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ON IMAGE FORMULAE LEADING TO FRACTIONAL KINETIC EQUATIONS
SOLUTIONS VIA SUMUDU GENERALIZED K-BESSEL FUNCTIONS

KOTTAKKARAN S. NISAR!, MOHEB S. ABOUZAID?:3, FETHI BIN M. BELGACEM*

ABSTRACT. Recently, representation formulae and monotonicity properties of generalized k-Bessel func-
tions, Wk v,c., were established and studied by SR Mondal [24]. In this paper, we pursue and investigate
some of their image formulae. We then extract solutions for fractional kinetic equations, involving Wk
v,c, by means of their Sumudu transforms. In the process, Important special cases are then revealed,

and analyzed.

1. INTRODUCTION

The k-Bessel function of the first kind defined by the following series [30] (also, see [10]):

. = ()., -1)" (z/2)"
HEE =D e (1)

where k € R; £,1,d,€ C; R(§) > 0 and R (&) > 0.
Here (n),, , is the k—Pochhammer symbol defined by (see [13])

. . B (ke R e C\{0}) 12)
h nn+k)..(n+ -1k  (neNneC)
while I'x(z) denotes the k—gamma function defined by (see [13])
o0 k
[y (2) = / e Tt dt, R(z) >0, k>0 (1.3)
0
For k = 1, T'k(z) reduces to I' (z) and have the following relations,
z _ T
Ti(z) = kEIT (E) , (1.4)
and
Ti(x + k) = 2T (x). (1.5)
The well known Beta function [29] defined by
' (a)I'(b)
by= [ t* 1 -t)dt = ———~ b>0). 1.6
Bah) = [eta—o e L @0 (16)
The generalized hypergeometric function ,Fy(a1,...,ap;c1,...,cq; ), is given by the power series [29]
o~ (a)k o (ap)e g
Fylay,...,ap;¢c1,...,Cq32) = A z| <1, 1.7
p Q( 1 py) C1 q ) ’;)(cl)k"'(cq)k(l)k | | ( )
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where ¢;, (i = 1,2.---,q) can not be zero or a negative integer. Here p or ¢ or both are allowed to be
zero. The series (1.7) is absolutely convergent for all finite z if p < ¢ and for |z] < 1 if p = ¢+ 1. When
p > q+ 1, then the series diverge for z # 0 and the series does not terminate.

The generalized Wright hypergeometric function ,t,(z) is given by the series [42]

az +71k) zF
1 Z F(b + k) KU (18)

(@i, )1
(ij 773)

where a;,b; € C, and real v;,n; € R (¢ = 1,2,...,p;j = 1,2,...,¢). The asymptotic behavior of this

ptq (2) = p¥q

function for large values of argument of z € C were studied in [15,21] and under the condition

q p
o= vi> -1 (1.9)
j=1 i=1

The more properties of the Wright function are investigated in [20-22,42,43]. The Mittag-Leffler function
E, (2) (see, [23]) and E,, (x) (see, [41]) respectively defined by

oo Zn
E = — ; 1.1
o (2) gr(pnﬂ),(z,p,emd<0,éﬁ(p)>0> (1.10)
Cilz] <0, R 0,R 0). 1.11
ernJr z,p,m € Ci 2| (p) > 0,R(n) >0) (1.11)
Recently, SR Mondal [24] gives the new generalization of k-Bessel function Wf‘,, . and is defined by
- (=c)" x\2r+¥
W = — (= 1.12
”’C(m) s Te(rk + v + k)r! (2) ’ ( )

where k > 0, > —1 and c € R.
The Sumudu transform introduced by Watugala (see [39,40]). For more details about Sumudu trans-

form, see ( [1-9]). The Sumudu transform over the set functions
A= {f(t) ‘3 M, 1,1 > 0,|f (1) < MelV7 | ift e (—1)7 x [0,00)}7
is defined by
G (u) = S[f (1) ;u] = /Ooof(ut)e_tdt, we (—m,m). (1.13)

The Sumudu transform of k— Bessel function is given by

S (2)] = /O e tE (ut)dt
00 oo r 2r4- &
_t (—c¢) ut B
- u dt
/0 c ;Fk(rk+u+k)r!<2)

0o o 0o L42r
= Z (=) / et ut dt
Iy (rk+p+k)r! Jo 2
(=

= (=0T (2r+ £ +1) L42r
72 Te(rk+ p+ k) r! (5) ’ (1.14)

Now, using the relation

Ty (7) = kiIT (%) . (1.15)
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we have the following

N (o) T (£ 42r+1) fuyb+2r
S [wk = .k - 1.16
[ ”’C(x)] gk’"+kf(r+ﬁ+1)r!(2) (1.16)
Denoting the left hand side by G(u), we have
Gu)=S8 [wfw(t), u]
U\E  _u (£+41,2) cu?
=|=) k%0 k ’ - —. 1.1

(3) ey | (1.17)

In this paper, our aim is to investigate fractional integration of (1.12) including image formulas and

solutions of fractional kinetic equation via Sumudu transform.

2. IMAGE FORMULA OF W (2)

The fractional integrals of a function f(z) of order n [32] are given by

(10 f) (2) = F(ln) /OZ . f(f))ln it (z>0) (2.1)
and
(I7f) (z) = F(ln)/z (t_f(zt))l_ndt (z >0) (2.2)

The fractional derivatives of a function f(z) of order 5 [32] are given by

q \ R+l B
(Dngf) (z) = <dz> (Ié+77+[5R(77)]f> (2)

1 d [R(m)]+1 £(t)
- 1—77+[§mn)]<dz) /0 Goprmardt (2>0) (2.3)

and

(D) (2)

g\ RO
(dz) ([O+n+[ )] f) )

1 g\ RO+ roo £0)
1—77+[§)%7)]<_dZ) / =yt (>0 (24)

Now, we give some image formulas of (1.12) using (2.1)-(2.4).

Theorem 1. Letk > 0,v > —1,R(n) > 0 and a,c € R then

a

(Bt we (VD) @) =1 (3) et WE e (oVD), (2> 0) (2.5)

Proof. Let the left hand side (LHS) of (2.5) is denoted by £, and using the (1.12), we get

0o , a 2r+¢
& = (B wetavh) () = (I&’f: > s (3 ) )
r=0

Using (2.1), we have

x % e _A\T 27’+%
o = 1 / t S (=) avit dt.
L(n) Jo (@—0)'"7 = Te(rk+o+k)rt \ 2
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Interchanging the summation and integration and then evaluating the inner integral by substituting

t = xu, we get

1 o (76)7‘ an 2r+¥ 1 e .
L = TTx (1 — =14 ;
© L'(n) ;Fk(rk+v+k)r! (2) /O w1 — )" du

In view of (1.4) and (1.6) we arrived the required result. O

Corollary 2.1. If we set ¢ =1 in Theorem 1, then we get the fractional integration of k— Bessel function

JE(z) as,
a

(1 tE 75 av) (@) =57 (5) " a3 (/). (2.6)
which is equation (12) of [16].

Theorem 2. Let k > 0,v > —1,R(n) > 0 and a,c € R then

_v a a\N~"  _wyn_ a
(Iﬁt s Vo (ﬁ)) (r) = k" <§> pwT3 "W ke (ﬁ) , (z>0). (2.7)
Proof. Let the LHS of (2.7) is denoted by £,,

g, = (1"t (a )) T
( v,c \/273 ( )
Using (2.2) and using the (1.12), we get

oo

R Gl (—c)" a s
2= '(n) /z (t —ax)t=n TZ: I (rk + v + k)r! <2\/i> dt

=0

Interchanging the summation and integration and then evaluating the inner integral by substituting

t =, we get

1 — (—o)" a\2rty ! v
£, = (f) a:_?_r_l/ Wt (1 — W) Y,
2 T(n) ; Te(rk+v+k)r! \2 o ( )

In view of (1.4) and (1.6) we arrived the required result. O
Corollary 2.2. If we set c =1 in Theorem 2, we get
LU a a\N~" _w,n_ a
(Iit x "N 1,]11){ <\/i)> (x) = k" (§> x T3 1']11;{+7]k (\/;j) s (.T > 0) (28)
which is equation (13) of [16].
In view (2.3) and (2.4) , we have the following left and right handed fractional differentiation as follows:

Theorem 3. Letk > 0,v > —1,R(n) > 0 and a,c € R then

KR _ a\" v m
(D3, [tEWE (avD)]) (@) =7 (5) PEAWE  (avE), (z>0). (2.9)
Proof. Using the definition of (1.12) and (2.3), we can easily find the required result. So the details are
omitted. 0

Theorem 4. Let k > 0,v > —1,R(n) > 0 and a,c € R then

(DZ [tﬁ”IWic (\2)]) (z) = k" (g)”f%%*lwg_nkyc (\;5) . (z>0). (2.10)
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Proof. Using the definition of (1.12) and (2.4), we can easily find the desired result. So the details are
omitted. 0

Corollary 2.3. If we set ¢ =1 in Theorem 3, we get
v _ a\" w.,n
(D1 [tEWE(avD)]) (@) =7 (5) pETRIE (av/T) (2> 0). (2.11)
which is equation (14) of [16]

Corollary 2.4. If we set ¢ =1 in Theorem 4

<D’1 {tE”IW};l (%)D (z) =k (g)”x*%*%ﬂﬁj_nk <\2> . (z>0). (2.12)

which is equation (15) of [16]
3. SOLUTION OF GENERALIZED FRACTIONAL KINETIC EQUATIONS (GFKE) INVOLVING (1.12)

In this section, we consider (1.12) to obtain the solution of the fractional kinetic equations using
Sumudu transform. For more details about GKFE and its solutions, one can refer various paper available
in the literature ( [11,12,17,18,25-28,31,33-36,44]).

As mentioned in [19],the destruction rate and the production rate as follows,

dQ
w0 (Q1) +p(Qr), (3.1)

where @Q; described by Q¢ (t*) = Q (t — t*) ,t* > 0.
If spatial fluctuation and inhomogeneities in the quantity Q(¢) are neglected, then (3.1) reduced into

Qi
== —aQu). (3.2)

which is the number density of species i at time ¢ = 0 and ¢; > 0 is given by the initial condition
Q;(t =0) = Qo. Now after integrating and decline the index i, (3.2) reduced into

Q(t) — Qo = —co x 0D 'Q(t) (3.3)

where oD, ! is the Riemann-Liouville fractional integral operator.

Haubold and Mathai [19] gives a generalized form of the fractional kinetic equation (3.2) as follows

Q(t) — Qof(t) = —c"o Dy " Q(t), R(v) > 0, (34)
where
D i) = = [ (=W fudut > 0,% 0 3.5
D0 = g5 [ (€= )t > 0.R0) > 0 (35)
The solution of equation (3.4) is true for
_ = (_1)n vn
Q(t) = Qo nz:% W(Ct) : (3.6)
The use of Laplace transform [37] to (3.4) gives
_ F(p)
LiQ®)] = QOW

= QoY (0™ (W) FEkn € Qo] 1<, (3.7)
n=0
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where

Fo) =110 = [ e 10t R >0 (3.8)
Theorem 5. If d > 0,v > 0,u > —1,t € C and ¢,k € R then the solution the equation
Q(t) = Qo W . (d"t") —d” oDV Q(t), (3.9)
is given by the following formula
o, Z [v(2r + & )+1] 1 (d"tu)z”?
Fk (rk+p+Xx)rl ¢t 2
X By y(oryuy (—d"tY). (3.10)

where E, (a4 1y (—d"t") is the generalized Mittag-Leffler function [41]
Proof. The Sumudu transform of Riemann-Lioville fractional integral operators is given by
S{oD;V f(t);u} = u"G(u), (3.11)

where G(u) is defined in (1.17). Now applying Sumudu transform both sides of (3.9) and applying the
definition of k-Bessel function given in (1.12), we have

Q" (u) = SQ () u]
= QoS [Wi,c (d“t");u] —d”S [oD77Q (1) 5 u]

o | [Ty @ (ut)\
= o /0 € ;Fk(rk—i—u—&—k)r!( 2 ) dt]
—d"u" Q" (u), (3.12)
where
S{t" '} = ut (). (3.13)

By rearranging terms we get,

Q" (u) + d"u’ Q" (u)
B oo (—C)T v 2r+ &
B QO;Fk(rk+u+k)r! (2)

et (ut)’ ) gt

X

s v(2r +B) + 1] furd\ 2 TE

N Z:: rkJr,u+k) < 2 > ’
Therefore

oy () T2 + ) + 1) ik

@0 =a) T (5)

X {u"<2r+ﬁ> i [—(du)V]"} , (3.14)

n=0
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Applying inverse Sumudu transform of (3.14), and by using

tl/l

S {u”t) = (V),%(V) >0, (3.15)
we have
1 v(2r + ) 1] (ad” 2y
STAQT (W = Qo Z rk+u+k) <2>

x S {Z(—l)"(d)""u"<2’“+‘£+”>} :
n=0

which gives,

- <_C)T F[V(27" + %) + 1] dv 2r+%
t - _
o Qogo Ty (rk + i+ k) 7! 2
S p(2rtidn)-1
X —1"(d)*™
{nz—:()( @ Tlv(2r+£+n)]
gy O er £ ) L )T
- Or:o Fe(rk+p+k)rl 2
X i(_l)n(d)un v
n=0 Tv(2r+£+n)]
-Q Z V() +1] 1 (@)
= o ’I"Fk rk + o + k) t 2
X EV)V(2T+%) (_duty) )
which is the desired result. ]

Corollary 3.1. If we put k = 1 in (3.10) then we get the solution of involving Bessel function as:
Ifd>0,v>0,u>—1,€ C and c € R then the equation

Q) = Qo W, (d"t") —d” oDy "Q (1), (3.16)

have the solution:

B 0o (_c)TF(V(ZT—i—’u)_i_l)l Aty 2r4-p
o =ay CREC, ()

X Eu,y(2r+u) (7dyty) . (317)

Theorem 6. Ifa>0,d>0,u>—1,t € C,a# d and c,k € R, then the solution of equation

Q(t) = Qo WS . (d"t") —a” oD Q (1), (3.18)
is given by
2r + L&) +1] 1 farer\T TR
W Sk
(rk+p+Xx)rl ¢t 2

X Eu,y(Zr—i—%) (—Cl tu) . (319)
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Proof. Theorem 6 can be proved in parallel with the proof of theorem 5. So the details of proofs are
omitted. ]

Corollary 3.2. By puttingk = 1 in theorem 6, we get the solution of fractional kinetic equation involving
classical Struve function: If a > 0,d > 0,u > —1,t € C,a # d, then the equation

Q(t) = Qo W, . (d"t") —a” oDV Q (1), (3.20)

is given by the following formula

Q Z 2T+M+1)]1 dytl, 2r+p+1
0 r—i—u—i—l) t\ 2

X By y2rip) (—a”t"). (3.21)

Theorem 7. If d > 0,v > 0,u > —1,t € C and ¢,k € R, then the solution of

Q(t) = Qo Wy . (t") —d"e Dy "Q (1) , (3.22)
is given by
2r+k+1
-y D e (2)
% Byiary e (—d't"). (3.23)
Proof. The proofs of theorem 7 would run parallel to those of theorem 5. O

Corollary 3.3. If we set k =1 then (3.23) reduced as follows:
Ifd>0,v>0,u>—1,t€C and c € R, then the solution of the following equation

Q(t) = Qo W, (") —d’oDy "N (t), (3.24)
is given by the formula
X (=)' Tl @r+p)+1]1 ()2t
t) = ~ (=2
@) QO; C(r+p+k)r  t\2
X EV,I/(2T+;,L) (7dyty) . (325)

4. CONCLUSION

In this paper, we establish some fractional and integral representations of generalized k— Bessel func-
tion. Also, we give the solution of fractional kinetic equation involving k-Bessel function with the help of
Sumudu transform. This paper conclude with the remark that, the results given in this paper are gen-
eral and can lead to yield many fractional integrals (derivatives) involving the Bessel, generalized Bessel
and trigonometric functions by the suitable specializations of arbitrary parameters in the theorems and

corollaries.
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