Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

Efficient Data Sorting: Introducing a new Method.

Raghavendra Devidas?!, Aishwarya Kulkarni S2

"ITT/QIM, Mercedes Benz Research & Development India Pvt Itd, Bengaluru-560066, India, Telephone No: +91

9538676171, Email: Raghavendra.devidas@daimler.com

2ITT/QIM, Mercedes Benz Research & Development India Pvt Itd, Bengaluru-560066, India, Telephone No: +91

8310820879, Email: aishwarya.s.kulkarni@daimler.com

Abstract: The efficiency of data sorting algorithms is the key aspect which determines the speed of

data processing and searching. The best known efficiency of sorting algorithm has been Log (N) if there
are N terms. All of the well-known sorting algorithms use various techniques to sort data. The basis for
most of these are comparing the data terms with each other. In this manuscript, we are introducing a
new approach for sorting data. This method is postulated to have the highest efficiency ever achieved
by any of the sorting algorithms. We achieve this by sorting data without comparing the data terms. Or

achieving results of data comparison without comparing the terms explicitly!

Keywo rds: Efficient data sorting, New techniques for sorting, Sorting through hardware re-configu-

ration, new computer architecture for sorting, Sorting by Hardware optimization, quantum inspired com-

puter architecture, parallelism for Grover’s algorithm.

1. Introduction

Existing sorting algorithms in the field of computer science have complexities varying from O Nlog(N)
to O(N*2), from the best case to the worst case. These algorithms belong to a class called “comparison
sorts” where the sorted order is determined based only on comparisons between the input elements. It

has also been proven that any comparison sort algorithm requires Q(NIgN) comparisons in the worst

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:Raghavendra.devidas@daimler.com
mailto:aishwarya.s.kulkarni@daimler.com
https://doi.org/10.20944/preprints202109.0174.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

case. Thus, the comparison sorting algorithm like merge sort is optimal, and no comparison sorting
algorithm exists that is faster by more than a constant factor. There are also non-comparison based
sorting algorithms like counting sort, bucket sort etc. which can run in linear time, but with a prior as-
sumption. In order to sort a given set of data array/list, comparison of terms in inevitable. The complexity
of the sorting algorithm increases with more & more comparisons needed to sort the data completely.
Our approach here is to sort the data in a specialized memory hardware. Such that the data gets placed
in an ordered array as soon as the new value/term is entered. The terms of an array are stored in their
corresponding weighted order. As if the terms float if they are lighter and dip down if they are heavier.
And each addition of a term gets weighted and settles down in the special hardware at its right position.
i.e the sorting doesn’t happen by explicit comparison. However by implicit ordering of terms. There are
various alternate approaches such as by Hayes et al., [1], Gowtham et al., [5] and Abdel-Hafeez et al., [4].
Similalry the wonderful approach adopted by Jmaa et al., [3] gives great inspiration for further innovation

mainly due to the application of such sorting methods in aviation industries.

The detailed survey of sorting algorithms along with their efficienices by Karunanithi et al., [6] and Mishra

et al.,, [7] guided the opportunities for further innovation in finding sorting algorithms with greater

efficiencies.

We wanted to leverage the speed with which the electreomagnetic waves travels, for sorting

data in the foeld of computer science. In this paper we have used the electric signal as the

medium of data transfer and storage.

2. Methods

While we look for possibilities of tuning the efficiency of the widely used existing sorting methods, the
survey by Estivill-Castro et al., [8] points at clear opportunities which we can target in our solution ap-
proaches. Though such approaches offer some efficiencies, there could be several challenges for their ap-
plications in use cases, involving huge dataset. Hence with the aim to bring in an exponential speed in the
data sorting & searching methods, we have adapted an unconventional method for sorting data. There

are various focus areas to improve efficiency of the existing algorithms. One of them is from Idrizi etal.,

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

[9]. i.e either we can try to identify the areas of improvement in the well established sorting methods or we
can lok for completely new methods.

The sorting methods and search capabilities as methods as given by Wilkes et al., [10], have given quanti-
tative measures to check the feasibility for applying a specific sorting method. Also it is clearly highlighted
that the efficiency is affected with increasing volume of data. Hence we have found a new method, whose
efficiency is nearly independent from the volume of data. It is limited only by the extent to which the infra-
structure can scale. Insights regarding types of memories present in the current computer hardware as men-
tioned by Meena et al., [11], have helped in exploring further possibilities for memory storage and opportu-
nities for further optimizations. The details mentioned by Arge et al., [12] have given sufficient guidance

on internal & external memory units and their role in achieving sorting efficiencies.

For our method, one of the key circuit element, the OPAMP and its capabilities as mentioned by Solomon et
al., [14] were very useful. The operating conditions of the OPAMP under various circumstances as mentioned
by [15] were key inputs for our method. The challenges of existing methods and future directions for further
innovations as mentioned by Mutlu et al., [16] were instrumental in the realization of the new method, we
have built. The ideas of parallel sorting as mentioned by Bitton et al., [17] were the methods which could
offer a clear advantage in performance. We saw few challenges with respect to scaling for huge data
processing requirements. The hardware acceleration methods as mentioned by Zurek et al., [18] were
useful. However we saw that such possibilities are always attached to increased cost. And unless there

is a fundamental change to the sorting method, an exponential speed-up could not be achieved.

As we have used the circuit element OPAMP in our methods. The key details outlined by Waltari et al., [19]
for this circuit element were very useful. A hybrid approach as mentioned by Jan et al., [20] gave key insights

to address challenges in sorting upfront.

A clear scope for improvement in the area of sorting & searching and the components of a computer which
determine how efficiently this can be made as mentioned by Li et al., [13] shows the evolution in approaches

for challenges in the field of conputer science.

Methods to imrove sorting & searching efficiency via Hardware design & optimization methods [21] — [25]

helped narrow down the approach for solving the challenges in sorting & searching.

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

In this paper we demonstrate the sorting method by using the properties of electric current flow in a
customized circuit. The flow of current adhering to the existing laws, is used to simulate data sorting
without comparison. We are using the fundamental property of flow of electricity and the conditions in
which it will flow. i.e a potential difference or presence of potential gradeint. We demonstrate the working
using simulator tools.

Having seen the evolutions in the field of computer science, and after verifying various methos applied
for imroving the data sorting efficiencies. We have chosen the “DataSorting” as a special case. And
we are focussing on solving the efficieny problems by significantly improving the sort operations.

The key aspects as mentioned by Chen et al [2], are useful in order to come up with new sorting methods

which can improve efficiency by a large factor.

Approach :

Unlike the typical sorting where in the terms are compared and stored in the memory. We are introduing
a specialised optimization by adding Sorting memory. This memory sorts data as soon as the data is
entered. i.e if we enter 100 terms in a sorting memory of capacity 1000 terms. The 100 data terms will
be already in a sorted order. And the remaining 900 data terms space is empty. Though this may not
be the best approach with respect to memory utilization perspective. This will bring exponential speed
in terms of performance of the application for the use cases where sorting is inevitable. It is always
done instantly, with no additional sorting operation.

The potential difference is mapped to constituent terms. The descrete values of volt are assigned to
data terms when they are entered. i.e We demonstrate the sorting of numbers by mapping each of
these with a specific value such that there exists a potential difference, among them. This potential
difference is chosen such that we have the satisfying conditions for the demonstration of the data sorting
of these numbers in real time. We have demonstrated the sorting operations for a the numbers 1, 2 &
3(could be entered in any order).This principle can be extended for sorting text data(non-numeric) as
well. Thereby it is possible to sort a large amount of data. This is limited only by the scale of this new
hardware setup. In temporal terms the sorting happens at the speed of light. Since the data
automatically knows its sorted position due to its corelation with the potential difference. As the current
flow from the lower potential to its higher potential. The curent passage is blocked to any other memory

paths by the elelctrical proprty of current and not by any explict logic / check gate. Thus, each element

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

undergoes a single task of storing once, leading to a time complexity of O(1) or constant time because

the operation only happens once, and they do not depend on the size of the input as they run.

Unlike typical data sorting, the sorting is carried out in a dedicated SortingMemory. The design of the
SortingRAM differs from other types of memory disks, in its design and functionality. The Memory
registers are arranged with potential grader. The inputs are statically separated to give higher

current/potential multipliers. The mapping is done in the potential difference grader.

cmp Data Sorting /

Architecture

Sorting Memory

Layer 1 filter

Figure 1 - Data sorting design template.

The circuit design considers sorting of the numbers 1, 2 & 3 for the demonstration of the sorting method.
The circuit contains OPAMP and inverted OPAMP elements. The sorting is demonstrated by providing
input corresponding to the nos 1, 2 & 3 numbers. We have taken the voltage at the input as 1V, 2V &
3V respectively. This is demonstrated by lighting the LED corresponding to the inputted no. The
lighting of the LED confirms that the data has reached that part of the circuit. The Figures 5, 6 & 7
demonstrate the sorting operations for the numbers 1,2 & 3 by lighting the LEDs corresponding to these

numbers.

The potential difference in terms of volt is mapped to constituent terms. The descrete values of volt are

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

assigned to data terms when they are entered. i.e for the number n the volt(Vin) value will be n Volts
and the destination volt(Vend) value will also be n Volts. A circuit component called OPAMP is
introduced in between Vin and Vend which will amplify Vin to create the required potential difference.
Due to the amplified voltage being more than Vend, potential difference is created which leads to current
flowing through this channel and automtically the memory unit representing this location storing the
value n.

Note: For the current to flow or for an LED to light up indicating the storage, a minimum of 3V potential
difference is necessary.

The core principle here is to have the current flow from one end of the circuit (input) to the other end
(memory storage). And we would like to establish the potential difference so that the current flows as

per our planned path/route.

Take into account that all Vend voltages for the 3 numbers are present with 1 common Vin voltage which

will vary.

ivm

=
|| I L
0 1 I 2 [[I I 5 I 8

Figure 2 - Data sorting design template.

List of basic components used:

Board, Clock, Mode Register, Memory Banks, Burst Counter etc

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

Additional components:

DC Voltage source and Ground : Input and end potentials of each number

LEDs : Representing successful storage of each number

Resistor : A series resistor makes sure any small differences in voltage have just a
negligible effect on the LED's current

Cables : Connections

Inverting OPAMP

Voutput

vcc INVERTED

OPAMP

VEE

Vreference

Vinput

Figure 3 - Inverting OPAMP.
An operational amplifier has a property of conditional voltage flow which is used in our circuit. In an
inverting OPAMP, Vin is connected to negative terminal and Vref is connected to positive terminal.
Internally the inverting OPAMP performs an additional operation of these values : (+Vref) + (-Vin). If the
result is 0 or +ve, value of VCC will be the new output voltage sent through the Vout path. Likewise, if
the result is —ve, VEE is considered which is connected to the GND(ground).

Therefore, only if Vin<=Vref flow of voltage and current in the circuit continues.

For instance
1. If Vref=1V and Vin=1V , result =(+1)+(-1) = 0 Therefore VCC is triggered and Vout will be the
value of VCC

2. If Vref=1V and Vin=3V , result =(+1)+(-3) = -2 Therefore VEE is triggered and there is no flow

of further voltage.

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

3. If Vref=2V and Vin=1V , result =(+2)+(-1) = 1 Therefore VCC is triggered and Vout will be the
value of VCC

Non-Inverting OPAMP

Voutput

NON

vcc INVERTED

OPAMP

+

Vreference

Vinput

Figure 4 - Non-Inverting OPAMP.

An operational amplifier also has a property of amplifying the voltage along with conditional voltage flow
which is used in our circuit. In a non-inverting OPAMP, Vin is connected to positive terminal and Vref is
connected to negative terminal. Internally the inverting OPAMP performs an additional operation of
these values : (+Vin) + (-Vref). If the result is +ve, value of VCC will be the new output voltage sent
through the Vout path. Likewise, if the result is 0 or —ve, VEE is considered which is connected to the

GND(ground).

Therefore, only if Vin>Vref flow of voltage and current in the circuit continues

For instance
1. If Vin=1V and Vref=0V, result =(+1)+(-0) = 1 Therefore VCC is triggered and Vout will be the
value of VCC
2. If Vin=1V and Vref=1V, result =(+1)+(-1) = 0 Therefore VEE is triggered and there is no flow of
further voltage.
3. If Vin=1V and Vref=2V, result =(+1)+(-2) = -1 Therefore VEE is triggered and there is no flow
of further voltage.

Let’s consider 3 numbers - 1, 2 and 3.

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

2.1. First Scenario — Sorting the numeric 1.

Beginning with the number 1 i.e , to store number 1 which is represented by lighting up of LED 1.
Considering left section of the circuit in Figure 5, Vin will be 1V and Vend1 will also be 1V. As yellow
path represents the flow of current, it first encounters an inverting OPAMP first . Here, Vin = 1V, Vref
is also set to 1V and VCC is also connected to Vin which makes VCC=1V as well . Since Vin<=Vref,
condition(Vin<=Vref) is satisfied, value of VCC will be sent as Vout i.e, 1V. Next, the path encounters a
non-inverting OPAMP. Here, the Vin value will be the output from previous OPAMP i.e new Vin=1V, Vref
is set to OV and VCC is set to 5V. Since Vin>Vref, condition(Vin>Vref) is satisfied, value of VCC will be
sent as Vout i.e, 5V, but the OPAMP offers an internal resistance due to which Vout will be around 1V
less than VCC which makes Vout=4V. Finally, the path leads to an LED and an end potential Vend1 of
1V. The output of non-inverting OPAMP will be the new start potential which is 4V. As discussed in the
beginning, a minimum potential difference of 3V is required between the start and end potential for
proper amount of current to flow and light up the LED (indicating storage of the number). The current
potential difference will be (start potential — end potential) i.e, 4V-1V =3V which satisfies the requirement,

considering the nature of current, it flows until the end lighting up LED1.

However, considering the middle section of the circuit in Figure 5, Vin will be 1V and Vend2 will be 2V.
As yellow path represents the flow of current, it first encounters an inverted OPAMP first . Here, Vin =
1V, Vref is set to 2V and VCC is also connected to Vin which makes VCC=1V as well . Since Vin<=Vref,
condition(Vin<=Vref) is satisfied, value of VCC will be sent as Vout i.e, 1V. Next, the path encounters a
non-inverting OPAMP. Here, the Vin value will be the output from previous OPAMP i.e new Vin=1V, Vref
is set to 1V. Since Vin=Vref, the condition(Vin>Vref) fails and VEE is considered which is connected to

the GND(ground).

Similarly, considering the right section of the circuit in Figure 5, Vin will be 1V and Vend3 will be 3V. As
yellow path represents the flow of current, it first encounters an inverted OPAMP first . Here, Vin = 1V,
Vref is set to 3V and VCC is also connected to Vin which makes VCC=1V as well . Since Vin<=Vref,
condition(Vin<=Vref) is satisfied, value of VCC will be sent as Vout i.e, 1V. Next, the path encounters a
non-inverting OPAMP. Here, the Vin value will be the output from previous OPAMP i.e new Vin=1V, Vref

is set to 2V. Since Vin<Vref, the condition(Vin>Vref) fails and VEE is considered which is connected to

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021

the GND(ground).

d0i:10.20944/preprints202109.0174.v1

Thus, when Vin=1V, LED1 lights up indicating memory storage of the number 1.

o U121kQ

| veet 7o
| ni

[=]
1
1

[+
5V i
_Nin>Vref

741
——VRef12
I ov

o U

VRefM1
| ;1VT =
I Vin<=Vref 1 Vin<=Vref
.
Vi
- L

Vin<=Vref

Path

Green - Condition pass)

Red - Condition fail

Figure 5 - Circuit representing the sorting of no 1.

No Vin OPAMP -1 (inverting) OPAMP-2 (non-inverting) Vstart | Vend
(Volts) (Volts) | (Volts)
Vin | Vref | Vcc | Vee | Vout | Vin | Vref | Vcc | Vee | Vout
1 1 1 1 1 X 1 1 0 5 X 4 4 -
1 1 2 1 X 1 1 1 X | GND 2
1 1 3 1 X 1 1 2 X | GND 3

Table 1 - Shows the Values for voltage at various points in the circuit. Finally storing no 1.

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

2.2. Second Scenario — Sorting the numeric 2.

Next for the number 2 i.e , to store number 2 which is represented by lighting up of LED 2. Considering
middle section of the circuit in Figure 6, Vin will be 2V and Vend2 will also be 2V. As yellow path
represents the flow of current, it first encounters an inverting OPAMP first . Here, Vin = 2V, Vref is also
set to 2V and VCC is also connected to Vin which makes VCC=2V as well . Since Vin<=Vref,
condition(Vin<=Vref) is satisfied, value of VCC will be sent as Vout i.e, 2V. Next, the path encounters a
non-inverting OPAMP. Here, the Vin value will be the output from previous OPAMP i.e new Vin=2V, Vref
is setto 1V and VCC is set to 6V. Since Vin>Vref, condition(Vin>Vref) is satisfied, value of VCC will be
sent as Vout i.e, 6V, but the OPAMP offers an internal resistance due to which Vout will be around 1V
less than VCC which makes Vout=5V. Lastly, the path leads to an LED and an end potential Vend2 of
2V. The output of non-inverting OPAMP will be the new start potential which is 5V. As discussed in the
beginning, a minimum potential difference of 3V is required between the start and end potential for
proper amount of current to flow and light up the LED indicating storage of the number. The current
potential difference will be (start potential — end potential) i.e, 5V-2V =3V which satisfies the requirement,
considering the nature of current, it flows until the end thereby lighting up LED2.

However, considering the left section of the circuit in Figure 6, Vin will be 2V and Vend1 will be 1V. As
yellow path represents the flow of current, it first encounters an inverted OPAMP first . Here, Vin = 2V,
Vref is set to 1V. Since Vin>Vref, the condition(Vin<=Vref) fails and VEE is considered which is
connected to the GND(ground).

Similarly, considering the right section of the circuit in Figure 6, Vin will be 2V and Vend3 will be 3V. As
yellow path represents the flow of current, it first encounters an inverted OPAMP first . Here, Vin = 2V,
Vref is set to 3V and VCC is also connected to Vin which makes VCC=2V as well . Since Vin<=Vref,
condition(Vin<=Vref) is satisfied, value of VCC will be sent as Vout i.e, 2V. Next, the path encounters a
non-inverting OPAMP. Here, the Vin value will be the output from previous OPAMP i.e new Vin=2V, Vref
is set to 2V. Since Vin=Vref, the condition(Vin>Vref) fails and VEE is considered which is connected to
the GND(ground).

Thus, when Vin=2V LED2 lights up indicating memory storage of the number 2

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

VR*fH
—-—1v

1 VR¢
I Vin<=Vref :[Vin<=Vref

- Path)
Vin . s
- Green - Condition pass
|| T 2V Red - Conditicon fail

Figure 6 - Circuit representing the sorting of no 2.

No Vin OPAMP -1 (inverting) OPAMP-2 (non-inverting) Vstart | Vend
(Volts) (Volts) | (Volts)
Vin | Vref | Vcc | Vee | Vout | Vin | Vref | Vcc | Vee | Vout
2 2 2 1 X | GND 0 1
2 2 2 2 X 2 2 1 6 X 5 5 -
2 2 3 2 X 2 2 2 X | GND 3

Table 1 - Shows the Values for voltage at various points in the circuit. Finally storing no 2.

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

2.3. Third Scenario — Sorting the numeric 3.

Lastly for the number 3 i.e , to store number 3 which is represented by lighting up of LED 3. Considering
right section of the circuit in Figure 7, Vin will be 3V and Vend3 will also be 3V. As yellow path represents
the flow of current, it first encounters an inverting OPAMP first . Here, Vin = 3V, Vref is also set to 3V
and VCC is also connected to Vin which makes VCC=3V as well . Since Vin<=Vref, condition(Vin<=Vref)
is satisfied, value of VCC will be sent as Vouti.e, 3V. Next, the path encounters a non-inverting OPAMP.
Here, the Vin value will be the output from previous OPAMP i.e new Vin=3V, Vref is set to 2V and VCC
is set to 7V. Since Vin>Vref, condition(Vin>Vref) is satisfied, value of VCC will be sent as Vout i.e, 7V,
but the OPAMP offers an internal resistance due to which Vout will be around 1V less than VCC which
makes Vout=6V. Lastly, the path leads to an LED and an end potential Vend3 of 3V. The output of non-
inverting OPAMP will be the new start potential which is 6V. As discussed in the beginning, a minimum
potential difference of 3V is required between the start and end potential for proper amount of current
to flow and light up the LED indicating storage of the number. The current potential difference will be
(start potential — end potential) i.e, 6V-3V =3V which satisfies the requirement, considering the nature
of current, it flows until the end lighting up LEDS.

However, considering the left section of the circuit in Figure 7, Vin will be 3V and Vend1 will be 1V. As
yellow path represents the flow of current, it first encounters an inverted OPAMP first . Here, Vin = 3V,
Vref is set to 1V. Since Vin>Vref, the condition(Vin<=Vref) fails and VEE is considered which is
connected to the GND(ground).

Similarly, considering the middle section of the circuit in Figure 7, Vin will be 3V and Vend2 will be 2V.
As yellow path represents the flow of current, it first encounters an inverted OPAMP first . Here, Vin =
3V, Vref is set to 2V. Since Vin>Vref, the condition(Vin<=Vref) fails and VEE is considered which is
connected to the GND(ground).

Thus, when Vin=3V LED3 lights up indicating memory storage of the number 3

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021

d0i:10.20944/preprints202109.0174.v1

VRTfﬁ
. —— 1V

I Vin<=Vref

VR?LH

;3\“{

Vin<=Vref I

Vin<=Vref

| VEE |°©

ET

LV Green- EZTdition pass
_| | | _— I 3|V R Redl - c:?nditioln fail |
Figure 7 - Circuit representing the sorting of no 3.
o Vin OPAMP -1 (inverting) OPAMP-2 (non-inverting) Vstart | Vend
(Volts) (Volts) | (Volts)
Vin | Vref | Vcc | Vee | Vout | Vin | Vref | Vcc | Vee | Vout
3 3 3 1 X | GND 0 1
3 3 2 X | GND 1 2
3 3 3 3 X 3 3 2 7 X 6 6 -
Table 1 - Shows the Values for voltage at various points in the circuit. Finally storing
no 3.
Note:

1. Only Vin needs to be changed according to the input number.

2. Each location or LED indicates storage for a number. And n will have two OPAMPSs (inverting

and non-inverting) associated with fixed Vref and Vee

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

3. Vend will be n Volts.
FLOWCHART:

Overview-

(START)

Input digit
(Input volt-Vin)

Flow through all available
channels

Inverting OPAMP

—FALSEWTR UE—

Ground New Vin=Vcc

Non-inverting
OPAMP

-FALSEW‘FRUE-

Ground New Vin=Vcc

Store digit in
respective memory

END

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021

Algorithm-

ALGORITHM (With 3 numbers):

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:
Step 6:

Step 7:

Start

initialVar=0, a=2, b=1, c=3

{ START)

initialVar=0, a=2, b=1, ¢=3

Fetch address of initialVar

Fetch 3 consecutive
addresses of initialVar

Fetch value stored in
address1, address2,
address3

Print value of address1,
address2, address3(sorted
result)

Fetch address of initialVar (* initialVar =& initialVar)

d0i:10.20944/preprints202109.0174.v1

Fetch 3 consecutive addresses of initialVar (address1= * initialVar ++, address2= * initialVar +2,

address3= * initialVar +3)

Fetch value stored in address1, address2, address3

Print value of address1, address2, address3(sorted result)

Stop

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

PROGRAM (With 3 numbers- integer sorting RAM):
main()

{

int initialVar=0, a=2, b=1, c=3;

int *initialVarAddress;

initialVarAddress=& initialVar;

printf(“Fetch address of first variable- initialVar = %d”, initialVarAddress);
int address1= (int)initialVarAddress + 4;

int address2= (int)initialVarAddress + 8;

int address3= (int)initialVarAddress +12;

int *p1,"p2,*p3;

p1=(int *)address1;

p2=(int *)address2;

p3=(int *)address3;

int lowest = *p1;

int mid= *p2;

int highest = *p3;

printf(“Sorted result= %d , %d, %d”, lowest, mid, highest);
}

Time Complexity:

Since the procedure does not involve comparsion or looping, all the actions take place just once. Hence, the
time complexity will be equal to Q(1) for Best case, ©(1) for average case and O(1) for worst case.

Space complexity:
S(p) =A+Sp(l)
= fixed part + variable part
=1+ n (Consider n=3 as in current example)

=4

(4) * data type memory storage
=(4) * 4 (Integer- 2 or 4. Let’'s assume 4)

= (4) * 4 =16 bytes

https://doi.org/10.20944/preprints202109.0174.v1

Since the procedure too does not involve comparsion or looping, all the actions take place just once. Hence,

the space complexity will be equal to O(1).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021

d0i:10.20944/preprints202109.0174.v1

COMPARISON:
Algorithm Time Complexity Space Complexity
Best Case Average Case Worst Case Worst Case
Bubble Sort Q(N) O(N?) O(N?) 0(1)
Selection Sort Q(N?) O(N?) O(N?) 0(1)
Insertion Sort Q(N) O(N?) O(N?) 0(1)
Merge Sort Q(N log N) O©(N log N) O(N log N) O(N)
Heap Sort Q(N log N) O(N log N) O(N log N) 0(1)
Quick Sort Q(N log N) ©(N log N) O(N?) O(N log N)
Algorithm Time Complexity Space Complexity
Best Case Average Case Worst Case Worst Case
Proposed
algorithm Q(1) o(1) 0(1) 0(1)

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

2.4. Method for searching a data term.

As it might be clear now, though this isn’t mentioned explicitly. That, this method is useful for searching
a data item inside the already stored dataset. i.e the search item would also pass through the circuit
and would follow it’'s applicable path. And this could be acknowledged back by the receiving end, by
sending the signal back to the input element confirming that the search item is present.

In the proposed sorting RAM, since each element or digit has a designated memory address, one can
search for the value present in respective address and if the result is not empty or null, the element is
declared present and the search is successful.

Example:

Consider we have a sorting RAM for 10 designated integers and initialVar=0 to be the element stored in the
very first memory address.

Corresponsing memory addresses will belong to the remaining numbers in order.

Thus respective memory addresses for each number will be known by incrementing each address by 4 bytes
since they involve integers.

To search for a number, its designated memory address can be checked for a value and if not empty can be
declared as present.

To search for the number: 1

main()

{int initialVar=0;

int *initialVVarAddress;

initialVarAddress=& initialVar;

printf(“Fetch address of first variable- initialVar = %d”, initialVarAddress);

int address1= (int)initialVarAddress + 4;

p1=(int *)address1;

int lowest = *p1;

if(lowest!=null){

printf(“Number is present”);

telse{

printf(“Number is not present”); }

}

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

3. Results

The sorting or positioning of the inputted value which happens instantaneously is inspired by the
Quantum computing, the computing realm offering exponential speed. While the quantum computers
offer great advantages over the classical computers. The quest for quantum supremacy is still actively
pursued. We are yet to evidence a useful application from the quantum computer. While there are
challenges in building a quantum computer with sufficnet no of qubits. We could try to get a method for

improved speed compared to a classical method for one of the applications of the computer.

As there are numerous applications in the areas such as Optimization problems and several
applications in Big data. And since conventional approaches have practical limitation of efficiencies in
seraching a given data term. This method offers exponential speed in sorting & searching data. Though
there is additional cost involved to have dedicated memory for specific data. Such approach will be

more suitable for some specific use cases if not for all scenarios.

We see that, the method demonstrated here can be used to prepare an input state for a complex

quantum problem with greater speed.

4. References

Future oppurtunities:

1. Hayesetal, 2015 T. Hayes, O. Palomar, O. Unsal, A. Cristal and M. Valero, "VSR sort:

A novel vectorised sorting algorithm & architecture extensions for future microprocessors,"

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

2015 IEEE 21st International Symposium on High Performance Computer Architecture

(HPCA), 2015, pp. 26-38, doi: 10.1109/HPCA.2015.7056019.

2. Chenetal., 2020 Wenhan Chen, Yang Liu, Zhiguang Chen, Fang Liu , Nong Xiao, "Ex-
ternal Sorting Algorithm: State-of-the-Art and Future Directions” ,IOP Conf. Series: Materi-
als Science and Engineering 806 (2020) 012040 IOP Publishing doi:10.1088/1757-

899X/806/1/012040
Similar papers:

3. Jmaaetal, 2017 Y. B.Jmaa, K. M. A. Ali, D. Duvivier, M. B. Jemaa and R. B. Atitallah,
"An Efficient Hardware Implementation of TimSort and MergeSort Algorithms Using High
Level Synthesis," 2017 International Conference on High Performance Computing &

Simulation (HPCS), 2017, pp. 580-587, doi: 10.1109/HPCS.2017.92.

4. Abdel-Hafeez et al., 2017 S. Abdel-Hafeez and A. Gordon-Ross, "An Efficient O(N)

Comparison-Free Sorting Algorithm," in IEEE Transactions on Very Large Scale

https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

Integration (VLSI) Systems, vol. 25, no. 6, pp. 1930-1942, June 2017, doi:
10.1109/TVLSI.2017.2661746.

5. Gowtham et al., 2020 A.S. Gowtham , Dr. D. Jaya Kumar,MTech., Ph.D. (2020) IMPLE-
MENTATION OF SORTING OF ONE-DIMENSIONAL ARRAY USING RAM BASED

SORTING ALGORITHM. JCR, 7 (15), 5904-5914.

Trigger for innovation:

6. Karunanithi et al., 2014 Karunanithi, Ashok Kumar. "A survey, discussion and compari-
son of sorting algorithms." Department of Computing Science, Umea Univer-

sity (2014).doi: 10.1.1.570.2322

7. Mishra et al., 2008 Mishra, Aditya Dev, and Deepak Garg. "Selection of best sorting al-

gorithm." International Journal of intelligent information Processing 2.2 (2008): 363-368.

8. Estivill-Castro wtal., 1992 Vladmir Estivill-Castro and Derick Wood. 1992. A survey of
adaptive sorting algorithms. ACM Comput. Surv. 24, 4 (Dec. 1992), 441-476.

DOl:https://doi.org/10.1145/146370.146381

9. Idrizi etal., 2017 F. Idrizi, A. Rustemi and F. Dalipi, "A new modified sorting algorithm: A
comparison with state of the art," 2017 6th Mediterranean Conference on Embedded

Computing (MECO), 2017, pp. 1-6, doi: 10.1109/MEC0.2017.7977252.

10. Wilkes et al., 1974 M. V. Wilkes, The Art of Computer Programming, Volume 3, Sorting
and Searching, The Computer Journal, Volume 17, Issue 4, November 1974, Page

324, https://doi.org/10.1093/cominl/17.4.324

11. Meena et al., 2014 Meena, J.S., Sze, S.M., Chand, U. et al. Overview of emerging non-
volatile memory technologies. Nanoscale Res Lett 9, 526 (2014).

https://doi.org/10.1186/1556-276X-9-526

http://dx.doi.org/10.31838/jcr.07.15.763
https://doi.org/10.1093/comjnl/17.4.324
https://doi.org/10.1186/1556-276X-9-526
https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

12. Arge et al., 2013 Arge L., Thorup M. (2013) RAM-Efficient External Memory Sorting.
In: Cai L., Cheng SW., Lam TW. (eds) Algorithms and Computation. ISAAC 2013. Lec-
ture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-45030-3 46

13.Lietal, 2010 H. Liand Y. Chen, "Emerging non-volatile memory technologies: From
materials, to device, circuit, and architecture," 2010 53rd IEEE International Midwest
Symposium on Circuits and Systems, 2010, pp. 1-4, doi:
10.1109/MWSCAS.2010.5548590.

14. Solomon et al., 1974 J. E. Solomon, "The monolithic op amp: a tutorial study," in IEEE
Journal of Solid-State Circuits, vol. 9, no. 6, pp. 314-332, Dec. 1974, doi:
10.1109/JSSC.1974.1050524.

15. Karthikeyan et al., 2000 S. Karthikeyan, S. Mortezapour, A. Tammineedi and E. K. F.
Lee, "Low-voltage analog circuit design based on biased inverting opamp configuration,"
in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

vol. 47, no. 3, pp. 176-184, March 2000, doi: 10.1109/82.826743.

16. Mutlu et al., 2015 Mutlu O. (2015) Main Memory Scaling: Challenges and Solution

Directions. In: Topaloglu R. (eds) More than Moore Technologies for Next Generation

https://doi.org/10.1007/978-3-642-45030-3_46
https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

Computer Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2163-

8 6

17. Bitton et al., 1984 Dina Bitton, David J. DeWitt, David K. Hsaio, and Jaishankar Menon.
1984. A taxonomy of parallel sorting. ACM Comput. Surv. 16, 3 (Sept. 1984), 287-318.
DOl:https://doi.org/10.1145/2514.2516

18. Zurek et al., 2013 Dominik Zurek, Marcin Pietron, Maciej Wielgosz, Kazimierz Wiatr,
“ Comparison of Hybrid Sorting Algorithms Implemented on Different Parallel Hardware
Platforms“ACC AGH Cyfronet, Krakow, PolandComputer Science, 14 (4),
2013DO0I:10.7494/csci.2013.14.4.679

19. Waltari et al., 1999 M. Waltari and K. Halonen, "A switched-opamp with fast common
mode feedback," ICECS'99. Proceedings of ICECS '99. 6th IEEE International Confer-
ence on Electronics, Circuits and Systems (Cat. N0.99EX357), 1999, pp. 1523-1525 vol.3,
doi: 10.1109/ICECS.1999.814460.

20.Jan et al., 2012 Bilal Jan, Bartolomeo Montrucchio , Carlo Ragusa , Fiaz Gul Khan and
Omar Khan, “FAST PARALLEL SORTING ALGORITHMS ON GPUS”, DOI :
10.5121/ijdps.2012.3609

21. Alaparthi et al., 2009 S. Alaparthi, K. Gulati and S. P. Khatri, "Sorting binary numbers in
hardware - A novel algorithm and its implementation," 2009 IEEE International Sympo-
sium on Circuits and Systems, 2009, pp. 2225-2228, doi: 10.1109/ISCAS.2009.5118240.

22. Matai et al., 2016 Janarbek Matai, Dustin Richmond, Dajung Lee, Zac Blair, Qiongzhi
Wu, Amin Abazari, and Ryan Kastner. 2016. Resolve: Generation of High-Performance
Sorting Architectures from High-Level Synthesis. In Proceedings of the 2016 ACM/SIGDA
Interna-tional Symposium on Field-Programmable Gate Arrays (FPGA '16). Association
for Com-puting Machinery, New York, NY, USA, 195-204.

DOl:https://doi.org/10.1145/2847263.2847268

https://doi.org/10.1007/978-1-4939-2163-8_6
https://doi.org/10.1007/978-1-4939-2163-8_6
https://dx.doi.org/10.7494/csci.2013.14.4.679
https://doi.org/10.20944/preprints202109.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2021 d0i:10.20944/preprints202109.0174.v1

23. Bentley et al., 1997 Bentley, J.L. and Sedgewick, R., 1997, January. Fast algorithms for
sorting and searching strings. In Proceedings of the eighth annual ACM-SIAM symposium
on Discrete algorithms (pp. 360-369).

24. Xiao et al., 2000 Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht. 2001. Improving
memory performance of sorting algorithms. <i>ACM J. Exp. Algorithmics</i> 5 (2000), 3—
es. DOI:https://doi.org/10.1145/351827.384245

25. Széll et al.,, 2006 A. Széll and B. Fehér, "Efficient sorting architectures in FPGA", Proc.

Int. Carpathian Control Conf. (ICCC), pp. 1-4, May 2006.

https://doi.org/10.20944/preprints202109.0174.v1

