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KOTTAKKARAN S. NISAR1, MOHEB S. ABOUZAID2,3, FETHI BIN M. BELGACEM4

Abstract. Recently, representation formulae and monotonicity properties of generalized k-Bessel func-

tions, Wk v,c., were established and studied by SR Mondal [24]. In this paper, we pursue and investigate

some of their image formulae. We then extract solutions for fractional kinetic equations, involving Wk

v,c, by means of their Sumudu transforms. In the process, Important special cases are then revealed,

and analyzed.

1. Introduction

The k-Bessel function of the first kind defined by the following series [30] (also, see [10]):

Jη,δk,ξ (z) :=

∞∑
n=0

(η)n,k
Γk (δn+ ξ + 1)

(−1)
n

(z/2)
n

(n!)
2 , (1.1)

where k ∈ R; ξ, η, δ,∈ C; < (δ) > 0 and < (ξ) > 0.

Here (η)n,k is the k−Pochhammer symbol defined by (see [13])

(η)n,k =

{
Γk(η+nk)

Γk(η) (k ∈ R;η ∈ C\ {0})
η (η + k) ... (η + (n− 1) k) (n ∈ N; η ∈ C )

(1.2)

while Γk(z) denotes the k−gamma function defined by (see [13])

Γk (z) =

∫ ∞
0

e−
tk

k tz−1dt, < (z) > 0, k > 0. (1.3)

For k = 1, Γk(z) reduces to Γ (z) and have the following relations,

Γk(x) = k
x
k−1Γ

(x
k

)
, (1.4)

and

Γk(x+ k) = xΓk(x). (1.5)

The well known Beta function [29] defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
, (a, b > 0). (1.6)

The generalized hypergeometric function pFq(a1, . . . , ap; c1, . . . , cq;x), is given by the power series [29]

pFq(a1, . . . , ap; c1, . . . , cq; z) =

∞∑
k=0

(a1)k · · · (ap)k
(c1)k · · · (cq)k(1)k

zk, |z| < 1, (1.7)
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where ci, (i = 1, 2. · · · , q) can not be zero or a negative integer. Here p or q or both are allowed to be

zero. The series (1.7) is absolutely convergent for all finite z if p ≤ q and for |z| < 1 if p = q + 1. When

p > q + 1, then the series diverge for z 6= 0 and the series does not terminate.

The generalized Wright hypergeometric function pψq(z) is given by the series [42]

pψq(z) = pψq

[
(ai, γ)1,p

(bj , ηj)1,q

∣∣∣∣z
]

=

∞∑
k=0

∏p
i=1 Γ(ai + γik)∏q
j=1 Γ(bj + ηjk)

zk

k!
, (1.8)

where ai, bj ∈ C, and real γi, ηj ∈ R (i = 1, 2, . . . , p; j = 1, 2, . . . , q). The asymptotic behavior of this

function for large values of argument of z ∈ C were studied in [15,21] and under the condition

q∑
j=1

ηj −
p∑
i=1

γi > −1. (1.9)

The more properties of the Wright function are investigated in [20–22,42,43]. The Mittag-Leffler function

Eρ (z) (see, [23]) and Eρ,η (x) (see, [41]) respectively defined by

Eρ (z) =

∞∑
n=0

zn

Γ (ρn+ 1)
, (z, ρ,∈ C; |z| < 0,< (ρ) > 0) (1.10)

Eρ,η (z) =

∞∑
n=0

zn

Γ (ρn+ η)
, (z, ρ, η ∈ C; |z| < 0,< (ρ) > 0,< (η) > 0) . (1.11)

Recently, SR Mondal [24] gives the new generalization of k-Bessel function Wkν,c and is defined by

Wkν,c(x) :=

∞∑
r=0

(−c)r

Γk(rk + ν + k)r!

(x
2

)2r+ ν
k

, (1.12)

where k > 0, ν > −1 and c ∈ R.

The Sumudu transform introduced by Watugala (see [39,40]). For more details about Sumudu trans-

form, see ( [1–9]). The Sumudu transform over the set functions

A =
{
f (t)

∣∣∣∃ M, τ1, τ2 > 0, |f (t)| < Me|t|/τj , if t ∈ (−1)
j × [0,∞)

}
,

is defined by

G (u) = S [f (t) ;u] =

∫ ∞
0

f (ut) e−tdt, u ∈ (−τ1, τ2) . (1.13)

The Sumudu transform of k− Bessel function is given by

S
[
Wkµ,c(x)

]
=

∫ ∞
0

e−tWkµ,c(ut)dt

=

∫ ∞
0

e−t
∞∑
r=0

(−c)r

Γk (rk + µ+ k) r!

(
ut

2

)2r+µ
k

dt

=

∞∑
r=0

(−c)r

Γk (rk + µ+ k) r!

∫ ∞
0

e−t
(
ut

2

)µ
k

+2r

dt

=

∞∑
r=0

(−c)rΓ
(
2r + µ

k
+ 1
)

Γk (rk + µ+ k) r!

(u
2

)µ
k

+2r

, (1.14)

Now, using the relation

Γk (γ) = k
γ
k
−1Γ

(γ
k

)
. (1.15)
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we have the following

S
[
Wkµ,c(x)

]
=

∞∑
r=0

(−c)rΓ
(
µ
k

+ 2r + 1
)

kr+
µ
k Γ
(
r + µ

k
+ 1
)
r!

(u
2

)µ
k

+2r

. (1.16)

Denoting the left hand side by G(u), we have

G (u) = S
[
Wkµ,c(t);u

]
=
(u

2

)µ
k

k−
µ
k 1Ψ1

[
(µ
k

+ 1, 2)

(µ
k

+ 1, 1)

∣∣∣∣− cu2

4k

]
. (1.17)

In this paper, our aim is to investigate fractional integration of (1.12) including image formulas and

solutions of fractional kinetic equation via Sumudu transform.

2. Image formula of W k
v,c(z)

The fractional integrals of a function f(z) of order η [32] are given by(
Iη0+f

)
(z) =

1

Γ(η)

∫ z

0

f(t)

(z − t)1−η dt (z > 0) (2.1)

and (
Iη−f

)
(z) =

1

Γ(η)

∫ ∞
z

f(t)

(t− z)1−η dt (z > 0) (2.2)

The fractional derivatives of a function f(z) of order η [32] are given by

(
Dη

0+f
)

(z) =

(
d

dz

)[<(η)]+1 (
I

1−η+[<(η)]
0+ f

)
(z)

=
1

1− η + [<(η)]

(
d

dz

)[<(η)]+1 ∫ z

0

f(t)

(z − t)η−[<(η)]
dt (z > 0) (2.3)

and (
Dη
−f
)

(z) =

(
d

dz

)[<(η)]+1 (
I

1−η+[<(η)]
0+ f

)
(z)

=
1

1− η + [<(η)]

(
− d

dz

)[<(η)]+1 ∫ ∞
z

f(t)

(t− z)η−[<(η)]
dt (z > 0) (2.4)

Now, we give some image formulas of (1.12) using (2.1)-(2.4).

Theorem 1. Let k > 0, v > −1,<(η) > 0 and a, c ∈ R then(
Iη0+t

v
kW k

v,c(a
√
t)
)

(x) = kη
(a

2

)−η
x
v
k
+ η

2W k
v+ηk,c

(
a
√
x
)
, (x > 0) (2.5)

Proof. Let the left hand side (LHS) of (2.5) is denoted by L1 and using the (1.12), we get

L1 =
(
Iη0+t

v
kW k

v,c(a
√
t)
)

(x) =

(
Iη0+t

v
k

∞∑
r=0

(−c)r

Γk(rk + v + k)r!

(
a
√
t

2

)2r+ v
k

)
(x) ,

Using (2.1), we have

L1 =
1

Γ(η)

∫ x

0

t
v
k

(x− t)1−η

∞∑
r=0

(−c)r

Γk(rk + v + k)r!

(
a
√
t

2

)2r+ v
k

dt.
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Interchanging the summation and integration and then evaluating the inner integral by substituting

t = xu, we get

L1 =
1

Γ(η)

∞∑
r=0

(−c)r

Γk(rk + v + k)r!

(a
2

)2r+ v
k

∫ 1

0

ur+
v
k (1− u)η−1du,

In view of (1.4) and (1.6) we arrived the required result. �

Corollary 2.1. If we set c = 1 in Theorem 1, then we get the fractional integration of k−Bessel function

Jkv (x) as, (
Iη0+t

v
k Jk
v (a
√
t)
)

(x) = kη
(a

2

)−α
x
v
k
+α

2 Jk
v+ηk

(
a
√
x
)
. (2.6)

which is equation (12) of [16].

Theorem 2. Let k > 0, v > −1,<(η) > 0 and a, c ∈ R then(
Iη−t
− v

k
−η−1W k

v,c

(
a√
t

))
(x) = kη

(a
2

)−η
x−

v
k
+ η

2−1W k
v+ηk,c

(
a√
x

)
, (x > 0). (2.7)

Proof. Let the LHS of (2.7) is denoted by L2,

L2 =

(
Iη−t
− v

k
−η−1W k

v,c

(
a√
t

))
(x)

Using (2.2) and using the (1.12), we get

L2 =
1

Γ(η)

∫ ∞
x

t−
v
k
−η−1

(t− x)1−η

∞∑
r=0

(−c)r

Γk(rk + v + k)r!

(
a

2
√
t

)2r+ v
k

dt

Interchanging the summation and integration and then evaluating the inner integral by substituting

t = x
u , we get

L2 =
1

Γ(η)

∞∑
r=0

(−c)r

Γk(rk + v + k)r!

(a
2

)2r+ v
k

x−
v
k−r−1

∫ 1

0

u1+r+ v
k (1− u)η−1du,

In view of (1.4) and (1.6) we arrived the required result. �

Corollary 2.2. If we set c = 1 in Theorem 2, we get(
Iη−t
− v

k
−η−1Jk

v

(
a√
t

))
(x) = kη

(a
2

)−η
x−

v
k
+ η

2−1Jk
v+ηk

(
a√
x

)
, (x > 0). (2.8)

which is equation (13) of [16].

In view (2.3) and (2.4) , we have the following left and right handed fractional differentiation as follows:

Theorem 3. Let k > 0, v > −1,<(η) > 0 and a, c ∈ R then(
Dη

0+

[
t
v
2kW k

v,c(a
√
t)
])

(x) = k−η
(a

2

)η
x
v
2k

+ η
2W k

v−ηk,c
(
a
√
x
)
, (x > 0). (2.9)

Proof. Using the definition of (1.12) and (2.3), we can easily find the required result. So the details are

omitted. �

Theorem 4. Let k > 0, v > −1,<(η) > 0 and a, c ∈ R then(
Dη
−

[
t−

v
k
−η−1W k

v,c

(
a√
t

)])
(x) = k−η

(a
2

)η
x−

v
k
− η2−1W k

v−ηk,c

(
a√
x

)
, (x > 0). (2.10)
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Proof. Using the definition of (1.12) and (2.4), we can easily find the desired result. So the details are

omitted. �

Corollary 2.3. If we set c = 1 in Theorem 3, we get(
Dη

0+

[
t
v
2kW k

1,c(a
√
t)
])

(x) = k−η
(a

2

)η
x
v
2k

+ η
2 Jk

v−ηk
(
a
√
x
)

(x > 0). (2.11)

which is equation (14) of [16]

Corollary 2.4. If we set c = 1 in Theorem 4(
Dη
−

[
t−

v
k
−η−1W k

v,1

(
a√
t

)])
(x) = k−η

(a
2

)η
x−

v
k
− η2−1Jk

v−ηk

(
a√
x

)
, (x > 0). (2.12)

which is equation (15) of [16]

3. Solution of Generalized Fractional Kinetic Equations (GFKE) involving (1.12)

In this section, we consider (1.12) to obtain the solution of the fractional kinetic equations using

Sumudu transform. For more details about GKFE and its solutions, one can refer various paper available

in the literature ( [11,12,17,18,25–28,31,33–36,44]).

As mentioned in [19],the destruction rate and the production rate as follows,

dQ

dt
= −d (Qt) + p (Qt) , (3.1)

where Qt described by Qt (t∗) = Q (t− t∗) , t∗ > 0.

If spatial fluctuation and inhomogeneities in the quantity Q(t) are neglected, then (3.1) reduced into

dQi
dt

= −ciQi(t). (3.2)

which is the number density of species i at time t = 0 and ci > 0 is given by the initial condition

Qi(t = 0) = Q0. Now after integrating and decline the index i, (3.2) reduced into

Q(t)−Q0 = −c0 × 0Dt
−1Q(t) (3.3)

where 0Dt
−1 is the Riemann-Liouville fractional integral operator.

Haubold and Mathai [19] gives a generalized form of the fractional kinetic equation (3.2) as follows

Q(t)−Q0f(t) = −cν0Dt
−νQ(t),<(ν) > 0, (3.4)

where

0Dt
−νf(t) =

1

Γ(ν)

∫ t

0

(t− u)ν−1f(u)du, t > 0,<(ν) > 0. (3.5)

The solution of equation (3.4) is true for

Q(t) = Q0

∞∑
n=0

(−1)n

Γ(νn+ 1)
(ct)

νn
. (3.6)

The use of Laplace transform [37] to (3.4) gives

L[Q(t)] = Q0
F (p)

1 + cνp−ν

= Q0

∞∑
n=0

(−c)nν(p)
−nν

F (p);n ∈ Q0, |
c

p
|< 1, (3.7)
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where

F (p) = Lf(t) =

∫ ∞
0

e−ptf(t)dt,R(p) > 0. (3.8)

Theorem 5. If d > 0, ν > 0, µ > −1, t ∈ C and c, k ∈ R then the solution the equation

Q (t) = Q0 Wkµ,c (dνtν)− dν 0D
−ν
t Q (t) , (3.9)

is given by the following formula

Q (t) = Q0

∞∑
r=0

(−c)r Γ
[
ν
(
2r + µ

k

)
+ 1
]

Γk (rk + µ+ k) r!

1

t

(
dνtν

2

)2r+µ
k

× Eν,ν(2r+µ
k

) (−dνtν) . (3.10)

where Eν,ν(2r+µ
k

) (−dνtν) is the generalized Mittag-Leffler function [41]

Proof. The Sumudu transform of Riemann-Lioville fractional integral operators is given by

S
{

0D
−ν
t f(t);u

}
= uνG(u), (3.11)

where G(u) is defined in (1.17). Now applying Sumudu transform both sides of (3.9) and applying the

definition of k-Bessel function given in (1.12), we have

Q∗(u) = S [Q (t) ;u]

= Q0S
[
Wkµ,c (dνtν) ;u

]
− dνS

[
0D
−ν
t Q (t) ;u

]
= Q0

[∫ ∞
0

e−t
∞∑
r=0

(−c)r

Γk (rk + µ+ k) r!

(
dν(ut)ν

2

)2r+µ
k

dt

]
− dνuνQ∗ (u) , (3.12)

where

S
{
tµ−1

}
= uµ−1Γ(µ). (3.13)

By rearranging terms we get,

Q∗ (u) + dνuνQ∗ (u)

= Q0

∞∑
r=0

(−c)r

Γk (rk + µ+ k) r!

(
dν

2

)2r+µ
k

×
∞∫

0

e−t (ut)
ν(2r+µ

k
)
dt

= Q0

∞∑
r=0

(−c)r Γ[ν(2r + µ
k ) + 1]

Γk (rk + µ+ k) r!

(
uνdν

2

)2r+µ
k

,

Therefore

Q∗ (u) = Q0

∞∑
r=0

(−c)r Γ[ν(2r + µ
k ) + 1]

Γk (rk + µ+ k) r!

(
dν

2

)2r+µ
k

×

{
uν(2r+µ

k
)
∞∑
n=0

[−(du)ν ]
n

}
, (3.14)
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Applying inverse Sumudu transform of (3.14), and by using

S−1 {uν ; t} =
tν−1

Γ (ν)
,< (ν) > 0, (3.15)

we have

S−1 {Q∗ (u)} = Q0

∞∑
r=0

(−c)r Γ[ν(2r + µ
k ) + 1]

Γk (rk + µ+ k) r!

(
dν

2

)2r+µ
k

× S−1

{ ∞∑
n=0

(−1)n(d)νnuν(2r+µ
k

+n)

}
,

which gives,

Q(t) = Q0

∞∑
r=0

(−c)r Γ[ν(2r + µ
k
) + 1]

Γk (rk + µ+ k) r!

(
dν

2

)2r+µ
k

×

{ ∞∑
n=0

(−1)n(d)νn
tν(2r+µ

k
+n)−1

Γ
[
ν
(
2r + µ

k
+ n

)]}

= Q0

∞∑
r=0

(−c)r Γ[ν(2r + µ
k
) + 1]

Γk (rk + µ+ k) r!

1

t

(
dνtν

2

)2r+µ
k

×

{ ∞∑
n=0

(−1)n(d)νn
tνn

Γ
[
ν
(
2r + µ

k
+ n

)]}

= Q0

∞∑
r=0

(−c)r Γ
[
ν
(
2r + µ

k

)
+ 1
]

r!Γk (rk + µ+ k)

1

t

(
dνtν

2

)2r+µ
k

× Eν,ν(2r+µ
k

) (−dνtν) .

which is the desired result. �

Corollary 3.1. If we put k = 1 in (3.10) then we get the solution of involving Bessel function as:

If d > 0, ν > 0, µ > −1,∈ C and c ∈ R then the equation

Q (t) = Q0 W1
µ,c (dνtν)− dν 0D

−ν
t Q (t) , (3.16)

have the solution:

Q (t) = Q0

∞∑
r=0

(−c)r Γ (ν(2r + µ) + 1)

Γ (r + µ+ 1) r!

1

t

(
dνtν

2

)2r+µ

× Eν,ν(2r+µ) (−dνtν) . (3.17)

Theorem 6. If a > 0, d > 0, µ > −1, t ∈ C, a 6= d and c, k ∈ R, then the solution of equation

Q (t) = Q0 Wkµ,c (dνtν)− aν 0D
−ν
t Q (t) , (3.18)

is given by

Q (t) = Q0

∞∑
r=0

(−c)r Γ
[
ν
(
2r + µ

k

)
+ 1
]

Γk (rk + µ+ k) r!

1

t

(
dνtν

2

)2r+µ
k

+1

× Eν,ν(2r+µ
k

) (−aνtν) . (3.19)
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Proof. Theorem 6 can be proved in parallel with the proof of theorem 5. So the details of proofs are

omitted. �

Corollary 3.2. By putting k = 1 in theorem 6, we get the solution of fractional kinetic equation involving

classical Struve function: If a > 0, d > 0, µ > −1, t ∈ C, a 6= d, then the equation

Q (t) = Q0 W1
µ,c (dνtν)− aν 0D

−ν
t Q (t) , (3.20)

is given by the following formula

Q (t) = Q0

∞∑
r=0

(−c)r Γ [ν (2r + µ+ 1)]

Γ (r + µ+ 1)

1

t

(
dνtν

2

)2r+µ+1

× Eν,ν(2r+µ) (−aνtν) . (3.21)

Theorem 7. If d > 0, ν > 0, µ > −1, t ∈ C and c, k ∈ R, then the solution of

Q (t) = Q0 Wkµ,c (tν)− dν0D
−ν
t Q (t) , (3.22)

is given by

Q (t) = N0

∞∑
r=0

(−c)r Γ [ν (2r + k) + 1]

Γk (rk + µ+ k) r!

1

t

(
t

2

)2r+k+1

× Eν,ν(2r+µ
k

) (−dνtν) . (3.23)

Proof. The proofs of theorem 7 would run parallel to those of theorem 5. �

Corollary 3.3. If we set k = 1 then (3.23) reduced as follows:

If d > 0, ν > 0, µ > −1, t ∈ C and c ∈ R, then the solution of the following equation

Q (t) = Q0 W1
µ,c (tν)− dν0D

−ν
t N (t) , (3.24)

is given by the formula

Q (t) = Q0

∞∑
r=0

(−c)r Γ [ν (2r + µ) + 1]

Γ (r + µ+ k) r!

1

t

(
t

2

)2r+µ+1

× Eν,ν(2r+µ) (−dνtν) . (3.25)

4. Conclusion

In this paper, we establish some fractional and integral representations of generalized k− Bessel func-

tion. Also, we give the solution of fractional kinetic equation involving k-Bessel function with the help of

Sumudu transform. This paper conclude with the remark that, the results given in this paper are gen-

eral and can lead to yield many fractional integrals (derivatives) involving the Bessel, generalized Bessel

and trigonometric functions by the suitable specializations of arbitrary parameters in the theorems and

corollaries.
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