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Abstract—The emergence of Unmanned Aerial Vehicles (UAVs)
raised multiple concerns, given their potentially malicious misuse
in unlawful acts. Vision-based counter-UAV applications offer a
reliable solution compared to acoustic and radio frequency-based
solutions because of their high detection accuracy in diverse
weather conditions. The existing solutions work well on trained
datasets, but their accuracy is relatively low for real-time detec-
tion. In this paper, we model deep learning-empowered solutions
to improve the multiclass UAV’s classification performance using
single-shot object detection algorithms (YOLOv5 and YOLOv7).
They efficiently and correctly differentiate between multirotor,
fixed-wing, and single-rotor UAVs in challenging weather condi-
tions. Experiments show that the suggested technique is reliable
with an overall best average-classification precision of 86.7%,
88.5% average recall, 91.8% average mAP, and 58.4% average-
IoU.

Index Terms—UAV, Drones, YOLOv7, Multiclass classification,
Target detection.

I. INTRODUCTION

Unmanned air vehicles (UAVs) have several applications in
mobile communication, academia, and in vertical industries.
Besides those applications, the uncontrolled use of UAVs can
pose serious security threats to key public and private secu-
rity sensitive organizations. Federal Aviation Administration
(FAA) forecasts that the fleet of small UAVs should quadruple
by 2021, increasing from 1.1 million units in 2016 to 3.5
million by 2021 [1]. Nonetheless, the availability of drones has
posed a significant privacy and secrecy dilemma. Moreover, to
emphasize the significance of the problem, we noticed that
there was serious security threats from uncontrolled usage
of UAVs, that severely damaged the infrastructure [2] [3]
[4]. Drones were initially developed for defense and coun-
terinsurgency, which was controlled by aerospace and defense
industries. Usually, the most common types of UAVs adopted
in the global military applications are multirotor, fixed-wing,
and single-rotor UAVs as shown in Fig. 1. Based on the
above facts, we conclude that it is critical to have a drone
detection system which should be capable of classification and
localization of any type of drone, particularly those posing

security threats. UAV detection is an object detection problem
that has lately made significant progress. As a result, the object
detection task is an essential component of computer vision
in which many objects are categorized and their positions
are determined. Object localization can be interpreted in a
variety of ways, such as by creating a 2D or 3D bounding
box around the object of interest or by labeling every pixel
in the picture that includes the object. According to Lykou et
al. 6% UAV detection systems are based on acoustic sensors,
26% are radio frequency (RF), 28% are radar-based, and 40%
are visual [5] [27]. YOLO (You Only Look Once), a single
shot object detection and deep learning algorithm is popular
because of its durability, validity, quick detection, and rapidity
which ensures real-time detection [6]. YOLO consumes low
computation resources than many deep-CNN detectors, which
often demand 4 GB of RAM and computer graphics cards [7].
In this paper, we perform a multiclass and multiscale UAV
identification based on the most recent version of the YOLO
detector [8]. Below are the main contributions of this paper.
• To boost detection performance, we first created a dataset

with multiple types of UAVs in challenging weather
conditions that may exist in Pakistan’s airspace and then
eliminated class imbalance to correctly train the two latest
versions of YOLO i.e v5 and v7.

• Detailed performance evaluation of both models in terms
of true positive rate (sensitivity), precision, recall, mean
average precision (mAP), and intersection over Union
(IoU).

• We are the first to provide a multiclass UAV detection and
classification, which also include a comparative study of
YOLO v5 and V7 compared on a multiclass UAV dataset.

II. LITERATURE REVIEW

Drones have been used for both educational and commercial
reasons in a wide range of disciplines. The last decade has seen
a surge in studies looking at effective and precise methods
for UAV recognition. However, due to the nature of the
locations in which drones often operate, identification can be
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Fig. 1. Military UAVs (a) Multi-Rotor [22](b) Fixed-Wing [23] (c) Single-
Rotor [24].

a challenge. As a result, sophisticated methods are required
for UAV identification, whether they are flying alone or in a
swarm. Singha et al. developed a YOLOv4-based auto-drone-
detection system and tested it on drone footage of drones and
birds. This architecture was trained using 479 bird and 1916
drone images gathered from publicly available sources. The
achieved F1 score, mAP, recall, and precision values of 79%,
74.36%, 68%, and 95%, respectively, in [9]. YOLOv4 is used
to detect and identify UAVs in visual images of helicopters,
multirotors, and birds. This network has an mAP of 84%
and an accuracy of 83%. This paper excellently addresses
the detection problem, but it can only identify multirotor
and helicopter drones; it does not perform well for other
UAV types [10]. In [11], researchers solved the problem of
drones vs. birds by proposing a visual drone detector based
on YOLOV5 and an air-to-air UAV dataset containing small
objects and complex backgrounds. They additionally trained
a model using faster region convolutional neural network
(R-CNN) and feature pyramid networks (FPN) techniques.
YOLOv5 outperformed the faster R-CNN + FPN in both
simple cases and complex settings, with a 0.96 recall and
a 0.98 mAP. Coluccia et al. classified multirotor and fixed-
wing UAVs present in video clips by using YOLOv3 and
YOLOv5 architectures. The monitoring system was linked to a
warning algorithm that triggers the alarm whenever it detects a
drone. In terms of proper detection rate and average accuracy,
the results show increased performance, but it still needs
additional data in complex weather conditions for further
improvements [12]. The neural network was trained, tested,
and evaluated by using datasets containing different kinds of
UAVs (multirotor, fixed-wing, helicopters, and vertical takeoff
landing aircraft) and birds and achieved an 83% mAP [13].
The authors in [14] proposed Yolov5-based multirotor UAV
target detection. They replaced the baseline model’s backbone
with EfficientLite for parameter reduction and computation,
introduced adaptive feature fusion to facilitate the fusion
of feature maps at various scales, and added angle as a
constraint to the baseline loss function. The results showed that
EfficientLite struck an optimal balance between the number
of parameters and detection accuracy, with enhanced target
identification in comparison to the baseline model. [15] pro-
posed one-stage detector-based deep learning with simplified
filtering layers. For lower complexity, an SSD-AdderNet was
designed to efficiently reduce multiplications performed in the
convolutional layer. The video data contained varying sizes of
drones. The AdderNet’s accuracy was lower than other well-
known methods for training on RGB images, but it achieved

noteworthy complexity reduction. In contrast, when tested
on IR pictures, the SSD performance of AdderNet is much
higher than that of competing algorithms. Real-time image
classification was performed by training a deep learning model
on stereoscopic pictures [16]. This research confirmed that
synthetic pictures may be effectively used to speed up the so-
lution of image classification issues for imbalanced, skewered,
or no-image dataset problems. A convolutional neural network
(CNN) based model presented in [17] detected UAVs present
in video footage. This model was trained with computer-
generated visuals and then tested using a real-world drone
dataset. Drones were categorized as either DJI Mavics, DJI
Phantoms, or DJI Inspires with an average accuracy of 92.4%.
In [18], researchers used multi-stage feature fusion utilizing
multi-cascaded auto-encoders to eliminate rain patterns in
input pictures and used ResNet as a feature extractor. This
system can successfully block the entry of UAVs into the
airspace with an average identification accuracy of 82% and
24 FPS.

After screaming through the literature, we notice that signif-
icant improvement in drone detection technology and solutions
is required. Multirotor UAVs (quadcopters) have a substantial
market share, so these UAVs need to be closely watched
those for safe operation as small size drone detection has
multiple difficulties. Consumer-grade UAVs often fly at low
altitudes, producing complex and changeable backgrounds and
frequently being obscured by things like trees and homes.
Regular aircraft, such as planes and helicopters, may often
fly over a location, such as an airport or a hospital. The de-
tection technique should be capable of distinguishing between
them and different types of UAVs. UAVs may emerge from
all directions, so monitoring systems should be capable of
detecting multiple directions at once. Our problem statement
is the multiclass detection and classification of UAVs under
complex weather conditions. That’s why we used the two
latest and fastest object detection algorithms, YOLOv5 and
YOLOv7.

III. SINGLE-STAGE OBJECT DETECTION ALGORITHMS

A. YOLOv5

YOLOv5 is one of the most recent versions of the YOLO
family which is presented in Fig. 2. Likewise, it has been
known to exceed every iteration of itself due to advancements
in its architecture. YOLOv5 is distinct from earlier releases
because it integrated PyTorch instead of Darknet. It uses
CSPDarknet53 as its structural support in the backbone block
which eliminates the redundant gradient information present
in large backbones. It also incorporates gradient change into
feature maps, which speeds up the inference rate, improves
accuracy, and shrinks the size of the model by reducing the
number of parameters. It boosts the information flow by using
the path aggregation network (PANet) in the neck block. A
novel feature pyramid network (FPN) with numerous bottom-
up and top-down layers is adopted by the PANet architecture
which enhances the model’s transmission of low-level features
[19].
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B. YOLOv7

YOLOv7 is a real-time single stage object detection algo-
rithm which is claimed to outperform all YOLO models in
precision and speed and achieved the maximum average pre-
cision of accuracy of 56.8% [20] on COCO dataset. YOLOv7
has head, a neck, and a backbone in its architecture as shown
in Fig2. The projected model outputs are located in the head.
YOLOv7 is not constrained to just one head because it was
inspired by Deep Supervision, a method used in training deep
neural networks. The lead head is in charge of producing
the ultimate product, while the auxiliary head is utilized to
support middle-layer training. To further improve the model
training, a Label Assigner method was developed that assigns
soft labels after taking ground truth and network prediction
outcomes. The Extended Efficient Layer Aggregation Network
(E-ELAN) performs the main computation in the YOLOv7
backbone. By employing ”expand, shuffle, merge cardinality”
to accomplish the capacity to constantly increase the learn-
ing capability of the network without breaking the original
gradient route, the YOLOv7 E-ELAN architecture helps the
network improve learning.

detector.jpg

Fig. 2. Block Diagram of Single Stage Object Detector Algorithms.

IV. DATASET AND MODEL TRAINING

In this paper, we evaluate the two most recent models of
YOLO, named YOLOv5 and YOLOv7. Both of them require
the dataset to be available with the class category, bounding
boxes, and annotation files. We used Roboflow [21], an open-
sourced dataset platform, to make a dataset that had three dif-
ferent classes of UAV, i.e., multirotor, single-rotor, and fixed-
wing. For this, we merged three different datasets depicted in
Fig. 3: single-rotor UAVs (1407 images) [22], multirotor UAVs
(1263 images) [23], and fixed-wing UAVs (1753 images) [24],
and that dataset contained 4423 images. We use 70% of
the dataset for training (3096 images), and 30% for testing
(1372). Before training, the images underwent preprocessing,
including a 416 × 416 resizing, contrast enhancement, and
then model training. To have smooth data training without
larger loss and over-fitting, we set the hyper-parameters in
the below-discussed manner. The initial learning rate (lr0) for
Adam and the SGD optimizer was set at 0.01. For YOLOv7,

the one-cycle learning rate (lrf) is 0.1 and for YOLOv5, it is
0.01 at the end. With a weight decay of 0.0005, the momentum
for the SGD optimizer was set to 0.937. The first warmup
momentum is 0.8 and the initial warmup bias is 0.1 at the
warmup epoch of 3.0. The box loss gain is 0, the class loss
gain is 0, the object loss gain is 1, and the focal loss gamma
is 0. The anchor-multiple threshold is 4.0, the IoU training
threshold is 0.20, and there are 0 anchors in each output grid.
The dataset was trained on Google Colab with a K80 GPU
and 12GB RAM, and then we evaluated the trained models’
performance using standard evaluation metrics used in the
literature like precision, recall, mAP, and IOU.

The box loss of YOLOv5 during training went from
0.090.04, while for YOLOv7 it was 0.005-0.035, shown in
Fig. 4. YOLOv7 has low box loss, which means that it has
excellent capability to locate an object’s center point and
with a predicted bounding box that covers the specific object
quite well. The objectness loss for YOLOv5 is 0.019-0.014
during training and YOLOv7 has 0.008-0.006. Each box has an
associated prediction called ”objectivity”. YOLOv7 performs
quite well in scoring objects with high precision values. That’s
why its object loss is quite low as compared to YOLOv5.
A classification loss is applied to train the classifier head to
determine the type of target object. Its values are 0.035-0.010
for YOLOv5 and 0.0150-0.0025 for YOLOv7. YOLOv5 shows
an increased classification loss as compared to YOLOv7,
which means that YOLOv7 will have high threshold detection
accuracy in unknown scenarios. The precision, recall, mAP,
and IoU graphs over 10 epochs for both models show an
increasing trend, which implies that both models’ learning
patterns are going well. These results still have room for
improvement, which will be addressed in future work.

Fig. 3. Annotated Dataset: Bounding boxes on Ground truth images [22]-
[24].

V. EVALUATION OF TRAINED MODELS

The models’ evaluation is performed using multiple evalua-
tion metrics like confusion matrix, precision, recall, mAP, and
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Fig. 4. Training Performance w.r.t epochs (a) YOLOv5 (b) YOLOv7.

IoU values. Table I and II give us the detailed performance
evaluation of each target class. YOLOv5 achieved the highest
precision of 92.7% while detecting single-rotor UAVs, the
highest recall of 92.1%, the highest mAP of 93.8%, and the
highest IoU of 50% for multirotor UAVs. This means that
YOLOv5 has the best capability for immediate multirotor UAV
detection for real-time scenarios as shown in Table I. YOLOv7
achieved the highest precision of 94.4% and the highest IoU
of 60.5% when faced with single-rotor UAVs. It achieved
the highest recall of 92.5% and the highest mAP of 94.9%
for multirotor UAVs. This means that YOLOv7 has improved
detection competence for both single and multirotor UAVs in
challenging and complex conditions. For fixed-wing UAVs,

YOLOv5 achieved the highest precision of 80% and YOLOv7
achieved the highest recall value of 84.3%, the highest mAP
of 86.6%, and the highest IoU of 59%.

TABLE I
EVALUATION METRICS FOR YOLOV5

Class Precision(%) Recall(%) mAP(%) IOU(%)
Fixed wing 80 69.8 75.6 40
Multirotor 81.4 92.1 93.8 50
Single-rotor 92.7 74.4 84.8 45.5
Average 84.7 78.8 87.4 42.5

If we compare the overall/average metrics evaluation as
presented in Fig. 5, then YOLOv7 achieved the best average
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TABLE II
EVALUATION METRICS FOR YOLOV7

Class Precision(%) Recall mAP(%) IOU(%)
Fixed wing 78.1 84.3 86.6 59
Multirotor 90.3 92.5 94.9 55.7
Single-rotor 94.4 88.7 94.0 60.5
Average 87.6 88.5 91.8 58.4

precision of 87.%, best average recall of 88.5%, best average
mAP of 91.8%, and best average IoU of 58.4% for multiclass
detection and classification of UAVs. This makes YOLOv7
the best model when anyone wants to perform multi-sized
and multiclass UAV target detection in the sky, urban, and
complex weather conditions. In real-time whenever we want a
model to recognize all UAVs operating inside the specified
territory, the by seeing the precision performance [25] we
suggest that YOLOv7 be used. The recall score indicates the
learning model’s ability to properly identify positives from
real positives. Unlike the precision metric, this value assesses
the effectiveness of the algorithm based on the correctness
of all positive predictions [26]. YOLOv7 has greater recall
score which indicates that it has the increased and efficient
ability to perform classification between multiple types of
UAVs relevant to our application.

Fig. 6 depicts the confusion matrix of the trained models
over 10 epochs. Multirotor has the highest true positive rate
(TPR) of 97% for the YOLOv5 model, single-rotor has the
highest TPR of 82% for the YOLOv7 model, while fixed-
wing UAV showed the highest TPR of 91% during YOLOv5
model training. TRP is also called ”Sensitivity”. That means
that the YOLOv7 model is most sensitive to single-rotor and
fixed-wing UAVs. Fig. 7 shows the results of the models when
they were tested with very small-sized targets for detection and
classification. YOLOv7 achieved the best test accuracy of 98%
for single-rotor UAV, YOLOv5 achieved the best test accuracy
of 87% for multirotor UAV, and YOLOv7 achieved the best
test accuracy of 90% for fixed-wing UAV. Both YOLO v7
and v5 were trained using 10 epochs each. The epochs were
completed in 1.341 hours by YOLOv7, compared to 0.314
hours by YOLOv5. YOLOv5 utilized 283 total layers and
extracts 6465087 training parameters and 6465087 training
gradients with 20.8 GFLOPs, while YOLOv7 utilized 314
layers total and extracts 36492560 training parameters and
6194944 training gradients with 103.2 GFLOPs for 10 epochs.

A. Comparison with State-of-the art

The state-of-the-art comparison of the proposed YOLOv5
and v7 with the schemes mentioned in the literature is shown
in Table III. It is evident that mAP of YOLOv5 and v7 has
outperformed the work given in [9], [10], [11] and [13]. The
proposed YOLOv5 scheme has also performed well in terms
of F1 score and yielded the highest value compared to both
the YOLOv4 and YOLOv5 existing schemes. Moreover, we
identified that no prior work has considered YOLOv7 for
drone detection and classification. Therefore, in this paper,

Fig. 5. Average Evaluation Metrics of YOLOv5 and YOLOv7.

Fig. 6. Confusion Matrix(a) YOLOv5 (b) YOLOv7.

we implemented YOLOv7 on the same data set and achieved
a 91.8% mAP. Present study1 shows the results achieved by
training dataset on YOLOv7 and Present study2 represents
results on YOLOv5.

VI. CONCLUSION

In this paper, we show how a single-stage object detector
(YOLOv5/v7) based on a deep neural network can detect
and identify multirotor, fixed-wing, and single-rotor UAVs.
That’s why we grounded a multiclass UAV dataset with
automatic annotation, and then we made sure that all classes
had the same number of images for model training. This step
removed the problems of data imbalance and model over-
fitting. This dataset contained images with varied, complex,
and challenging backgrounds, which increased the trained
model’s credibility for real-time detection. The results showed
that the trained models can perform multiclass classification
and detection with high precision and mAP. In our future
study, we intend to prove the feasibility of detecting small
flying objects through camera images using our improved
drone detector in real-time with implementation on leading-
edge devices.
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TABLE III
COMPARISON WITH START-OF-THE-ART.

Reference Dataset YOLO version mAP (%) Recall(%) F1 (%)
Present study1 Roboflow YOLOv7 91.8 88.5 91
Present study2 Roboflow YOLOv5 87 78 92
[9] Self Collected YOLOv4 74.36 (↓ 17.44)1 (↓ 12.64)2 68(↓ 20.5)1(↓ 10)2 79 (↓ 12)1(↓ 13)2
[10] Drone-Data-Set YOLOv4 84 (↓ 7.8)1(↓ 3)2 84 (↓ 4.5)1(↓ 6)2 83 (↓ 8)1(↓ 9)2
[13] Self Collected YOLOv4 83 (↓ 8.8)1 (↓ 4)2 83 (↓ 5.5)1(↓ 5)2 83 (↓ 8)1(↓ 9)2
[11] Det-fly & Com-

petition
YOLOv5 71 (↓ 20.8)1(↓ 16)2 96 (↑ 7.5)1(↑ 18)2 Not mentioned

[12] Little Birds in
Aerial Images,
Competition
& Windmills
dataset

YOLOv5 93.55 (↑ 1.75)1(↑ 6.55)2 87.4 (↓ 1.1)1(↑ 9.4)2 78 (↓ 13)1 (↓ 14)2

(2).jpg

(1).jpg

Fig. 7. Detection Results of Single-rotor, Multirotor and Fixed-wing UAVs
by (a) YOLOv5 (b) YOLOv7
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