

breast cancer cells compared with primary tumors (Malta, Sokolov et al. 2018), suggesting the 

possibility of a signature specific to metastatic cancer stem cells. Similar logistic regression 

models have been used to quantify the extent of EMT (George, Jolly et al. 2017) that has 

revealed the heterogeneity of EMT phenotypes in various CSCs and their subsets (Bocci, Jolly 

et al. 2018), hence strengthening the insights from ‘mechanism-based’ or ‘bottom-up’ models. 

Another set of questions where mathematical models have been useful is estimating the fraction 

of CSCs in a tumor. Many studies have used population-level models to understand the 

difference in growth kinetics of CSCs and non-CSCs, and used that to offer a potential 

mechanistic underpinning of ‘tumor growth paradox’ i.e. accelerated tumor growth with 

increased cell death (Hillen, Enderling et al. 2013). Typically, CSC represent a minor cell 

population within a tumor, major population being the non-CSCs which compete with the 

CSCs for space and resources. While induction of cell death results into death of bulk of non-

CSCs which facilitates increase in CSC division, ultimately resulting into expansion of CSC 

population and increase in tumor progression (Hillen, Enderling et al. 2013). In contrary, 

another study showed that the CSC population within a tumor is homeostatically maintained 

such that reducing CSC population below a threshold triggers extensive phenotypic switching 

of non-CSC to CSC population (Sellerio, Ciusani et al. 2015). Thus, while the dynamics and 

mechanisms of CSC generation, plasticity and maintenance remain to be comprehensively 

understood (Enderling 2015), integrating these different modeling approaches with one another 

and with experimental and clinical data shall contribute to revealing this complex behavior at 

an intracellular and at a population level. Such an improved dynamic understanding can help 

identify optimal treatment strategies to reduce tumor burden, such as a combination of radiation 

and differentiation therapies (Bachman and Hillen 2013), or a sequential treatment of drugs to 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2019                   doi:10.20944/preprints201912.0388.v1

https://doi.org/10.20944/preprints201912.0388.v1


tackle the de novo generation of CSCs (Gupta, Fillmore et al. 2011) and their functional 

attributes (Goldman, Majumder et al. 2015). 

Spatial organization of CSCs 

Spatial heterogeneity is a fundamental feature of tumor microenvironment (TME) that contains 

diverse cell types (Yuan 2016, Yuan, Cai et al. 2017). One canonical representation of spatial 

heterogeneity is the co-occurrence of vascular and hypoxic regions, as observed in solid tumors 

(Alfarouk, Ibrahim et al. 2013). This heterogeneity can alter cellular phenotypes, for instance, 

glioblastoma cells in hypoxic regions have been shown to over-express epidermal growth 

factor receptor (EGFR) while those over-expressing platelet-derived growth factor receptor 

(PDGFRA) were enriched in vascular regions (Little, Popov et al. 2012). Similarly, hypoxic 

TME induced by antiangiogenic agents can increase breast cancer stem cells (Conley, 

Gheordunescu et al. 2012). Thus, spatial heterogeneity of TME can give rise to differential 

spatial organization of cancer sub-populations within a tumor.  

 

Indeed, varying levels of nuclear beta-catenin expression was observed in different sub-

populations of well-differentiated colorectal cancer, suggested to be regulated by TME 

(Brabletz, Jung et al. 2001). Cells in the invasive front of the primary tumor as well as 

metastases expressed high levels of nuclear beta-catenin, and lacked the expression of 

membranous E-cadherin, indicative of an epithelial-mesenchymal transition (EMT). On the 

other hand, centrally located cells in the primary tumor and metastases showed cytoplasmic 

beta-catenin and membranous E-cadherin expression, perhaps due to a mesenchymal-epithelial 

transition (MET). These two transient phenotypic transitions could by driven by specific TME 

present in the invasive front and central regions of the tumor by modulating expression of 

intracellular beta-catenin (Brabletz, Jung et al. 2001). Consistently, the CD24−CD44+ 

mesenchymal breast CSCs (BCSCs) were found in the invasive edge of the tumor, while the 

more epithelial or hybrid E/M CSCs, identified by ALDH1+, were localized in the interior 

regions of the tumor (Liu, Cong et al. 2014). In vitro, these two subpopulations, when 

segregated, could give rise to the other and other non-CSCs; however multiple studies 

consistently report spatial heterogeneity with respect to EMT in a primary tumor (Jung, 

Schrauder et al. 2001, Schmalhofer, Brabletz et al. 2009, Bronsert, Enderle-Ammour et al. 

2014, Liu, Cong et al. 2014, Grigore, Jolly et al. 2016). Therefore, put together, these 

observations beg the question of what mechanisms might underlie such patterning. 
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Recent efforts have attempted to elucidate the mechanisms underlying such spatial 

heterogeneity. A mathematical modeling analysis revealed that in the presence of a gradient of 

TGF-β (EMT inducing) signal, cell-cell communication among tumor cells mediated via 

Notch-Jagged signaling can recapitulate the experimentally observed spatial organization of 

CSCs sub-populations with varying EMT phenotypes (Bocci, Gearhart-Serna et al. 2019). 

Notch-Jagged signaling can be promoted by inflammatory cytokines like IL-6 which can 

stabilize hybrid E/M phenotype and increase the spatial proximity of hybrid E/M CSCs.  In 

vitro knock down of JAG1 in SUM149 human breast cancer cells significantly reduced their 

tumor organoid formation, confirming the role of Notch-Jagged signaling in tumor progression 

(Bocci, Gearhart-Serna et al. 2019). Future studies can focus on gaining a understanding of 

other interconnected aspects of heterogeneity in TME. 

 

Spatial heterogeneity of tumors can be used as a predictor of cancer prognosis and treatment 

response across different cancer types (Yuan 2016). For example, colorectal cancer patients 

with high density of tumor infiltrating lymphocytes responded to anti-cancer therapy (Gong, 

Anders et al. 2018). Spatial heterogeneity can also significantly impact the time to occurrence 

in cancer cells exposed to continuous as well as adaptive therapies (Gallaher, Enriquez-Navas 

et al. 2018).Thus, the spatiotemporal dynamics of phenotypic changes induced by TME can be 

pivotal in aggravating aspects of tumor progression.  

 

Mechanisms controlling CSC plasticity 

 

CSC plasticity is controlled by both cell-intrinsic and cell-extrinsic factors (Poli, Fagnocchi et 

al. 2018). Several studies have implied the importance of key transcription factors in 

modulating the generation of CSCs and regulation of cellular plasticity (Eun, Ham et al. 2017). 

The transcription factors like OCT3/4, SOX2, NANOG, KLF4 has been found to induce 

reprogramming of somatic cells into pluripotent stem cell [induced pluripotent stem cells 

(iPSC)] (Liu, Yu et al. 2013). A plethora of research has shown the expression of iPSC 

transcription factors in CSCs of many cancers that contribute to tumor progression (Gu, Yuan 

et al. 2007, Ben-Porath, Thomson et al. 2008, Liu, Yu et al. 2013). For example, the 

introduction of OCT3/4, NANOG and KLF4 retrovirally into human colon cancer cells resulted 

in enhanced CSC properties and the xenografts of these cells actually resembled the original 

human tumor tissue (Oshima, Yamada et al. 2014). Similarly, in glioblastoma, Suva et al., 

identified a core set of neurodevelopmental transcription factors (POU3F2, SOX2, SALL2, 
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and OLIG2) that were sufficient to reprogram differentiated glioblastoma cells to CSCs (Suva, 

Rheinbay et al. 2014). Tumor suppressor transcription factors like p53, pTEN has also been 

associated with CSC plasticity (Cabrera, Hollingsworth et al. 2015, da Silva-Diz, Lorenzo-

Sanz et al. 2018, Santoro, Vlachou et al. 2019). Loss of p53 lead to increased expression of 

Nestin and enable the dedifferentiation of hepatocytes and thereby contributes to cellular 

plasticity in liver carcinogenesis (Tschaharganeh, Xue et al. 2014). Combined loss of p53/ 

pTEN in clonal prostate epithelial cells caused transformation of multipotent progenitors and 

lead to epithelial to mesenchymal transition (Martin, Liu et al. 2011). Genetic mutations of 

oncogene like KRAS and tumor suppressor like APC is also linked to the generation of stem-

like cells (Easwaran, Tsai et al. 2014). 

Many studies have pointed out various mechanisms of epigenetic regulation such as bivalent 

chromatin state, DNA methylation, histone modifications in mediating CSC plasticity (Poli, 

Fagnocchi et al. 2018). For example, in basal like breast cancer cells, Chaffer and colleagues 

observed that Zeb1 promoter of non-CSCs are maintained in a bivalent configuration and in 

response to TGFβ, the chromatin switches to an active state leading to the transcription of Zeb1, 

consequently converting the non-CSCs to CSCs (Chaffer, Marjanovic et al. 2013). Homeobox 

genes are master regulators of development and maintains the balance between proliferation 

and differentiation. A study by Shah et al., has shown that a loss of function of HoxC8, a 

homeobox gene, in non-tumorigenic mammary epithelial cells due to promoter DNA 

hypermethylation is associated with the expansion of CSC pool, increased self-renewal and a 

transformed phenotype (Shah, Cardenas et al. 2017). A histone modifier, enhancer of zeste 

homolog 2 (EZH2) is a core member of polycomb repressor complex 2 (PRC2)  and mediates 

transcriptional repression of target genes via trimethylation of lysine 27 of histone 3 

(H3K27me3) (Gan, Yang et al. 2018). EZH2 is upregulated in many cancers and its enhanced 

expression of EZH2 is associated with invasion, migration and stemness (Yamaguchi and Hung 

2014). In breast cancer, overexpression of EZH2 has increased mammosphere formation and 

self-renewal ability in breast CSCs (Chang, Yang et al. 2011, Wen, Cai et al. 2017). In 

glioblastoma, loss of H3K27me3 leads to aberrant activation of a transcription factor, ASCL1 

and results in Wnt activation which is required for tumorigenicity and CSC maintenance 

(Rheinbay, Suva et al. 2013). On the other hand, in pediatric glioblastomas,  the mutations in 

histone variants H3.1 and H3.3 results in reduced activity of EZH2 and consequently 

reprograms towards a stem cell-like state (Lewis, Muller et al. 2013). Another histone modifier, 

JARID1B, a histone demethylase is associated with CSC plasticity in melanoma (Roesch, 
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Fukunaga-Kalabis et al. 2010). These observations suggest that CSCs hijack and exploit the 

reversible nature of epigenetic modifications to achieve their plastic nature (Wainwright and 

Scaffidi 2017). However, this reversibility also offers an attractive opportunity that needs to be 

harnessed for therapeutic targeting. 

CSC plasticity and EMT 

EMT is a reversible dynamic process which is critical during embryonic development and also 

aberrantly activated during various pathological processes like wound healing, fibrosis and 

cancer progression (Kalluri and Weinberg 2009, Jolly, Ward et al. 2018). EMT is characterized 

by the loss of apico-basal polarity, rearrangements in the cytoskeleton and the acquisition of 

mesenchymal gene expression signature (Kalluri and Weinberg 2009). The activation of EMT 

program is associated with the acquisition of stem like characteristics and has been implicated 

in different cancers (Mani, Guo et al. 2008, Shibue and Weinberg 2017, Singla, Kumar et al. 

2018, Dongre and Weinberg 2019). Initial reports suggested that activation of an EMT program 

endowed cells with traits similar to CSCs, such as enhanced colony formation in vitro and 

enhanced tumorigenesis in vivo (Shibue and Weinberg 2017). Recent studies have, however, 

presented a more nuanced understanding of the interconnection between EMT and CSCs. Cells 

that undergo a more extreme version of EMT can lose the stemness gained during the initiation 

of EMT; thus, cells in a hybrid epithelial/ mesenchymal phenotype are much more likely to be 

stem-like as compared to those on either end of the spectrum – pure epithelial or pure 

mesenchymal (Bierie, Pierce et al. 2017, Jolly, Mani et al. 2018). A recent study by Kroger et 

al., has found that the acquisition of a hybrid phenotype a critical for the maintenance of 

tumorigenicity of basal breast cancer cells. Based on CD104/CD44 cell surface antigen 

expression and by regulating the expression of transcription factors like Zeb1 and Snail, they 

isolated highly tumorigenic cell population residing stably in a hybrid EMT state. This hybrid 

E/M cell population showed enhanced stemness which was mediated by increased expression 

of Snail and Wnt signaling pathway (Kroger, Afeyan et al. 2019). Another interesting study by 

Pastushenko et al., looked at the spectrum of EMT states that exist in a tumor rather than the 

binary fixed state that was accepted for long. The hybrid E/M tumor cells were associated with 

differences in their transcriptional and epigenetic programs, metastatic potential and also the 

location within a tumor (Pastushenko, Brisebarre et al. 2018). It would be interesting to further 

understand whether these different hybrid states also respond differently to cues like 

chemotherapeutic treatment leading to resistance and ultimately relapse in cancer patients.  
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The effect of the tumor microenvironment on CSC plasticity 

The tumor microenvironment is a complex and dynamic ecosystem consisting of diverse 

stromal cell types like fibroblasts, endothelial cells, adipocytes and immune cells which are 

influenced by the cancer cells and vice versa. In addition to the juxtacrine crosstalk with each 

other and cancer cells through direct cell to cell contacts, there are also factors secreted by the 

different cell types that form complex interacting networks which ultimately contribute to 

tumor growth and metastasis (Swartz, Iida et al. 2012, Quail and Joyce 2013, Peltanova, 

Raudenska et al. 2019). Accumulating evidence suggests that crosstalk with the stromal cells 

have significant implications on the stem-like behaviour and phenotypic plasticity of cancer 

cells (Pattabiraman and Weinberg 2014, Cabrera, Hollingsworth et al. 2015, Prasetyanti and 

Medema 2017). Cancer associated fibroblasts (CAFs) are a major component of the tumor 

microenvironment and play a pivotal role in various aspects of tumor progression (Kwa, Herum 

et al. 2019). CAFs were found to modulate the stem cell plasticity in hepatocellular carcinoma 

through c-Met/FRA1/HEY1 signaling (Lau, Lo et al. 2016), in pancreatic adenocarcinoma 

through FAK signaling through direct interactions mediated by collagen (Begum, McMillan et 

al. 2019) and regulate lung cancer stem cell plasticity by IGF-II/IGF1R signaling pathway 

(Chen, Ho et al. 2014). In a recent study, the extent of intracellular Notch1 signalling in 

mesenchymal stem cell-derived dermal fibroblasts was found to determine the ability of these 

cells to regulate melanoma aggressiveness, stemness and phenotypic plasticity (Du, Shao et al. 

2019). Another key component is the immune system which plays a crucial role in regulating 

CSC plasticity. In response to chemotherapy, macrophages can secrete factor like Oncostatin-

M (OSM), an IL-6 family cytokine which in turn can activate the dedifferentiation of triple 

negative breast cancer cells into aggressive stem cells (Doherty, Parvani et al. 2019) and this 

could be mediated through co-operative STAT3/SMAD3 signaling (Junk, Bryson et al. 2017). 

OSM can also be secreted by cancer associated adipocytes which can also promote 

stemness(Wolfson, Eades et al. 2015). 

 

The physical and chemical composition of the microenvironment like acidic pH, low oxygen 

and nutrient availability, rigidity and porosity of the ECM also play an important role in 

regulating the cancer stem cell behaviour (Hjelmeland, Wu et al. 2011, Nallanthighal, 

Heiserman et al. 2019, Prager, Xie et al. 2019). A classic example would be hypoxia which is 

a hallmark of tumor progression in solid tumors and is associated with metastasis, therapeutic 
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resistance and poor survival (Lequeux, Noman et al. 2019). A hypoxic microenvironment is 

known to regulate various aspects of malignant progression including cellular plasticity. In 

Glioblastoma, hypoxia was found to promote self-renewal in non-stem cells by upregulating 

important factors like OCT4, NANOG and cMYC (Heddleston, Li et al. 2009). Also, the 

hypoxic microenvironment can select the fate of breast cancer stem cells in vivo as shown by 

Kim et al (Kim, Lin et al. 2018). Using flow cytometry, hypoxic and non-hypoxic breast cancer 

cells were isolated from hypoxia sensing xenografts of MDA-MB-231 and MCF7 breast cancer 

cell lines. Hypoxic tumor cells showed enhanced cancer stem cell characteristics compared to 

non-hypoxic cells which is attributed to the PI3K/AKT signaling. Interestingly, this differential 

cell fate was observed only in tumor cells isolated from hypoxic tumor microenvironment in 

vivo and not in tumor cells treated by hypoxia in vitro alone (Kim, Lin et al. 2018).   

 

These studies underscore the importance of the microenvironment in sculpting intra-tumoral 

heterogeneity and CSC plasticity and highlight the need to better understand the tumor-

microenvironment crosstalk for the development of effective therapeutic strategies. However, 

it is still controversial whether the CSC heterogeneity arises as a consequence of the 

microenvironment exerted selection pressure or whether plasticity is an intrinsic, default 

feature of the cancer cells that enable to adapt to varying cues from the microenvironment (Poli, 

Fagnocchi et al. 2018, Dirkse, Golebiewska et al. 2019). Recent evidence from the study on 

glioblastoma, suggests that intrinsic plasticity of tumor cells enables them to stochastically 

transition between different states defined by distinct expression of cancer stem cell markers 

and adapt to the microenvironment. Although all cell subpopulations are capable of phenotypic 

adjustment, they vary in their speed of adaptation (Dirkse, Golebiewska et al. 2019). 

 

Discussion/Conclusion 

The issue of phenotypic plasticity presents a clear and present danger in the treatment of cancer 

patients. Accumulating evidence suggests that CSCs consist of different sub-populations that 

can interconvert among different states through intracellular and intercellular regulatory 

networks. Over expression of one or more transcription factors or activating trans-

differentiation processes such as EMT can drive the switch among CSCs and non-CSCs as well 

as between different subsets of CSCs. These adaptive strategies adopted by cells must be taken 

into account while devising new therapeutic strategies in the clinic in order to target all 

populations effectively.  
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The challenges to addressing this issue are multifold. The ability to identify the plastic CSC 

population using markers has its inherent problems which are further confounded by each 

individual patient’s unique biochemical and biomechanical signatures. The general consensus 

is that drug resistance is achieved through a transition to a slow cycling state which is reversible 

once the stress is removed. Understanding how the cells switch from a slow cycling state and 

reenter the proliferative phase of the cell cycle will be key to targeting this population which 

contributes to minimal residual disease.  

Using latest developments in computational and experimental methods will allow us to map 

the different states of tumor cells within multiple locations in a tumor, thus enabling a more 

comprehensive view of the genetic and non-genetic heterogeneity that exists within a cancer. 

Correlating such intratumoral heterogeneity with cellular phenotypes will be key to devising 

better therapeutic options in patients to ablate the tumor cells stably within a patient. 
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