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Abstract: This study presents a novel end-to-end architecture based on edge detection for
autonomous driving. The architecture has been designed to bridge the domain gap between
synthetic and real-world images for end-to-end autonomous driving applications and includes
custom edge detection layers before the Efficient Net convolutional module. To train the
architecture, RGB and depth images were used together with inertial data as inputs to predict the
driving speed and steering wheel angle. To pretrain the architecture, a synthetic multimodal dataset
for autonomous driving applications was created. The dataset includes driving data from 100
diverse weather and traffic scenarios, gathered from multiple sensors including cameras and an
IMU as well as vehicle control variables. The results show that including edge detection layers in
the architecture improves performance for transfer learning when using synthetic and real-world
data. In addition, pretraining with synthetic data reduces training time and enhances model
performance when using real-world data.

Keywords: end-to-end architectures; multimodal synthetic dataset; autonomous driving

1. Introduction

End-to-end neural networks are evolving rapidly in artificial intelligence and have become
particularly popular in the field of autonomous driving. Traditional autonomous driving systems are
modular in nature, where the driving problem is divided into subtasks operating independently,
such as object detection [1,2], localization [3], trajectory planning [4], and control [5]. While this
approach allows for specialized task optimization, it also introduces significant drawbacks,
particularly in terms of error propagation between modules and computational inefficiencies [6]. The
end-to-end approach, also known as direct perception, offers substantial benefits, such as reduced
complexity [7], decreased error propagation [8], and improved computational efficiency [9], making
it an appealing solution for autonomous driving applications.

End-to-end architectures learn driving related behaviors, resulting in more integrated and
efficient autonomous driving systems [10]. These architectures enable the mapping of raw sensor
inputs from the perception system directly to control commands for autonomously driving a vehicle.
Different approaches to solving the end-to-end problem exist, while most studies focus on generating
outputs directly, others incorporate intermediate steps such as trajectory planning. For example, in
[11] the authors addressed autonomous navigation by predicting future waypoints, using a front-
facing RGB camera and maps, as an intermediate step between the input and control output. Other
studies combine trajectory planning with direct perception, as seen in research using the Carla
simulator. In the work by Wu et al. [12] the authors use an architecture with two branches: one branch
predicts the trajectory, while the other focuses on the control variables. The trajectory branch uses
encoder data to guide the control predictions, and the outputs from both branches are then fused.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In addition to different architectural approaches, the use of multimodal inputs is another key
factor for improving the accuracy and robustness of end-to-end models [13,14]. By combining data
from multiple sensors, such as cameras, IMU, LiDAR, and radar, these models can achieve a more
comprehensive understanding of the environment. For instance, the TransFuser [15] architecture is
based on transformers and fuses image and LiDAR data using self-attention layers. In this
architecture, multiple transformer modules operate at different resolutions to merge features from
the input data, which are then fed into a waypoint prediction architecture.

Expanding on the advantages of multimodal inputs, the choice of specific data types, such as
RGB images and depth maps, has also been shown to significantly enhance the performance of end-
to-end architectures, particularly those utilizing convolutional layers for feature extraction [16]. RGB
images provide detailed visual information about the driving environment, while depth maps offer
crucial spatial and distance data, helping to interpret the three-dimensional structure of the scene
[17]. By fusing RGB images with depth maps, architectures can better perceive and navigate complex
environments, as demonstrated by the work of Xiao et al. [18].

Synthetic data has gained popularity as a valuable resource for end-to-end applications,
primarily due to the challenges of collecting high-quality real-world data. One of the main
advantages of synthetic data is the ability to generate large datasets for training purposes. Although
synthetic data can be a powerful tool, end-to-end architectures trained exclusively in simulated
environments struggle to perform well in real-world scenarios without adaptation [19]. Transfer
learning allows models initially trained in simulations to be fine-tuned using real-world data, helping
bridge the gap between the two domains and enhancing the versatility of architectures across
different environments and conditions. However, most current research on transfer learning focuses
on specific tasks such as object detection [20,21] or reducing the domain gap [22,23], rather than
extending to more complex applications like end-to-end driving systems, where models must directly
output control commands for vehicles.

This work presents a state-of-the-art end-to-end architecture for autonomous driving based on
the EfficientNetV2 architecture obtaining a high performance and efficiency. The architecture has
been designed to bridge the domain gap between synthetic and real-world images for end-to-end
autonomous driving applications and includes novel edge detection layers before the convolutional
module for this purpose. The architecture is pretrained using a multimodal synthetic dataset: Carla
Multimodal Raw Data (CarlaMRD), created using the Carla simulator. The pretrained architecture
has then been fine-tuned for real world driving applications using the UPCT real-world dataset,
obtaining promising results whilst reducing computation time.

2. Materials and Methods
2.1. Synthetic Dataset

The rapid advance in autonomous driving technology has increased the demand for high-
quality datasets to train, validate, and test end-to-end architectures for predicting vehicle control
variables. These datasets are crucial for the development of robust autonomous driving systems
capable of navigating diverse and complex real-world scenarios. Traditionally, real-world datasets
collected using sensor-equipped vehicles have been the foundation for developing these systems.
However, collecting real-world data is very expensive and time-consuming, and it is often difficult
to obtain large amounts of data for training purposes [24], causing interest in synthetic datasets as a
viable alternative to increase in recent years [25].

Synthetic datasets contain artificially generated data that mimics the conditions and scenarios of
real-world driving environments. These datasets are created using computer-generated imagery and
physics-based simulations, offering a controlled environment where diverse driving situations can
be systematically produced and manipulated [26]. This capability addresses several limitations of
real-world datasets, such as variations in weather and lighting conditions [27], complicated traffic
situations [28], and the need for extensive data labelling [29].

The evaluation of current synthetic datasets for perception and vehicle control reveals notable
limitations and areas for improvement. Most existing synthetic datasets have been designed for very
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specific applications and include only the necessary sensors and data for performing certain tasks
such as odometry [30], object detection [31], or for specific weather conditions [32]. In Table 1, a
summary of the most popular synthetic driving datasets is presented, including sample size,
perception sensors and vehicle control data, and whether the dataset include raw data or processed
data. The most significant multimodal datasets are included and although not recent, the Udacity
dataset is included as it was considered one of the most complete multimodal datasets [33].

Table 1. Synthetic datasets with sensors for perception, vehicle control variables and data type.

Dataset/Year Samples Image IMU LIDAR RADAR Vehicle Raw Data
Type Control

Udacity [33]/2016 34K RGB Yes Yes No Yes Yes
SYNTHIA [34]/2016 213K RGB No No No No No
VEIS [35]/2018 61K RGB No No No No No
ParallelEye [36]/2019 40K RGB No No No No No
PreSIL 6[37]/2019 50 K RGB No Yes No No No
IDDA [29]/2020 1M RGB, D No No No No No

CarlaScenes [30]/2021 - RGB, D Yes Yes No No Partial
SHIFT[28]/2022 26 M RGB,D Yes No No No No
Proposed: CarlaMRD 150K  RGB, D Yes Yes Yes Yes Yes

Despite the large number of existing studies, most autonomous driving datasets provide labelled
data primarily for classification tasks, such as semantic segmentation, rather than raw sensor data
[28,29,34-37]. This limitation restricts the development and evaluation of end-to-end perception
models [38], which rely on raw sensor inputs to directly predict driving actions or scene
understanding without intermediate steps like segmentation [39]. Moreover, the public datasets
identified lacked crucial driving control variables, such as steering wheel angle, acceleration, and
vehicle speed. These variables are essential for the effective training and performance of end-to-end
architectures. It was also observed that many synthetic datasets have a small sample size, considering
that one of the advantages of simulators is the possibility of generating large amounts of synthetic
data [35-37].

In this work CarlaMRD dataset has been designed collecting raw data from various sensors in
different weather and traffic scenarios and can be adapted for use in different types of applications.
The synthetic dataset has been developed using the CARLA simulator. CARLA is an open-source
simulator for autonomous driving research designed to support development, training, and
validation of autonomous urban driving systems. The simulation platform provides different urban
scenarios, with buildings, vehicles, pedestrians, etc. and supports flexible specification of sensor
suites and environmental conditions [40].

2.1.1. Simulation Setup

Before running simulations in CARLA and recording data, it is important to correctly configure
the simulation. First a map must be chosen or created from scratch. For this dataset, six predefined
Carla worlds have been chosen (Figure 1):

(a) TownOl1 is a small simple residential village.

(b) Town02 is a simple town with a mixture of residential and commercial buildings.

(c) Town03 is a medium sized urban map with junctions and a roundabout.

(d) Town04 is a small mountain village with an infinite loop highway.

(e) Town05 is a squared-grid town with cross junctions and a bridge. It has multiple lanes in each
direction to perform lane changes.

(f) Townl0 is a larger urban environment with skyscrapers and residential buildings.
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(d)

Figure 1. Carla world maps. (a) Town01; (b) Town02; (c) Town03; (d) Town04; (e) Town05; (f)
Town10.

The weather and time of day can also be modified. This can be done by custom defining each
weather variable or choosing from one of fourteen predefined settings. In this work, some custom
weather conditions have been defined as well as using the predefined functions. The adjustable
weather and time of day variables are the following: (a) cloudiness, (b) precipitation, (c) sun altitude
angle, (d) sun azimuth angle, (e) precipitation de-posits, (f) wind intensity, (g) fog density and (h)
wetness.

In addition to the geographical and meteorological variables of the simulation, the traffic
conditions can also be defined. For each of the simulations, vehicles have been added to create
realistic traffic scenarios. A wide range of vehicles can be added, from different car models to trucks
and emergency vehicles. For the simulations, a black Ford Lincoln MKZ model vehicle has been
chosen. Pedestrians and cyclists also play an important role in autonomous driving tasks and have
been added to the simulations for increased realism.

To gather the data from the driving simulations, a range of perception sensors have been
configured onboard the simulated vehicle. The simulated sensors in Carla can be configured with
similar variables to real-world sensors, such as resolution and field of view (fov) for cameras, or range
and number of channels for LIDAR sensors. To position the sensors onboard the vehicle, a Carla
transform consisting of 3D coordinates is used, with origin in the centre of the vehicle. The RGB and
depth cameras have been situated above the front windscreen for a frontal view, while the LiDAR
and IMU sensors have been positioned on the middle of the roof of the vehicle. The RADAR sensor
has been positioned on the front of the vehicle above the bumper. The sensors used and their
configuration for recording data during the simulations are shown in Table 2.
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Table 2. Sensors used in the perception system and vehicle control variables.

Sensor Data Type
RGB Camera RGB image 640x480, fov=90°.
Depth Camera Depth image 640x480, fov=90°.
Acceleration x,y,z (m/s2).
IMU Angular Velocity x,y,z (°/s).

Orientation x,y,z (°).

3D pointcloud, x,y,z,intensity.

LIDAR .
Channels=64, =20, range=100m, points per second = 500000.
RADAR 2D }?omtcloud: polar coo'rdmates, distance and velocity.
Horizontal fov=45°, Vertical fov=30°.
Steering angle (rad).
Vehicle Control Speed (km/h).

Accelerator pedal (Value from 0 to 1).
Brake pedals (Value from 0 to 1).

2.1.2. Simulation Design

To create the dataset, 100 simulations have been run, each with a duration of six minutes driving
time, with the vehicle set to autopilot mode. The advantage of using lots of short simulations is that
a larger variety of scenes can be recorded, combining different weather conditions and traffic
situations. The vehicle is randomly spawned to one of the spawn points on the maps and is driven
around the simulation scene, recording data from the sensors and vehicle control. To ensure accurate
data synchronization and a precise temporal sequence, timestamp values have been recorded with
the data for each sensor. Figure 2 shows some examples of the images captured by the RGB camera.

The data collected from each of the 100 simulations is saved to a directory. Inside this folder, the
RGB and depth images are each saved in their respective directories. The data collected from the
sensors (IMU, RADAR, LIDAR and vehicle control) is saved to an individual text file in csv format
for each sensor.

Once all the of the simulations have been run, the data is reviewed to make sure that all the files
have been saved correctly and that the simulation finished without any incidents. The timestamps
from each of the different sensors are synchronised by the simulator, therefore for each sensor a data
sample exists for that timestamp, without the need for manual synchronisation which is the case
when using real-world data [41].
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(d) (e) ()

Figure 2. Example RGB images. (a) Town01: Wet Sunset; (b) Town02: Heavy rain noon; (c) Town03:
Foggy afternoon; (d) Town04: Sunny afternoon; (e) Town05: Sunny noon; (f) Townl0: Cloudy
evening.

2.2. End-to-End Architecture Design

End-to-end architectures have played a significant role in the advance of deep learning,
especially in the field of computer vision. In recent years, architectures containing convolutional
layers have become the preferred architecture for tasks such as image classification, object detection,
and segmentation due to their ability to extract meaningful patterns from visual data.

End-to-end architectures consist of a sequence of specialized layers that work together to
transform the input data to obtain the desired results, in this case the control actions of the vehicle.
These layers include convolutional layers which apply filters to detect local patterns in the image
data, dense fully-connected layers which use the features extracted to make the final predictions and
pooling layers which are commonly used to reduce the spatial dimensions of the data while
preserving key features [9]. Additionally, custom layers can be used for applying specific functions
to the input data. In end-to-end architectures, these layers are usually stacked multiple times, to
deepen the ability of the network to extract increasingly complex features. To introduce non-linearity
to the architecture and reduce vanishing gradient issues, non-linear activations like ReLU (Rectified
Linear Unit), are commonly used in CNNs.

The end-to-end architecture proposed in this work is based on the EfficientNetV2B0 model,
designed and implemented to efficiently handle both visual and inertial input data. This dual input
structure is based on the architecture designed in the work by Navarro et al. [9], which found that
incorporating additional input data improved results substantially. The model incorporates edge
detection layers along with an EfficientNetV2B0 backbone, which is responsible for feature extraction
from RGB and depth images. Additionally, the architecture includes dense layers specifically
designed to process data from an Inertial Measurement Unit (IMU), integrating multiple sensor
modalities.

The EfficientNetV2 architecture belongs to a family of models that range from B0, optimized for
smaller images, to B3, suited for larger images. This family of models has consistently outperformed
traditional CNNs, whilst at the same time offering an improved computational speed and efficiency
in terms of parameters [42]. The EfficientNetV2 models are particularly noted for their ability to
achieve better performance on smaller datasets compared to Vision Transformer models, which
typically require larger datasets to achieve the best results models [43]. For example, the
EfficientNetV2B0 model comprises 7.4 million parameters, significantly fewer than some Vision
Transformer models, which can contain up to 304 million parameters. Furthermore, Vision
Transformer models demand over 24 times more training time compared to the EfficientNetV2B0
architecture [42], making the latter a more practical choice for many applications, particularly when
computational resources are limited. Another advantage of the EfficientNetV2 architectures is their
flexibility in training. They can either be trained from scratch or leverage pre-trained weights from
large datasets like ImageNet.

The EfficientNetV2B0 model was adapted and trained from scratch in this work, this was
necessary due to the inclusion of depth images as an additional channel alongside the standard RGB
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input, resulting in four-channel images. The pre-trained ImageNet weights, designed for three-
channel RGB images, were therefore incompatible with this extended input structure.

In the proposed architecture, the EfficientNetV2B0 model has been further modified to support
dual input data, enabling the integration of additional sensor information such as linear acceleration,
angular velocity, vehicle orientation, or even GPS data. While RGB and depth images serve as the
primary inputs, IMU sensor data, specifically angular velocity, is utilized as a secondary input. This
multi-modal input capability enhances the model’s ability to process and interpret complex
environments. Additional output layers have also been incorporated into the architecture, increasing
the total number of parameters to 7.67 million. An illustration of the architecture is provided in Figure
3, demonstrating how the different data streams are integrated into the CNN.

| RGBD Images {120,160,4) | | IMU Data (1,3) |

] 1
= I—l Dense x2 (100),(200) |
Lambda x4: Edge detection I

| Rescaling {120,160,4) [

I Effici entety280 (120,160,4) [

\‘

| Concatenate Layer (2, 2) I
| 1
I—L‘ Dense x3 (500),(200),{100) l LLI Dense x3 (500),(200),(100) |

| Outputl (1): Vehicle Speed | | Output 2 (1): Steering Angle |

Figure 3. End-to-end architecture with Efficient Net V2 B0 backbone.

Before the images are fed into the EfficientNetV2B0 architecture, they undergo a series of pre-
processing steps designed to enhance critical features using edge detection. This process is
implemented through four Lambda layers, which emphasize areas in the image where significant
intensity changes occur, typically marking object boundaries. These edge features help the model
focus on important visual cues that are essential for driving-related tasks, such as identifying lanes,
detecting obstacles, and recognizing nearby vehicles. By extracting these edges, the model becomes
better equipped to concentrate on the most relevant aspects of the scene, improving its accuracy in
interpreting complex driving environments.

The first two Lambda layers in the pre-processing pipeline handle basic input extraction,
separating the RGB channels and the depth channel from the input image. The third Lambda layer
applies edge detection specifically to the RGB channels using the Sobel operator, a widely used
method for highlighting areas of rapid intensity change. The result is a set of edge maps that highlight
key boundaries in the image. The fourth Lambda layer then normalizes the edge maps, ensuring
consistent scaling and contrast for the model’s input. To further prepare the data for the
EfficientNetV2B0 block, a Rescaling layer is used to standardize the pixel values.

Once pre-processing is complete, the images are passed to the EfficientNetV2B0 block, which
contains 240 layers. This architecture is composed of various types of layers, including convolutional
layers, batch normalization layers, and specialized operations organized into blocks. The efficient
design of these blocks enables the model to process the image data effectively while maintaining a
balance between speed and accuracy.

In addition to the image input, the architecture also processes IMU data, which is handled
separately using two Dense layers. These layers transform the IMU data, which includes angular
velocity, into a format that can be integrated with the visual data. The outputs of the EfficientNetV2B0
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block and the processed IMU data are then merged using a Concatenate layer, combining the visual
and sensor inputs.

At the output stage, the architecture splits into two branches, each responsible for predicting one
of the output variables. These branches predict vehicle speed (Km/h) and steering angle (radians).
Each branch consists of three Dense layers, followed by a final Dense layer with a size of one,
corresponding to the single value predicted for each output variable. This branching design allows
the model to make independent predictions for both vehicle speed and steering angle, leveraging the
combined information from the RGB images, depth images, and IMU data to deliver accurate
outputs. In the study performed by Navarro et al. [9], it was found that using a branch for each output
variable obtained better results than using one vector output.

3. Results
3.1. Model Configuration

The end-to-end architecture has been used to validate the synthetic CarlaMRD dataset. The
architecture has been designed and implemented using the Tensorflow 2.10 and Keras 2.10 libraries.
The models have been trained on a PC with an NVIDIA GeForce RTX 3070 GPU. To train the model,
150850 samples from the synthetic dataset were used. 120x160 RGB and depth images, angular
velocity in °/s from the IMU, and the vehicle control parameters, speed in km/h, and steering angle
in radians. The hyperparameters applied are shown in Table 3. The RMSprop optimization function

[44]
Table 3. Configuration of hyperparameters.
Parameter Variable
Batch size 20
Optimization algorithm RMSprop
Loss function Huber
Metric Mean Absolute Error
Learning rate 0.001

To avoid overfitting during training of the models, a stop condition which considers the
validation metrics has been used. A patience of 10 epochs is used, after which if the model is no longer
learning, training is stopped and the weights from the best epoch are restored. This method ensures
that the model has finished training without overfitting occurring.

To split the data the K-Fold cross method has been used. The dataset has been split into six equal
sets of 25141 samples, with five for training and testing each of the five folds, and one for validation.
As a result, five models have been obtained, validated using the same set of validation data to obtain
consistent results. The five models have then been tested using the corresponding test set for each
fold, this way predictions are obtained for a larger amount of data giving a better idea of the
performance of the model.

Three metrics have been calculated to evaluate the performance of the models. These metrics
have been chosen to get a thorough view of how the model behaves and allow the results to be
compared with those presented by other authors in literature:

e  The Mean Absolute Error (MAE) which is the average of the absolute differences between the
predicted and actual values.

e  The Mean Absolute Percentage Error (MAPE) which is calculated dividing the MAE by the range
of the speed and angle data. The range is the difference between the maximum and minimum
values of the variables to predict.

e  The coefficient of determination, R? was used to evaluate the quality of the results obtained by
the model.

The results obtained from each of the five models are shown in Table 4.
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Table 4. MAE, MAPE and R? obtained using the synthetic dataset.

Fold Variable MAE (Km/h, °) MAPE R?
1 Speed 1.66 1.80 % 0.973
Angle 0.65 0.71 % 0.944
5 Speed 1.21 1.32 % 0.986
Angle 0.41 0.46 % 0.952
3 Speed 1.41 1.53 % 0.978
Angle 0.45 0.50 % 0.952
4 Speed 1.80 1.95 % 0.971
Angle 0.96 0.62 % 0.939
5 Speed 1.27 1.37 % 0.981
Angle 0.45 0.49 % 0.954

To obtain a global view of the models and their accuracy, the metrics have been calculated for
all the test predictions from each of the five models, obtaining a total of 125705 predictions. The
models took on average 28778 s to train, with 64 epochs. The overall results are shown in Table 5.

Table 5. MAE, MAPE and R? obtained by the models for the synthetic dataset.

Variable MAE (Km/h, °) MAPE R?
Speed 1.47 1.59 % 0.978
Angle 0.51 0.55 % 0.948

The results show that the models achieve a lower percentage error for detecting the steering
angle compared to the vehicle speed. This is logical as it is usually easier to relate geometrical features
such as the road lines than spatial information to calculate the speed, especially as the model applies
edge detection to the RGB images before the convolutional layers of the Efficient Net block. However,
regarding the coefficient of determination, the model appears to make better predictions for the speed
variable.

To study the quality of the predictions, box and whisker plots for the speed and angle errors are
shown in Figure 4. The median error of the speed prediction is close to zero with a value of 0.081
Km/h, and half of the errors have a value between -0.567 and 0.903 Km/h. For the angle predictions,
the median error is negative at -0.058°, with the first quartile at -0.238° and the third quartile at 0.062°.
For both the speed and angle predictions the error predictions take on a Gaussian distribution.

Error (Km/h)
-3 -2 -1 0 1 2 3

kS

Q| F=——m——- 4 I F----=--- -
0

Q@

g b= L I +F----- |

<

-1 -0.5 0 0.5 1

Error (degrees)

Figure 4. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom).
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3.2. Application of the Pretrained CNN for Training with a Real-World Dataset
3.2.1. Real-World Dataset

To study the usability of the synthetic dataset in real world applications, the pretrained model
has been tested with a real driving dataset. For this application, the UPCT dataset containing real
world driving data has been chosen [24]. The UPCT dataset is a public dataset which contains
multimodal data from a variety of perception sensors including 3D LiDAR, RGB and depth cameras,
IMU, GPS, encoders, as well as biometric data from the drivers. The data was recorded with state-of-
the-art equipment onboard the UPCT’s CICar autonomous vehicle. The UPCT dataset contains 78000
samples which were obtained by a group of 30 different drivers performing tests along an urban
route in southern Spain with real traffic, including roundabouts, junctions, merging traffic situations
and street parking. The tests were performed at different times of day, including morning, afternoon
and early evening.

(b)
Figure 5. Example images from the UPCT dataset. (a) Pedestrian crossing; (b) saturation due to
reflections on the road; (c) car braking [24].

3.2.2. Baseline Training with Only Real-World Data

First, the CNN model from Section 2.3 was trained using only the UPCT dataset to verify the
performance of the model using real world data. The data was split into six equal groups of 13000
data samples, where five were used for training and testing with the K-fold method. The last group
was used for validation for each of the five models in K-fold, to obtain consistent results and to have
more data samples for testing. The results from testing each fold are shown in Table 6.

Table 6. MAE, MAPE and R? obtained using real world data.

Fold Variable MAE (Km/h, °) MAPE R?
1 Speed 0.39 0.67 % 0.996
Angle 0.34 0.44 % 0.985
5 Speed 0.48 0.82 % 0.995
Angle 0.49 0.62 % 0.953
3 Speed 0.34 0.58 % 0.997
Angle 0.34 0.44 % 0.984
4 Speed 0.44 0.75 % 0.995
Angle 0.39 0.50 % 0.969
5 Speed 0.38 0.66 % 0.996
Angle 0.40 0.51 % 0.977

The metrics have been calculated for all the predictions from each of the five models, obtaining
a total of 65000 predictions. The models took on average 19880 s to train, with 62 epochs. The results
are shown in Table 7.

Table 7. MAE, MAPE and R? obtained with real world data.

Variable MAE (Km/h, °) MAPE R?
Speed 0.40 0.69 % 0.996
Angle 0.39 0.50 % 0.974



https://doi.org/10.20944/preprints202411.1048.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1048.v1

11

The results obtained by the models for predicting the vehicle speed using the real-world dataset
are promising and have improved compared to those achieved with the synthetic dataset. The angle
predictions, however, did not gain a significant improvement. As with the synthetic dataset, the angle
predictions achieved a lower percentage error compared to the speed predictions.

Box and whisker plots for the speed and angle errors are shown in Figure 6. For the speed
prediction errors, the median is close to zero with a value of -0.009 Km/h, and the first and third
quartile values were of -0.315 Km/h and 0.290 Km/h, respectively. As shown by the box and whisker
plots, the errors for both the speed and angle predictions the take on a Gaussian distribution with the
median in the centre of the box. The median for the angle prediction errors is positive in this case
with a value of 0.107°. The first and third quartile values were between -0.124° and -0.355°,
respectively.
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Figure 6. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom).

3.2.3. Pretraining with the Synthetic Dataset

The third test consisted in performing transfer learning using the synthetic dataset to pretrain
the model, with the aim of reducing training time when training with real-world data. After training
the models with the synthetic data, the weights from the Efficient Net convolutional blocks were
saved and loaded to the model before training with the real dataset. The results obtained from
transfer learning are shown in Table 8.

Table 8. MAE, MAPE and R? obtained using pretrained weights to train with real world data.

Fold Variable MAE (Km/h, °) MAPE R?
1 Speed 0.68 1.17 % 0.987
Angle 0.43 0.55 % 0.969
5 Speed 0.54 0.94 % 0.992
Angle 0.36 0.47 % 0.976
3 Speed 0.52 0.90 % 0.992
Angle 0.39 0.50 % 0.978
4 Speed 0.70 1.21 % 0.987
Angle 0.50 0.64 % 0.961
5 Speed 0.58 0.99 % 0.989
Angle 0.38 0.49 % 0.981

The metrics have been calculated for all predictions from the test sets each of the five models,
obtaining a total of 65000 predictions. The models took on average 17350 s to train, with 56 epochs.
The overall results are shown in Table 9.
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Table 9. MAE, MAPE and R? obtained using pretrained weights to train with real world data.

Variable MAE (Km/h, °) MAPE R?
Speed 0.61 1.04 % 0.989
Angle 0.41 0.53 % 0.973

From the results it can be observed that pretraining the model with a synthetic dataset and using
the weights to train real data decreases the training time needed to obtain the same results. In this
work the models needed on average six epochs less for training with the same real-world dataset
compared to training with no previous information. Box and whisker plots of the prediction error
values are shown in Figure 7.
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Figure 7. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom).

The prediction errors calculated with the pretrained models are very similar to those with no
pretraining once again with a Gaussian distribution with narrow boxes centred around the median
value. The speed prediction errors a median of -0.040 Km/h was obtained, and quartile values
between -0.461 Km/h and 0.376 Km/h. The median value of the angle prediction errors in this case is
negative, with a value of -0.037° and the first and third quartiles with values of -0.306° and 0.217°,
respectively.

3.3. Analysis of the Architecture with and Without Edge Detection Layers for Transfer Learning

Finally, the EdgeNet architecture was tested removing the edge detection layers from the
architecture, to study the impact that these layers have on the performance of the architecture for
transfer learning applications. The tests were repeated using the same datasets divided into five folds
with the same training, validation and test sets, the same hyperparameters and stopping condition
were used. Table 10 shows the results obtained by the architecture both with and without the edge
detection block for both the synthetic and real-world datasets, as well as pretraining the architecture
with the synthetic dataset to be used with real-world data.

Table 10. MAE, MAPE and R? obtained by the architecture with and without the edge detection

block.
o 2
Dataset Variable MAE (Km/h, °) MAPE R
wedges w/oedges wedges w/oedges wedges w/oedges
Speed 1.47 0.40 1.59 % 0.69 % 0.978 0.996
CarlaMRD

aria Angle 0.50 0.39 0.55 % 0.50 % 0.948 0.974
UPCT Speed 0.40 0.39 0.69 % 0.68 % 0.996 0.995
Angle 0.39 0.39 0.50 % 0.51 % 0.974 0.972

UPCT pretrained Speed 0.60 1.66 1.04 % 2.86 % 0.989 0.911
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Angle 0.41 0.60 0.52 % 0.77 % 0.973 0.929

It can be observed that when using the synthetic and real-world datasets alone, the architecture
achieves a high performance with and without the edge detection block. However, the edge detection
block proves to enhance the performance of the architecture significantly when pretraining with
synthetic data. The edge detection block reduces the domain gap between the synthetic data and real-
world data scenarios and with the pretrained weights a similar performance is achieved using real-
world data with a lower computational cost than training from scratch. In the case of the speed
prediction, with the edge detection layers the MAPE is reduced to almost a third compared to the
architecture without edge detection layers. Box and whisker plots of the MAE error values for the
transfer learning predictions without the edge detection block are shown in Figure 8.

The box and whisker plots for the architecture without edge detection layers (Figure 8) have a
normal distribution similar to that of the architecture with edge detection layers (Figure 7). It can be
observed that the interquartile range (IQR) of the MAE error values for the architecture without the
edge detection block is greater for the prediction of both the speed and the angle variables. In the case
of the speed MAE errors, without the edge detection block the errors have a significantly larger
dispersion. Table 11 includes the numerical values of the median, quartile and IQR values of the MAE
errors of the architectures with and without the edge detection block.
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Figure 8. Box and whisker plots for speed errors in Km/h (top) and angle errors in degrees (bottom).

Table 11. Median and quartile MAE values with and without the edge detection block.

Q1 Q2 (Median) Q3 IQOR
Dataset Variable w/o w/o w/o w/o
w edges w edges w edges w edges
edges edges edges edges
UPCT Speed (Km/h)  -0.461 -0.703  -0.040 0.019 0.375 0.731 0.836 1.434
pretrained Angle (°) -0.306  -0.285  -0.037 0.017 0.217 0.371 0.523 0.656

4. Discussion

The results obtained by the EdgeNet architecture were compared to those presented by other
authors in literature. Several studies exist, mainly using real world ad-hoc datasets obtained or
modified by the authors. Some authors used synthetic datasets and real-world datasets for training
their architectures [45,46]. However, these were conducted as separate experiments, and the synthetic
data was not used for pretraining the models. Table 10 shows a comparison of the results obtained in
this work with other experiments using CNN models for end-to-end driving and details the type of
dataset used and the variables predicted.
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Table 12. Comparison of the proposed model with the metrics of other End-to-end models.
Authors, Ref. Dataset Data Type Input Output MAE MAPE (%) R?
e P P P (km/h/ () ’
Bojarski et al., ) . .
Udacity Synthetic RGB Steering Angle 4.26 - -
[45,47]
) ) Speed/ Steering
Udacity Synthetic RGB 0.68/1.26 - -
Yang et al., [45] Angle
SAIC Real RGB Speed 1.62 - -
Xu et al., [48] BDDV Real RGB Steering Angle - 15.4 -
Speed/Steering
GAC Real RGB 4.25/3.55 - -
Angle
Wang et al., [46] .
. Speed/Steering
GTAV  Synthetic RGB 3.28 /2.84 - -
Angle
Speed/Steering
Navarro et al,, [9] UPCT Real RGB + IMU 0.98/3.61 1.69/0.43 -
Angle
Prasad [49] - Real RGB Steering Angle - - 0.819
. Speed/Steering 0.977 /
Carla  Synthetic RGBD +IMU 1.47/0.51 1.59/0.55
Proposed: Angle 0.948
BorderNet Speed/Steering 0.989 /
UPCT Real World RGBD +IMU 0.61/0.41 1.04/0.53
Angle 0.973

One of the first end-to-end deep neural network applications for autonomous driving was
resented by Bojarski et al., [47]. They used the PilotNet model for object detection and steering angle
prediction from just RGB image inputs from the Udacity dataset. The work by Yang et al. [45] built
on these results and used the PilotNet to predict both vehicle speed and steering angle from the same
Udacity RGB images. Xu et al. tested six different CNN models, some using LSTM architectures, to
predict steering angle using 21000 short 36 s videos of RGB frames as training data. They used the
real world BDDV dataset, and the best accuracy was obtained with a temporal CNN with an accuracy
of 84.6 % [48]. In the work presented by Wang et al. [46], different end-to-end deep convolutional
neural networks were tested to predict the speed and steering angle using RGB images as the input.
It is worth noting that a better performance was obtained using the model with the synthetic dataset
compared to using the real-world data. The authors in [9] completed a thorough study of three types
of CNN with different inputs, one with RGB images, a second complementing the RGB images with
IMU data and a third model using sequences of RGB images. The best results were achieved using
the RGB images with an additional input of IMU data obtaining a MAPE of 1.69 % for the speed
calculation and a MAPE of 0.43 % for predicting the steering wheel angle. The experiment conducted
by Prasad et al. [49] presented an end-to-end CNN model to predict the steering angle from real-
world RGB images on a small vehicle, the only metric given was the R? score with a value of 0.819.

The end-to-end model presented in this work obtained a 99.30 % accuracy for speed calculation
and a 99.49 % accuracy for predicting the steering angle, with the real-world dataset without
pretrained weights. When using the model with the pretrained weights from training with the
synthetic dataset, the model obtained a 98.95 % accuracy predicting speed and a 99.47 % accuracy
predicting the steering angle with the real-world dataset. In addition, results show that by pretraining
a CNN model with synthetic data, training time can be significantly reduced.

5. Conclusions

End-to-end architectures trained and tested using only simulated driving data have shown
promising results. However, few approaches have focused on addressing the gap between simulation
and reality, and the benefits that transfer learning applications have to offer. In this work, an end-to-
end architecture has been developed, which not only has obtained a high performance with simulated
data and real-world data alone but has also shown significant potential when used for transfer
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learning. To overcome the differences between simulated and real-world images, edge detection
layers were introduced into the architecture before the EfficientNetV2 module. These layers extract
crucial edge information before the convolutional module, helping to bridge the domain gap between
synthetic and real-world data. The architecture was evaluated using two datasets: a simulated dataset
generated by the Carla simulator and the real-world UPCT dataset.

The proposed architecture integrates both RGB and depth images as inputs, along with a second
input branch for inertial data, to enhance accuracy and performance. The architecture was trained
and tested in three scenarios: (1) with the CarlaMRD synthetic dataset, (2) with the real-world UPCT
dataset, and (3) with the UPCT dataset using the pretrained weights from the synthetic dataset. The
results obtained with the architecture including the edge detection block were then compared to
those obtained by the same architecture without the edge detection. It was proven that the inclusion
of edge detection layers significantly improved the predictions for the speed variable when using an
architecture pretrained with synthetic data.

The results show that pretraining with the synthetic dataset significantly reduces training time
using weights pretrained with synthetic data when training with real-world data. Furthermore, the
architecture obtained a high performance and computational efficiency in predicting vehicle control
variables, whether pretraining was used or not. The results achieved demonstrate a notable
improvement compared to similar studies conducted by other authors, highlighting the effectiveness
and robustness of the proposed architecture.
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