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Abstract: This study presents a novel end-to-end architecture based on edge detection for 

autonomous driving. The architecture has been designed to bridge the domain gap between 

synthetic and real-world images for end-to-end autonomous driving applications and includes 

custom edge detection layers before the Efficient Net convolutional module. To train the 

architecture, RGB and depth images were used together with inertial data as inputs to predict the 

driving speed and steering wheel angle. To pretrain the architecture, a synthetic multimodal dataset 

for autonomous driving applications was created. The dataset includes driving data from 100 

diverse weather and traffic scenarios, gathered from multiple sensors including cameras and an 

IMU as well as vehicle control variables. The results show that including edge detection layers in 

the architecture improves performance for transfer learning when using synthetic and real-world 

data. In addition, pretraining with synthetic data reduces training time and enhances model 

performance when using real-world data. 

Keywords: end-to-end architectures; multimodal synthetic dataset; autonomous driving 

 

1. Introduction 

End-to-end neural networks are evolving rapidly in artificial intelligence and have become 

particularly popular in the field of autonomous driving. Traditional autonomous driving systems are 

modular in nature, where the driving problem is divided into subtasks operating independently, 

such as object detection [1,2], localization [3], trajectory planning [4], and control [5]. While this 

approach allows for specialized task optimization, it also introduces significant drawbacks, 

particularly in terms of error propagation between modules and computational inefficiencies [6]. The 

end-to-end approach, also known as direct perception, offers substantial benefits, such as reduced 

complexity [7], decreased error propagation [8], and improved computational efficiency [9], making 

it an appealing solution for autonomous driving applications. 

End-to-end architectures learn driving related behaviors, resulting in more integrated and 

efficient autonomous driving systems [10]. These architectures enable the mapping of raw sensor 

inputs from the perception system directly to control commands for autonomously driving a vehicle. 

Different approaches to solving the end-to-end problem exist, while most studies focus on generating 

outputs directly, others incorporate intermediate steps such as trajectory planning. For example, in 

[11] the authors addressed autonomous navigation by predicting future waypoints, using a front-

facing RGB camera and maps, as an intermediate step between the input and control output. Other 

studies combine trajectory planning with direct perception, as seen in research using the Carla 

simulator. In the work by Wu et al. [12] the authors use an architecture with two branches: one branch 

predicts the trajectory, while the other focuses on the control variables. The trajectory branch uses 

encoder data to guide the control predictions, and the outputs from both branches are then fused. 
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In addition to different architectural approaches, the use of multimodal inputs is another key 

factor for improving the accuracy and robustness of end-to-end models [13,14]. By combining data 

from multiple sensors, such as cameras, IMU, LiDAR, and radar, these models can achieve a more 

comprehensive understanding of the environment. For instance, the TransFuser [15] architecture is 

based on transformers and fuses image and LiDAR data using self-attention layers. In this 

architecture, multiple transformer modules operate at different resolutions to merge features from 

the input data, which are then fed into a waypoint prediction architecture. 

Expanding on the advantages of multimodal inputs, the choice of specific data types, such as 

RGB images and depth maps, has also been shown to significantly enhance the performance of end-

to-end architectures, particularly those utilizing convolutional layers for feature extraction [16]. RGB 

images provide detailed visual information about the driving environment, while depth maps offer 

crucial spatial and distance data, helping to interpret the three-dimensional structure of the scene 

[17]. By fusing RGB images with depth maps, architectures can better perceive and navigate complex 

environments, as demonstrated by the work of Xiao et al. [18]. 

Synthetic data has gained popularity as a valuable resource for end-to-end applications, 

primarily due to the challenges of collecting high-quality real-world data. One of the main 

advantages of synthetic data is the ability to generate large datasets for training purposes. Although 

synthetic data can be a powerful tool, end-to-end architectures trained exclusively in simulated 

environments struggle to perform well in real-world scenarios without adaptation [19]. Transfer 

learning allows models initially trained in simulations to be fine-tuned using real-world data, helping 

bridge the gap between the two domains and enhancing the versatility of architectures across 

different environments and conditions. However, most current research on transfer learning focuses 

on specific tasks such as object detection [20,21] or reducing the domain gap [22,23], rather than 

extending to more complex applications like end-to-end driving systems, where models must directly 

output control commands for vehicles. 

This work presents a state-of-the-art end-to-end architecture for autonomous driving based on 

the EfficientNetV2 architecture obtaining a high performance and efficiency. The architecture has 

been designed to bridge the domain gap between synthetic and real-world images for end-to-end 

autonomous driving applications and includes novel edge detection layers before the convolutional 

module for this purpose. The architecture is pretrained using a multimodal synthetic dataset: Carla 

Multimodal Raw Data (CarlaMRD), created using the Carla simulator. The pretrained architecture 

has then been fine-tuned for real world driving applications using the UPCT real-world dataset, 

obtaining promising results whilst reducing computation time. 

2. Materials and Methods 

2.1. Synthetic Dataset 

The rapid advance in autonomous driving technology has increased the demand for high-

quality datasets to train, validate, and test end-to-end architectures for predicting vehicle control 

variables. These datasets are crucial for the development of robust autonomous driving systems 

capable of navigating diverse and complex real-world scenarios. Traditionally, real-world datasets 

collected using sensor-equipped vehicles have been the foundation for developing these systems. 

However, collecting real-world data is very expensive and time-consuming, and it is often difficult 

to obtain large amounts of data for training purposes [24], causing interest in synthetic datasets as a 

viable alternative to increase in recent years [25]. 

Synthetic datasets contain artificially generated data that mimics the conditions and scenarios of 

real-world driving environments. These datasets are created using computer-generated imagery and 

physics-based simulations, offering a controlled environment where diverse driving situations can 

be systematically produced and manipulated [26]. This capability addresses several limitations of 

real-world datasets, such as variations in weather and lighting conditions [27], complicated traffic 

situations [28], and the need for extensive data labelling [29]. 

The evaluation of current synthetic datasets for perception and vehicle control reveals notable 

limitations and areas for improvement. Most existing synthetic datasets have been designed for very 
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specific applications and include only the necessary sensors and data for performing certain tasks 

such as odometry [30], object detection [31], or for specific weather conditions [32]. In Table 1, a 

summary of the most popular synthetic driving datasets is presented, including sample size, 

perception sensors and vehicle control data, and whether the dataset include raw data or processed 

data. The most significant multimodal datasets are included and although not recent, the Udacity 

dataset is included as it was considered one of the most complete multimodal datasets [33]. 

Table 1. Synthetic datasets with sensors for perception, vehicle control variables and data type. 

Dataset/Year Samples 
Image 

Type 
IMU LIDAR RADAR 

Vehicle 

Control 
Raw Data 

Udacity [33]/2016 34 K RGB Yes Yes No Yes Yes 

SYNTHIA [34]/2016 213K RGB No No No No No 

VEIS [35]/2018 61K RGB No No No No No 

ParallelEye [36]/2019 40 K RGB No No No No No 

PreSIL 6[37]/2019 50 K RGB No Yes No No No 

IDDA [29]/2020 1M RGB, D No No No No No 

CarlaScenes [30]/2021 - RGB, D Yes Yes No No Partial 

SHIFT[28]/2022 2.6 M RGB, D Yes No No No No 

Proposed: CarlaMRD 150K RGB, D Yes Yes Yes Yes Yes 

Despite the large number of existing studies, most autonomous driving datasets provide labelled 

data primarily for classification tasks, such as semantic segmentation, rather than raw sensor data 

[28,29,34–37]. This limitation restricts the development and evaluation of end-to-end perception 

models [38], which rely on raw sensor inputs to directly predict driving actions or scene 

understanding without intermediate steps like segmentation [39]. Moreover, the public datasets 

identified lacked crucial driving control variables, such as steering wheel angle, acceleration, and 

vehicle speed. These variables are essential for the effective training and performance of end-to-end 

architectures. It was also observed that many synthetic datasets have a small sample size, considering 

that one of the advantages of simulators is the possibility of generating large amounts of synthetic 

data [35–37]. 

In this work CarlaMRD dataset has been designed collecting raw data from various sensors in 

different weather and traffic scenarios and can be adapted for use in different types of applications. 

The synthetic dataset has been developed using the CARLA simulator. CARLA is an open-source 

simulator for autonomous driving research designed to support development, training, and 

validation of autonomous urban driving systems. The simulation platform provides different urban 

scenarios, with buildings, vehicles, pedestrians, etc. and supports flexible specification of sensor 

suites and environmental conditions [40]. 

2.1.1. Simulation Setup 

Before running simulations in CARLA and recording data, it is important to correctly configure 

the simulation. First a map must be chosen or created from scratch. For this dataset, six predefined 

Carla worlds have been chosen (Figure 1): 

(a) Town01 is a small simple residential village. 

(b) Town02 is a simple town with a mixture of residential and commercial buildings. 

(c) Town03 is a medium sized urban map with junctions and a roundabout. 

(d) Town04 is a small mountain village with an infinite loop highway. 

(e) Town05 is a squared-grid town with cross junctions and a bridge. It has multiple lanes in each 

direction to perform lane changes. 

(f) Town10 is a larger urban environment with skyscrapers and residential buildings. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 1. Carla world maps. (a) Town01; (b) Town02; (c) Town03; (d) Town04; (e) Town05; (f) 

Town10. 

The weather and time of day can also be modified. This can be done by custom defining each 

weather variable or choosing from one of fourteen predefined settings. In this work, some custom 

weather conditions have been defined as well as using the predefined functions. The adjustable 

weather and time of day variables are the following: (a) cloudiness, (b) precipitation, (c) sun altitude 

angle, (d) sun azimuth angle, (e) precipitation de-posits, (f) wind intensity, (g) fog density and (h) 

wetness. 

In addition to the geographical and meteorological variables of the simulation, the traffic 

conditions can also be defined. For each of the simulations, vehicles have been added to create 

realistic traffic scenarios. A wide range of vehicles can be added, from different car models to trucks 

and emergency vehicles. For the simulations, a black Ford Lincoln MKZ model vehicle has been 

chosen. Pedestrians and cyclists also play an important role in autonomous driving tasks and have 

been added to the simulations for increased realism. 

To gather the data from the driving simulations, a range of perception sensors have been 

configured onboard the simulated vehicle. The simulated sensors in Carla can be configured with 

similar variables to real-world sensors, such as resolution and field of view (fov) for cameras, or range 

and number of channels for LIDAR sensors. To position the sensors onboard the vehicle, a Carla 

transform consisting of 3D coordinates is used, with origin in the centre of the vehicle. The RGB and 

depth cameras have been situated above the front windscreen for a frontal view, while the LiDAR 

and IMU sensors have been positioned on the middle of the roof of the vehicle. The RADAR sensor 

has been positioned on the front of the vehicle above the bumper. The sensors used and their 

configuration for recording data during the simulations are shown in Table 2. 
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Table 2. Sensors used in the perception system and vehicle control variables. 

Sensor Data Type 

RGB Camera RGB image 640x480, fov=90°. 

Depth Camera Depth image 640x480, fov=90°. 

IMU 

Acceleration x,y,z (m/s2). 

Angular Velocity x,y,z (°/s). 

Orientation x,y,z (°). 

LIDAR 
3D pointcloud, x,y,z,intensity. 

Channels=64, f=20, range=100m, points per second = 500000. 

RADAR 
2D pointcloud: polar coordinates, distance and velocity.  

Horizontal fov=45°, Vertical fov=30°. 

Vehicle Control 

Steering angle (rad). 

Speed (km/h). 

Accelerator pedal (Value from 0 to 1). 

Brake pedals (Value from 0 to 1). 

2.1.2. Simulation Design 

To create the dataset, 100 simulations have been run, each with a duration of six minutes driving 

time, with the vehicle set to autopilot mode. The advantage of using lots of short simulations is that 

a larger variety of scenes can be recorded, combining different weather conditions and traffic 

situations. The vehicle is randomly spawned to one of the spawn points on the maps and is driven 

around the simulation scene, recording data from the sensors and vehicle control. To ensure accurate 

data synchronization and a precise temporal sequence, timestamp values have been recorded with 

the data for each sensor. Figure 2 shows some examples of the images captured by the RGB camera. 

The data collected from each of the 100 simulations is saved to a directory. Inside this folder, the 

RGB and depth images are each saved in their respective directories. The data collected from the 

sensors (IMU, RADAR, LIDAR and vehicle control) is saved to an individual text file in csv format 

for each sensor. 

Once all the of the simulations have been run, the data is reviewed to make sure that all the files 

have been saved correctly and that the simulation finished without any incidents. The timestamps 

from each of the different sensors are synchronised by the simulator, therefore for each sensor a data 

sample exists for that timestamp, without the need for manual synchronisation which is the case 

when using real-world data [41]. 

(a) (b) (c) 
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(d) (e) (f) 

Figure 2. Example RGB images. (a) Town01: Wet Sunset; (b) Town02: Heavy rain noon; (c) Town03: 

Foggy afternoon; (d) Town04: Sunny afternoon; (e) Town05: Sunny noon; (f) Town10: Cloudy 

evening. 

2.2. End-to-End Architecture Design 

End-to-end architectures have played a significant role in the advance of deep learning, 

especially in the field of computer vision. In recent years, architectures containing convolutional 

layers have become the preferred architecture for tasks such as image classification, object detection, 

and segmentation due to their ability to extract meaningful patterns from visual data. 

End-to-end architectures consist of a sequence of specialized layers that work together to 

transform the input data to obtain the desired results, in this case the control actions of the vehicle. 

These layers include convolutional layers which apply filters to detect local patterns in the image 

data, dense fully-connected layers which use the features extracted to make the final predictions and 

pooling layers which are commonly used to reduce the spatial dimensions of the data while 

preserving key features [9]. Additionally, custom layers can be used for applying specific functions 

to the input data. In end-to-end architectures, these layers are usually stacked multiple times, to 

deepen the ability of the network to extract increasingly complex features. To introduce non-linearity 

to the architecture and reduce vanishing gradient issues, non-linear activations like ReLU (Rectified 

Linear Unit), are commonly used in CNNs. 

The end-to-end architecture proposed in this work is based on the EfficientNetV2B0 model, 

designed and implemented to efficiently handle both visual and inertial input data. This dual input 

structure is based on the architecture designed in the work by Navarro et al. [9], which found that 

incorporating additional input data improved results substantially. The model incorporates edge 

detection layers along with an EfficientNetV2B0 backbone, which is responsible for feature extraction 

from RGB and depth images. Additionally, the architecture includes dense layers specifically 

designed to process data from an Inertial Measurement Unit (IMU), integrating multiple sensor 

modalities. 

The EfficientNetV2 architecture belongs to a family of models that range from B0, optimized for 

smaller images, to B3, suited for larger images. This family of models has consistently outperformed 

traditional CNNs, whilst at the same time offering an improved computational speed and efficiency 

in terms of parameters [42]. The EfficientNetV2 models are particularly noted for their ability to 

achieve better performance on smaller datasets compared to Vision Transformer models, which 

typically require larger datasets to achieve the best results models [43]. For example, the 

EfficientNetV2B0 model comprises 7.4 million parameters, significantly fewer than some Vision 

Transformer models, which can contain up to 304 million parameters. Furthermore, Vision 

Transformer models demand over 24 times more training time compared to the EfficientNetV2B0 

architecture [42], making the latter a more practical choice for many applications, particularly when 

computational resources are limited. Another advantage of the EfficientNetV2 architectures is their 

flexibility in training. They can either be trained from scratch or leverage pre-trained weights from 

large datasets like ImageNet. 

The EfficientNetV2B0 model was adapted and trained from scratch in this work, this was 

necessary due to the inclusion of depth images as an additional channel alongside the standard RGB 
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input, resulting in four-channel images. The pre-trained ImageNet weights, designed for three-

channel RGB images, were therefore incompatible with this extended input structure. 

In the proposed architecture, the EfficientNetV2B0 model has been further modified to support 

dual input data, enabling the integration of additional sensor information such as linear acceleration, 

angular velocity, vehicle orientation, or even GPS data. While RGB and depth images serve as the 

primary inputs, IMU sensor data, specifically angular velocity, is utilized as a secondary input. This 

multi-modal input capability enhances the model’s ability to process and interpret complex 

environments. Additional output layers have also been incorporated into the architecture, increasing 

the total number of parameters to 7.67 million. An illustration of the architecture is provided in Figure 

3, demonstrating how the different data streams are integrated into the CNN. 

 

Figure 3. End-to-end architecture with Efficient Net V2 B0 backbone. 

Before the images are fed into the EfficientNetV2B0 architecture, they undergo a series of pre-

processing steps designed to enhance critical features using edge detection. This process is 

implemented through four Lambda layers, which emphasize areas in the image where significant 

intensity changes occur, typically marking object boundaries. These edge features help the model 

focus on important visual cues that are essential for driving-related tasks, such as identifying lanes, 

detecting obstacles, and recognizing nearby vehicles. By extracting these edges, the model becomes 

better equipped to concentrate on the most relevant aspects of the scene, improving its accuracy in 

interpreting complex driving environments. 

The first two Lambda layers in the pre-processing pipeline handle basic input extraction, 

separating the RGB channels and the depth channel from the input image. The third Lambda layer 

applies edge detection specifically to the RGB channels using the Sobel operator, a widely used 

method for highlighting areas of rapid intensity change. The result is a set of edge maps that highlight 

key boundaries in the image. The fourth Lambda layer then normalizes the edge maps, ensuring 

consistent scaling and contrast for the model’s input. To further prepare the data for the 

EfficientNetV2B0 block, a Rescaling layer is used to standardize the pixel values. 

Once pre-processing is complete, the images are passed to the EfficientNetV2B0 block, which 

contains 240 layers. This architecture is composed of various types of layers, including convolutional 

layers, batch normalization layers, and specialized operations organized into blocks. The efficient 

design of these blocks enables the model to process the image data effectively while maintaining a 

balance between speed and accuracy. 

In addition to the image input, the architecture also processes IMU data, which is handled 

separately using two Dense layers. These layers transform the IMU data, which includes angular 

velocity, into a format that can be integrated with the visual data. The outputs of the EfficientNetV2B0 
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block and the processed IMU data are then merged using a Concatenate layer, combining the visual 

and sensor inputs. 

At the output stage, the architecture splits into two branches, each responsible for predicting one 

of the output variables. These branches predict vehicle speed (Km/h) and steering angle (radians). 

Each branch consists of three Dense layers, followed by a final Dense layer with a size of one, 

corresponding to the single value predicted for each output variable. This branching design allows 

the model to make independent predictions for both vehicle speed and steering angle, leveraging the 

combined information from the RGB images, depth images, and IMU data to deliver accurate 

outputs. In the study performed by Navarro et al. [9], it was found that using a branch for each output 

variable obtained better results than using one vector output. 

3. Results 

3.1. Model Configuration 

The end-to-end architecture has been used to validate the synthetic CarlaMRD dataset. The 

architecture has been designed and implemented using the Tensorflow 2.10 and Keras 2.10 libraries. 

The models have been trained on a PC with an NVIDIA GeForce RTX 3070 GPU. To train the model, 

150850 samples from the synthetic dataset were used. 120x160 RGB and depth images, angular 

velocity in °/s from the IMU, and the vehicle control parameters, speed in km/h, and steering angle 

in radians. The hyperparameters applied are shown in Table 3. The RMSprop optimization function 

[44] 

Table 3. Configuration of hyperparameters. 

Parameter Variable 

Batch size 20 

Optimization algorithm RMSprop 

Loss function Huber 

Metric Mean Absolute Error 

Learning rate 0.001 

To avoid overfitting during training of the models, a stop condition which considers the 

validation metrics has been used. A patience of 10 epochs is used, after which if the model is no longer 

learning, training is stopped and the weights from the best epoch are restored. This method ensures 

that the model has finished training without overfitting occurring. 

To split the data the K-Fold cross method has been used. The dataset has been split into six equal 

sets of 25141 samples, with five for training and testing each of the five folds, and one for validation. 

As a result, five models have been obtained, validated using the same set of validation data to obtain 

consistent results. The five models have then been tested using the corresponding test set for each 

fold, this way predictions are obtained for a larger amount of data giving a better idea of the 

performance of the model. 

Three metrics have been calculated to evaluate the performance of the models. These metrics 

have been chosen to get a thorough view of how the model behaves and allow the results to be 

compared with those presented by other authors in literature: 

 The Mean Absolute Error (MAE) which is the average of the absolute differences between the 

predicted and actual values. 

 The Mean Absolute Percentage Error (MAPE) which is calculated dividing the MAE by the range 

of the speed and angle data. The range is the difference between the maximum and minimum 

values of the variables to predict. 

 The coefficient of determination, R2 was used to evaluate the quality of the results obtained by 

the model. 

The results obtained from each of the five models are shown in Table 4. 
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Table 4. MAE, MAPE and R2 obtained using the synthetic dataset. 

Fold Variable MAE (Km/h, °) MAPE R2 

1 
Speed 1.66 1.80 % 0.973 

Angle 0.65 0.71 % 0.944 

2 
Speed 1.21 1.32 % 0.986 

Angle 0.41 0.46 % 0.952 

3 
Speed 1.41 1.53 % 0.978 

Angle 0.45 0.50 % 0.952 

4 
Speed 1.80 1.95 % 0.971 

Angle 0.96 0.62 % 0.939 

5 
Speed 1.27 1.37 % 0.981 

Angle 0.45 0.49 % 0.954 

To obtain a global view of the models and their accuracy, the metrics have been calculated for 

all the test predictions from each of the five models, obtaining a total of 125705 predictions. The 

models took on average 28778 s to train, with 64 epochs. The overall results are shown in Table 5. 

Table 5. MAE, MAPE and R2 obtained by the models for the synthetic dataset. 

Variable MAE (Km/h, °) MAPE R2 

Speed 1.47 1.59 % 0.978 

Angle 0.51 0.55 % 0.948 

The results show that the models achieve a lower percentage error for detecting the steering 

angle compared to the vehicle speed. This is logical as it is usually easier to relate geometrical features 

such as the road lines than spatial information to calculate the speed, especially as the model applies 

edge detection to the RGB images before the convolutional layers of the Efficient Net block. However, 

regarding the coefficient of determination, the model appears to make better predictions for the speed 

variable. 

To study the quality of the predictions, box and whisker plots for the speed and angle errors are 

shown in Figure 4. The median error of the speed prediction is close to zero with a value of 0.081 

Km/h, and half of the errors have a value between -0.567 and 0.903 Km/h. For the angle predictions, 

the median error is negative at -0.058°, with the first quartile at -0.238° and the third quartile at 0.062°. 

For both the speed and angle predictions the error predictions take on a Gaussian distribution. 

 

Figure 4. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom). 
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3.2. Application of the Pretrained CNN for Training with a Real-World Dataset 

3.2.1. Real-World Dataset 

To study the usability of the synthetic dataset in real world applications, the pretrained model 

has been tested with a real driving dataset. For this application, the UPCT dataset containing real 

world driving data has been chosen [24]. The UPCT dataset is a public dataset which contains 

multimodal data from a variety of perception sensors including 3D LiDAR, RGB and depth cameras, 

IMU, GPS, encoders, as well as biometric data from the drivers. The data was recorded with state-of-

the-art equipment onboard the UPCT’s CICar autonomous vehicle. The UPCT dataset contains 78000 

samples which were obtained by a group of 30 different drivers performing tests along an urban 

route in southern Spain with real traffic, including roundabouts, junctions, merging traffic situations 

and street parking. The tests were performed at different times of day, including morning, afternoon 

and early evening. 

   

(a) (b) (c) 

Figure 5. Example images from the UPCT dataset. (a) Pedestrian crossing; (b) saturation due to 

reflections on the road; (c) car braking [24]. 

3.2.2. Baseline Training with Only Real-World Data 

First, the CNN model from Section 2.3 was trained using only the UPCT dataset to verify the 

performance of the model using real world data. The data was split into six equal groups of 13000 

data samples, where five were used for training and testing with the K-fold method. The last group 

was used for validation for each of the five models in K-fold, to obtain consistent results and to have 

more data samples for testing. The results from testing each fold are shown in Table 6. 

Table 6. MAE, MAPE and R2 obtained using real world data. 

Fold Variable MAE (Km/h, °) MAPE R2 

1 
Speed 0.39 0.67 % 0.996 

Angle 0.34 0.44 % 0.985 

2 
Speed 0.48 0.82 % 0.995 

Angle 0.49 0.62 % 0.953 

3 
Speed 0.34 0.58 % 0.997 

Angle 0.34 0.44 % 0.984 

4 
Speed 0.44 0.75 % 0.995 

Angle 0.39 0.50 % 0.969 

5 
Speed 0.38 0.66 % 0.996 

Angle 0.40 0.51 % 0.977 

The metrics have been calculated for all the predictions from each of the five models, obtaining 

a total of 65000 predictions. The models took on average 19880 s to train, with 62 epochs. The results 

are shown in Table 7. 

Table 7. MAE, MAPE and R2 obtained with real world data. 

Variable MAE (Km/h, °) MAPE R2 

Speed 0.40 0.69 % 0.996 

Angle 0.39 0.50 % 0.974 
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The results obtained by the models for predicting the vehicle speed using the real-world dataset 

are promising and have improved compared to those achieved with the synthetic dataset. The angle 

predictions, however, did not gain a significant improvement. As with the synthetic dataset, the angle 

predictions achieved a lower percentage error compared to the speed predictions. 

Box and whisker plots for the speed and angle errors are shown in Figure 6. For the speed 

prediction errors, the median is close to zero with a value of -0.009 Km/h, and the first and third 

quartile values were of -0.315 Km/h and 0.290 Km/h, respectively. As shown by the box and whisker 

plots, the errors for both the speed and angle predictions the take on a Gaussian distribution with the 

median in the centre of the box. The median for the angle prediction errors is positive in this case 

with a value of 0.107°. The first and third quartile values were between -0.124° and -0.355°, 

respectively. 

 

Figure 6. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom). 

3.2.3. Pretraining with the Synthetic Dataset 

The third test consisted in performing transfer learning using the synthetic dataset to pretrain 

the model, with the aim of reducing training time when training with real-world data. After training 

the models with the synthetic data, the weights from the Efficient Net convolutional blocks were 

saved and loaded to the model before training with the real dataset. The results obtained from 

transfer learning are shown in Table 8. 

Table 8. MAE, MAPE and R2 obtained using pretrained weights to train with real world data. 

Fold Variable MAE (Km/h, °) MAPE R2 

1 
Speed 0.68 1.17 % 0.987 

Angle 0.43 0.55 % 0.969 

2 
Speed 0.54 0.94 % 0.992 

Angle 0.36 0.47 % 0.976 

3 
Speed 0.52 0.90 % 0.992 

Angle 0.39 0.50 % 0.978 

4 
Speed 0.70 1.21 % 0.987 

Angle 0.50 0.64 % 0.961 

5 
Speed 0.58 0.99 % 0.989 

Angle 0.38 0.49 % 0.981 

The metrics have been calculated for all predictions from the test sets each of the five models, 

obtaining a total of 65000 predictions. The models took on average 17350 s to train, with 56 epochs. 

The overall results are shown in Table 9. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2024 doi:10.20944/preprints202411.1048.v1

https://doi.org/10.20944/preprints202411.1048.v1


 12 

 

Table 9. MAE, MAPE and R2 obtained using pretrained weights to train with real world data. 

Variable MAE (Km/h, °) MAPE R2 

Speed 0.61 1.04 % 0.989 

Angle 0.41 0.53 % 0.973 

From the results it can be observed that pretraining the model with a synthetic dataset and using 

the weights to train real data decreases the training time needed to obtain the same results. In this 

work the models needed on average six epochs less for training with the same real-world dataset 

compared to training with no previous information. Box and whisker plots of the prediction error 

values are shown in Figure 7. 

 

Figure 7. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom). 

The prediction errors calculated with the pretrained models are very similar to those with no 

pretraining once again with a Gaussian distribution with narrow boxes centred around the median 

value. The speed prediction errors a median of -0.040 Km/h was obtained, and quartile values 

between -0.461 Km/h and 0.376 Km/h. The median value of the angle prediction errors in this case is 

negative, with a value of -0.037° and the first and third quartiles with values of -0.306° and 0.217°, 

respectively. 

3.3. Analysis of the Architecture with and Without Edge Detection Layers for Transfer Learning 

Finally, the EdgeNet architecture was tested removing the edge detection layers from the 

architecture, to study the impact that these layers have on the performance of the architecture for 

transfer learning applications. The tests were repeated using the same datasets divided into five folds 

with the same training, validation and test sets, the same hyperparameters and stopping condition 

were used. Table 10 shows the results obtained by the architecture both with and without the edge 

detection block for both the synthetic and real-world datasets, as well as pretraining the architecture 

with the synthetic dataset to be used with real-world data. 

Table 10. MAE, MAPE and R2 obtained by the architecture with and without the edge detection 

block. 

Dataset Variable 
MAE (Km/h, °) MAPE R2 

w edges w/o edges w edges w/o edges w edges w/o edges 

CarlaMRD 
Speed 1.47 0.40 1.59 % 0.69 % 0.978 0.996 

Angle 0.50 0.39 0.55 % 0.50 % 0.948 0.974 

UPCT 
Speed 0.40 0.39 0.69 % 0.68 % 0.996 0.995 

Angle 0.39 0.39 0.50 % 0.51 % 0.974 0.972 

UPCT pretrained Speed 0.60 1.66 1.04 % 2.86 % 0.989 0.911 
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Angle 0.41 0.60 0.52 % 0.77 % 0.973 0.929 

It can be observed that when using the synthetic and real-world datasets alone, the architecture 

achieves a high performance with and without the edge detection block. However, the edge detection 

block proves to enhance the performance of the architecture significantly when pretraining with 

synthetic data. The edge detection block reduces the domain gap between the synthetic data and real-

world data scenarios and with the pretrained weights a similar performance is achieved using real-

world data with a lower computational cost than training from scratch. In the case of the speed 

prediction, with the edge detection layers the MAPE is reduced to almost a third compared to the 

architecture without edge detection layers. Box and whisker plots of the MAE error values for the 

transfer learning predictions without the edge detection block are shown in Figure 8. 

The box and whisker plots for the architecture without edge detection layers (Figure 8) have a 

normal distribution similar to that of the architecture with edge detection layers (Figure 7). It can be 

observed that the interquartile range (IQR) of the MAE error values for the architecture without the 

edge detection block is greater for the prediction of both the speed and the angle variables. In the case 

of the speed MAE errors, without the edge detection block the errors have a significantly larger 

dispersion. Table 11 includes the numerical values of the median, quartile and IQR values of the MAE 

errors of the architectures with and without the edge detection block. 

 

Figure 8. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom). 

Table 11. Median and quartile MAE values with and without the edge detection block. 

Dataset Variable 

Q1 Q2 (Median) Q3 IQR 

w edges 
w/o 

edges 
w edges 

w/o 

edges 
w edges 

w/o 

edges 
w edges 

w/o 

edges 

UPCT 

pretrained 

Speed (Km/h) -0.461 -0.703 -0.040 0.019 0.375 0.731 0.836 1.434 

Angle (°) -0.306 -0.285 -0.037 0.017 0.217 0.371 0.523 0.656 

4. Discussion 

The results obtained by the EdgeNet architecture were compared to those presented by other 

authors in literature. Several studies exist, mainly using real world ad-hoc datasets obtained or 

modified by the authors. Some authors used synthetic datasets and real-world datasets for training 

their architectures [45,46]. However, these were conducted as separate experiments, and the synthetic 

data was not used for pretraining the models. Table 10 shows a comparison of the results obtained in 

this work with other experiments using CNN models for end-to-end driving and details the type of 

dataset used and the variables predicted. 
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Table 12. Comparison of the proposed model with the metrics of other End-to-end models. 

Authors, Ref. Dataset Data Type Input Output 
MAE 

(km/h)/ (°) 
MAPE (%) R2 

Bojarski et al., 

[45,47] 
Udacity Synthetic RGB Steering Angle 4.26 - - 

Yang et al., [45] 
Udacity Synthetic RGB 

Speed/ Steering 

Angle 
0.68 / 1.26 - - 

SAIC Real RGB Speed 1.62 - - 

Xu et al., [48] BDDV Real RGB Steering Angle - 15.4 - 

Wang et al., [46] 

GAC Real RGB 
Speed/Steering 

Angle 
4.25 / 3.55 - - 

GTAV Synthetic RGB 
Speed/Steering 

Angle 
3.28 / 2.84 - - 

Navarro et al., [9] UPCT Real RGB + IMU 
Speed/Steering 

Angle 
0.98 / 3.61 1.69 / 0.43 - 

Prasad [49] - Real RGB Steering Angle - - 0.819 

Proposed: 

BorderNet 

Carla Synthetic RGBD + IMU 
Speed/Steering 

Angle 
 1.47 / 0.51 1.59 / 0.55 

0.977 / 

0.948 

UPCT Real World RGBD + IMU 
Speed/Steering 

Angle 
0.61 / 0.41 1.04 / 0.53 

0.989 / 

0.973 

One of the first end-to-end deep neural network applications for autonomous driving was 

resented by Bojarski et al., [47]. They used the PilotNet model for object detection and steering angle 

prediction from just RGB image inputs from the Udacity dataset. The work by Yang et al. [45] built 

on these results and used the PilotNet to predict both vehicle speed and steering angle from the same 

Udacity RGB images. Xu et al. tested six different CNN models, some using LSTM architectures, to 

predict steering angle using 21000 short 36 s videos of RGB frames as training data. They used the 

real world BDDV dataset, and the best accuracy was obtained with a temporal CNN with an accuracy 

of 84.6 % [48]. In the work presented by Wang et al. [46], different end-to-end deep convolutional 

neural networks were tested to predict the speed and steering angle using RGB images as the input. 

It is worth noting that a better performance was obtained using the model with the synthetic dataset 

compared to using the real-world data. The authors in [9] completed a thorough study of three types 

of CNN with different inputs, one with RGB images, a second complementing the RGB images with 

IMU data and a third model using sequences of RGB images. The best results were achieved using 

the RGB images with an additional input of IMU data obtaining a MAPE of 1.69 % for the speed 

calculation and a MAPE of 0.43 % for predicting the steering wheel angle. The experiment conducted 

by Prasad et al. [49] presented an end-to-end CNN model to predict the steering angle from real-

world RGB images on a small vehicle, the only metric given was the R2 score with a value of 0.819. 

The end-to-end model presented in this work obtained a 99.30 % accuracy for speed calculation 

and a 99.49 % accuracy for predicting the steering angle, with the real-world dataset without 

pretrained weights. When using the model with the pretrained weights from training with the 

synthetic dataset, the model obtained a 98.95 % accuracy predicting speed and a 99.47 % accuracy 

predicting the steering angle with the real-world dataset. In addition, results show that by pretraining 

a CNN model with synthetic data, training time can be significantly reduced. 

5. Conclusions 

End-to-end architectures trained and tested using only simulated driving data have shown 

promising results. However, few approaches have focused on addressing the gap between simulation 

and reality, and the benefits that transfer learning applications have to offer. In this work, an end-to-

end architecture has been developed, which not only has obtained a high performance with simulated 

data and real-world data alone but has also shown significant potential when used for transfer 
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learning. To overcome the differences between simulated and real-world images, edge detection 

layers were introduced into the architecture before the EfficientNetV2 module. These layers extract 

crucial edge information before the convolutional module, helping to bridge the domain gap between 

synthetic and real-world data. The architecture was evaluated using two datasets: a simulated dataset 

generated by the Carla simulator and the real-world UPCT dataset. 

The proposed architecture integrates both RGB and depth images as inputs, along with a second 

input branch for inertial data, to enhance accuracy and performance. The architecture was trained 

and tested in three scenarios: (1) with the CarlaMRD synthetic dataset, (2) with the real-world UPCT 

dataset, and (3) with the UPCT dataset using the pretrained weights from the synthetic dataset. The 

results obtained with the architecture including the edge detection block were then compared to 

those obtained by the same architecture without the edge detection. It was proven that the inclusion 

of edge detection layers significantly improved the predictions for the speed variable when using an 

architecture pretrained with synthetic data. 

The results show that pretraining with the synthetic dataset significantly reduces training time 

using weights pretrained with synthetic data when training with real-world data. Furthermore, the 

architecture obtained a high performance and computational efficiency in predicting vehicle control 

variables, whether pretraining was used or not. The results achieved demonstrate a notable 

improvement compared to similar studies conducted by other authors, highlighting the effectiveness 

and robustness of the proposed architecture. 
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