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Article
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Abstract: Some recent observations of the universe seem to indicate that Dark Energy (DE) is not a
cosmological constant, but must be dynamical. On the other hand, Cold Dark Matter (CDM) has faced
several criticisms because there are observations whose explanation using CDM is not completely
satisfactory. In a previous work we found that if we take into account the energy of the Gravitational
Wave Background (GWB), we have to add a new term M = 2π2/λ2 to Einstein’s equations, where λ is
the Compton wavelength of primordial gravitons. Using the actual size of the present universe 1026m,
it implies that M ∼ 10−521/m2, just the size of the cosmological constant. We call it the Compton Mass
Dark Energy (CMaDE) model. We use M as a DE model and find that this model fits cosmological
observations better than the LCDM model. In the current work we use this model together with Scalar
Field Dark Matter (SFDM) model as the DM of the universe and analyze its consequences.

Keywords: dark energy; scalar field dark matter; cosmological models

1. Introduction
There is no doubt that the question of what the universe is made of is one of the most important

questions facing science today. We now know that galaxies and the universe contain a large amount
of matter whose nature is unknown. Something we call dark matter (DM) must explain the large-
scale structure of the universe and something we call dark energy (DE) must explain its accelerated
expansion. The Lambda Cold Dark Matter (ΛCDM) model was the best explanation we had for these
phenomena, however recently some observations of the universe have shown that this model faces
serious problems. According to DESI data it is very unlikely that the cosmological constant could be
the reason for DE [1,2]. And, for some years now there has been tension about the value of the constant
H0, the Hubble parameter measured today, which gives different values using different observations
from far and near [3]. For this reason we have to look for new alternatives for the nature of DE.

At the same time, Cold Dark Matter (CDM) faces astrophysical challenges, including the cusp-core
problem and missing satellites that can only be explained by adding extra physics to this candidate, but
these explanations are highly controversial [4,5]. The best alternative so far is to propose that a scalar
field is the dark matter. This model is Scalar Field Dark Matter (SFDM), [6–8] also called Ultralight-,
Fuzzy-, Wave-DM. This model gives more natural explanations for the phenomena observed in DM
and in recent times this model has been shown to give a natural explanation for the observed VPO
trajectories of satellite galaxies, i.e. the fact that satellite galaxies prefer to go in north-south trajectories
instead of spreading out homogeneously [9,10].

Cosmology integrates multiple branches of physics, with general relativity providing a frame-
work to describe cosmic evolution. Observational advances over the past century have refined our
understanding, yet gaps remain. Notably, the universe’s accelerated expansion [3,11] suggests the
presence of an unknown component—dark energy—often associated with Einstein’s cosmological
constant. While the ΛCDM model explains many observations, recent DESI results hint at a more
dynamic nature [1,2], challenging the assumption of Λ as a fundamental constant.

The Compton Mass Dark Energy (CMaDE) model, proposes that a background of gravitational
waves could account for dark energy’s effects [12,13]. Supported by recent pulsar timing array
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observations [14], this model naturally predicts the value of Λ and offers improvements over ΛCDM,
including a potential resolution to the Hubble tension. In this work, we explore CMaDE as a viable
explanation for dark energy and its implications for cosmology.

Understanding dark energy and dark matter remains central to modern cosmology. With experi-
ments like DESI [1,2] and LSST [15], we are entering a “golden age” of precision cosmology, allowing for
stringent tests of theoretical models. This work explores a hybrid approach—CMaDE+SFDM—where
dark energy arises from a gravitational wave background (GWB), and dark matter is described by a
scalar field of mass mΦ = 10−22 eV. We compare this model with ΛCDM and ΛSFDM by analyzing its
impact on cosmic evolution, the CMB, and the matter power spectrum.

This paper is structured as follows: Sections 2 and 3 outlines the theoretical foundations of CMaDE
and SFDM. Section 5 details the methodology, including the studied physical system and numerical
approaches, while the formalism regarding the combined model CMaDE+SFDM is described in Section
4. Section 6 presents the results in three parts: (i) base models (ΛCDM and ΛSFDM), (ii) incorporation
of CMaDE, and (iii) predictions of the hybrid model. Finally, Section 7 discusses conclusions and
future prospects.

2. The Compton Mass Dark Energy Model
It is a fact that we live in a gravitational wave background, there have been a huge number of

sources throughout the entire history of the universe and these waves remain here. In this work we
are interested in the primordial waves coming from the big bang and the inflationary period of the
universe. These waves grow with the expansion of the universe at the speed of light. In this section
we follow the ideas of [12] to derive the energy and the extra term in Einstein’s equations from these
waves.

In 2023, the NanoGrav collaboration detected evidence of a gravitational wave background
(GWB) at frequencies of nHz through pulsar timing arrays (PTAs) [14]. This discovery opens new
opportunities to study the gravitational wave background on cosmological scales. One of these new
ideas is the Compton Mass Dark Energy (CMaDE) model, which proposes that a gravitational wave
stores energy and drives cosmic acceleration [12].

The CMaDE model is based on the fact that these gravitational waves contain energy, in principle
this energy is very, very small, which is why no one had taken it into account. As we will see, this
energy is of the order of 10−33eV. In this section we will show how this energy implies a new term in
Einstein’s equations that we call M which today is just the size of the cosmological constant.

For this we make the following analogy. Massless particles of spin 0 or spin 1 follow the wave
equation, □Φ = 0 or □Aµ = 0. But if they have mass, they follow the Klein-Gordon equation, for
spin 0 particles □Φ − (mc/h̄)2Φ = 0 or the Proca equation for spin 1 particles □Aµ − (mc/h̄)2 Aµ = 0,
where m is the mass of the particle and h̄ is the reduced Planck constant h̄ = h/2π. The energy of any
massless particle is given by the famous Planck formula E = hν, where ν is the oscillation frequency of
the particle. If the particle is vibrating it contains energy and we can associate a virtual mass to the
particle E = hν = mgc2. This mass mg is a virtual mass, the graviton is still massless, in analogy to a
photon with frequency ν, it contains energy due to its vibration, we associate an energy and a virtual
mass to it, but the photon is massless. If we do this, we use this virtual mass in the massless graviton
equation and transform the graviton wave equation into a Proca type equation, the graviton equation
becomes

□gµν −
(mgc

h̄

)2
gµν = 0. (1)

where gµν is the perturbed spacetime metric gµν = ηµν + hµν. Note that GWBs are spacetime oscilla-
tions, they are not a source, they are part of the curvature of spacetime. Strictly speaking, this term
must be on the left-hand side of the Einstein equation, not the right-hand side. The Equation (1) is
a linearized generalization of all Einstein equations, to generalize it to the non-linearized Einstein
equations we use the Compton formula λ = h/mc, where λ is the Compton wavelength of the particle.
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If we use the relation 2Rµν ∼ □gµν = 0 for the Einstein tensor Gµν of the weak field approximation the
Einstein equation reduces to

□gµν − 2Mgµν = 0. (2)

where M is related to the graviton wavelenght as

M =
2π2

λ2 . (3)

Here λ is the Compton wavelength of primordial gravitons. However, the universe is expanding and
this fact must be taken into account. This means that λ is growing at the speed of light. Anything
traveling at the speed of light has a null 4-dimensional interval ds2 = −dt2 + a2dx2 = 0, which means
that λ = (c/H0)RH , where RH is the unitless integral

RH = H0

∫ a0

0

dt
a

(4)

where H0 is the Hubble constant today. Thus, what we call the CMaDE is the Einstein equation with
the extra term taken into account the energy of the GWB

Rµν −
1
2

Rgµν +Mgµν =
8πG

c4 Tµν. (5)

where the extra term M is given by the relation (3) and λ grows given by the integral (4).
We now obtain the size of these quantities. First we see that the current energy of the primordial

GWB is E = hν = hc/λ. If we take the Compton wavelength to be the size of the current universe we
have λ ∼ 1026m, we obtain that E ∼ 1033eV and M ∼ 10−521/m2, just the size of the cosmological
constant.

We can also take this DE theory as an effective model. This was done in [13] where observational
data from the cosmic chronometers, Pantheon, BAO and Planck2018 were found to indicate a statistical
preference for CMaDE over ΛCDM, with an improvement of ∆χ2 = 3.26 [13]. CMaDE successfully
reproduces key observables such as the cosmic microwave background (CMB) and the matter power
spectrum (MPS) while offering potential solutions to the Hubble tension.

An additional feature of CMaDE is that to maintain general covariance, the Bianchi identities
Rµν

;ν − 1/2gµνR,ν + gµνM,ν = κ2Tµν
;ν imply a natural energy exchange between DE and DM given

by
kcṀc2 = −κ2(ρ̇dm + 3Hρdm), (6)

Using (3) it is easy to see that M evolves according to the equation

Ṁ = Q
√

2c
π

M3/2

a
. (7)

Here kc calibrates the DE-DM interaction and Q the amount of GWB that expands the universe,
avoiding the amount of these waves that help for the structure formation. Bayesian analysis using
observational data suggests optimal values of Q = −0.43 and kc = 0.42 [13].

An effective equation of state (EoS) can also be derived

weff = −Q
π

√
2
3

Ω1/2
M

aH − 1. (8)

Numerical solutions show that weff → −1 for z ≳ 10−4, ensuring consistency with recombination
constraints. Additionally, deviations of H(z) from ΛCDM remain within 7% for z < 104, meaning
early-universe observables like the CMB remain unaffected while modifying late-time expansion.

Given these results, CMaDE presents a compelling alternative to ΛCDM, offering a novel expla-
nation for dark energy while preserving agreement with cosmological observations. Further studies
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are required to refine constraints and explore potential implications for structure formation and
fundamental physics.

3. The Scalar Field Dark Matter Model
The LCDM model is also called the coincidence model because it fits all cosmological observations

very well [16]. However, this model has some problems on small scales [8]. These problems can be
solved using additional physics, for example, one of the problems that the CDM model has faced is the
core-cusp problem, which can be solved using supernova explosions, non-circular motions around
the center of the galaxy [4,5], etc. However, these additional postulates may be real, but they are still
controversial. The same goes for the number of satellites around large galaxies [17], we can say that
there are a large number of dark satellites around our galaxy, which we cannot see because they are
small and therefore could not capture stars or gas [18]. But it may also happen that they do not exist at
all. The controversy continues until we discover them. Moreover, it has recently been observed that
satellite galaxies are not distributed homogeneously throughout their host galaxy, but rather appear to
be aligned in a north-south direction. This phenomenon is known as Vast Polar Orbits (VPO) [19,20]. It
will be very difficult for any DM model to explain this phenomenon naturally, except for the SFDM [9].
In this case, since the SFDM satisfies the Schrödinger equation, it contains, like in the atom, a ground
state and excited states. If we take into account the excited states of the SFDM, this phenomenon can
be explained naturally by the SFDM [10].

Therefore, an excellent alternative to the CDM model is the SFDM model [7,21,22]. This model
postulates that the DM is a spin-0 particle following the Klein-Gordon equation or, in its non-relativistic
limit, the Schrödinger equation. This model has been shown to be almost exactly the same as the CDM
model on cosmological scales, the only difference at this level being that the SFDM model has a natural
cutoff of the mass power spectrum which the CDM model does not have [23]. But these two models
are different on galactic scales. The SFDM shows a flat DM density profile at the center of galaxies, as
observed, and the number of satellite galaxies around the host galaxies is strongly suppressed due to
their quantum character [23,24]. In other words, this model does not have the problems shown by the
CDM model, these are naturally explained by the SFDM [7]. But more importantly, this model explains
the VPO naturally, without any additional physics. In other words, from the DM point of view, this
model is a natural explanation of the DM in the universe. The task of detecting it remains a challenge.

To model the SFDM we can expand the scalar field potential V(Φ) in series, the common choice
for V(Φ) is quadratic, i.e., V = mΦ2/2. Some times it is convenient to consider a self-interacting
potentials [25]. The evolution of SFDM follows the Klein-Gordon (KG) equation, which governs scalar
field dynamics in a cosmological setting.

In order to fit all observations on cosmological scales, including the number of satellite galaxies
around the host galaxies, the mass m of the scalar field must be ultralight, i.e. mΦ < 10−22 eV. Due to
their large de Broglie wavelength, these particles exhibit wave-like behavior, leading to high quantum
occupancy. This allows the SFDM to be treated as a classical wave, similar to photon systems in dense
media.

Thus, the SFDM emerges as a robust alternative to CDM, addressing cosmological and astrophys-
ical problems while remaining consistent with large-scale observations.

Below, we briefly describe the theoretical basis of the model. The main idea is that DM is a spin 0
particle, that is, DM is a scalar field Φ = Φ(xµ) governed by the Klein-Gordon equation in the curved
space-time of the universe, i.e., a homogeneous and isotropic space

Φ̈ + 3HΦ̇ + V,Φ = 0, (9)

where the dot notation indicates a derivative with respect to cosmic time t, and H = ȧ/a represents the
Hubble parameter, which acts as a damping term due to the expansion of the universe. This damping
plays a crucial role in the dynamics of the scalar field, modulating its behavior at different cosmological
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epochs. We can start with the simplest potential, V = 1
2 m2Φ2, corresponding to an oscillating system,

where m ∼ 10−22eV is the mass of the bosonic particle.
In the regime H ≫ m, at the early epochs of the universe, the field remains approximately

constant, dominating the energy density as if it were a cosmological constant. After recombination, in
contrast, in the regime H ≪ m, the field rapidly oscillates around the potential minimum, with the
energy density decreasing with expansion as a−3, resembling cold dark matter. The scalar field defines
the energy-momentum tensor given by

TΦ
µν = ∂µΦ∂νΦ − gµν

(
1
2

∂λΦ∂λΦ + V(Φ)

)
, (10)

where gµν represents the metric describing the spacetime geometry. The corresponding Friedmann
equations are

H2 =
8πG

3
(ρΦ + ρr + ρb) +

Λ
3
− k

a2 , (11)

ä
a
= −4πG

3
(ρΦ + 3pΦ + ρr + 3pr + ρb + 3pb), (12)

where ρΦ, pΦ are the energy density and pressure of the scalar field defined respectively as

ρ =
1
2

Φ̇2 + V(Φ) , (13a)

p =
1
2

Φ̇2 − V(Φ). (13b)

and ρr, pr are the energy density and pressure of radiation, that means, photons plus neutrinos, and
ρb, pb are the energy density and pressure of baryons.

The equation of state associated with the scalar field are defined as

ωΦ =
pΦ

ρΦ
=

1
2 Φ̇2 − V(Φ)
1
2 Φ̇2 + V(Φ)

, (14)

whose time average is close to zero during the rapid oscillations of the field, behaving similarly to cold
dark matter.

The complete system of equations for a universe with SFDM includes the differential equations
for the energy densities of the various cosmic components, along with the Klein-Gordon equation

Ḣ = −κ2

2

(
Φ̇2 +

4
3

ργ +
4
3

ρν + ρb

)
, (15a)

Φ̈ + 3HΦ̇ + V,Φ = 0, (15b)

ρ̇γ + 4Hργ = 0, (15c)

ρ̇ν + 4Hρν = 0, (15d)

ρ̇b + 3Hρb = 0, (15e)

with the Friedmann constraint:

H2 =
κ2

3
(ρΦ + ργ + ρν + ρb + ρΛ). (16)

These are the equations that describe the scalar field dynamics, with the other components of
the universe, determining the cosmic expansion and structure formation. In the next section, we will
use this formalism to combine the SFDM model with the CMaDE model. We will numerically solve
the resulting system, exploring the cosmological and astrophysical predictions that emerge from this
interaction. This combination aims to provide a more unified perspective on dark matter and dark
energy, contributing to the understanding of the evolution of the universe.
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4. The CMaDE+SFDM Model
Both the CMaDE model for dark energy and the SFDM model for dark matter offer alternative

explanations to ΛCDM, each addressing key cosmological challenges. While CMaDE naturally drives
cosmic acceleration, providing a better fit to observational data and mitigating the Hubble tension,
SFDM effectively resolves small-scale discrepancies of cold dark matter (CDM) without compromising
its large-scale success. Given their complementary advantages, a natural extension is to explore their
combination within a unified framework.

This integration is achieved by reinterpreting the dark matter fluid equation, Equation (6), in
terms of the Klein-Gordon equation governing SFDM, Equation (9). The resulting system introduces
three fundamental modifications: (1) the evolution of dark matter is now explicitly coupled to M,
which is associated with dark energy, (2) a new equation describes the dynamics of M (Equation (7)),
and (3) an additional term, arising from the gravitational wave background (GWB), appears in the
Friedmann equation (Equation (18)). The full system of equations takes the form:

kcṀc2 = −κ2Φ̇(Φ̈ + 3HΦ̇ + V,Φ), (17a)

ρ̇z + 4Hρz = 0, (17b)

ρ̇ν + 4Hρν = 0, (17c)

ρ̇b + 3Hρb = 0, (17d)

Ḣ = −κ2

2

[
Φ̇2 +

4
3
(ρz + ρν) + ρb

]
− κ2

2
(kc − 1)

Q
3

√
2

π
κρ3/2

M
exp (−N)

H
. (17e)

Here, the evolution of the dark matter density satisfies ˙ρdm + 3H(ρdm + pdm) = Φ̇(Φ̈ + 3HΦ̇ + V,Φ),
and the total energy density follows the modified Friedmann constraint:

H2 =
κ2

3
(ρΦ + ρz + ρν + ρb + ρM). (18)

Despite the additional interactions, the fundamental principles of CMaDE remain intact, particularly
the energy exchange mechanism governed by Equation (17).

For numerical implementation, we adopt a quadratic potential, V(Φ) = 1
2 m2

ΦΦ2, chosen for its
simplicity and effectiveness in reproducing cosmic microwave background (CMB) observations. This
choice also plays a crucial role in regulating small-scale fluctuations in the matter power spectrum
(MPS) [7,25,26]. The mass parameter is set to mΦ = 10−22 eV, while the coupling parameters kc = 0.42
and Q = −0.43 are constrained using cosmic clocks (CC), Pantheon supernovae, baryon acoustic
oscillations (BAO), and Planck data [13].

Further studies should refine the constraints on kc and Q through observational data. These
parameters govern key physical interactions: kc characterizes the coupling between dark matter and
dark energy, whereas Q quantifies the energy transfer from the GWB, influencing structure formation
and black hole growth. Establishing a robust theoretical framework to determine their values with
greater precision will be essential.

Building on this formulation, we now turn to the numerical treatment of SFDM, which represents
the most computationally intensive component of this analysis.
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5. Methodology
5.1. Numerical Treatment of CMaDE+SFDM

Incorporating the gravitational wave background through the CMaDE model introduces key modifica-
tions to the system of Equation (17). To account for these changes, we define the auxiliary quantity

l ≡ 1
3

√
M
H

, (19)

where the dark energy density is given by κ2ρM = Mc2. This definition allows us to reformulate
the differential equation governing M (Equation (7)) in terms of the dimensionless variable l. After
performing algebraic manipulations, the resulting expression takes the form:

l′ =
3
2

Πl +
Q
π

√
3
2

l2 exp (−N). (20)

Notably, the effect of CMaDE can be completely removed by setting kc = 0, which restores a
standard ΛCDM cosmology with a cosmological constant (Λ) as dark energy.

To explore how CMaDE affects dark matter dynamics, we analyze its impact on the evolution of
the variables (x, y), which describe SFDM. To facilitate interpretation, we introduce the transformation

x = Ω1/2
dm sin(θ/2), y = Ω1/2

dm cos(θ/2), (21)

following the formalism of [27]. Through additional algebraic development, we find that the Klein-
Gordon (KG) equation acquires an extra term due to CMaDE, modifying its evolution equation:

x
(

x′ − 3x + yy1 +
3
2

Πx
)
=

Q
π

√
3
2

kcl3 exp (−N). (22)

This result reflects a direct energy transfer between dark energy and dark matter, mediated in this
scenario by the gravitational wave background (GWB) and the scalar field, respectively. Additionally,
the Friedmann constraint equation is modified by the inclusion of an extra term:

Π = 2ΩΦ sin2(θ/2) +
4
3
(z2 + ν2) + b2 + (kc − 1)

Q
π

√
2
3

l3 exp(−N). (23)

As before, setting Q = 0 nullifies CMaDE’s effect, returning the model to standard ΛCDM. Importantly,
despite these modifications, the effective equation of state for dark energy, weff, remains unchanged
and continues to be given by Equation (8).

To systematically incorporate the energy transfer described in Equation (6), we now express the
equations governing (θ, Ωdm) in the SFDM framework, incorporating the effects of CMaDE through
Equations (20) and (22). The resulting system is:

θ′ = −3 sin(θ) + y1 − 2γ cot
(

θ

2

)
, (24a)

Ω′
Φ = [3(Π − 1 + cos(θ))− 2γ]ΩΦ, (24b)

where we define the interaction parameter

γ =

√
3
2

Q
π

kc

ΩΦ
l3 exp(−N). (25)

With these modifications, the complete system of differential equations is given by Equations (17)
and (24). We have solved these equations numerically using a custom-developed code, which is
publicly available at https://github.com/edwphysics/SFDM-CMaDE.
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Finally, to compute cosmological observables such as the CMB power spectrum and the matter
power spectrum (MPS), we will use the Boltzmann solver CLASS [28]. For this, we build upon the
existing implementation of SFDM in CLASS presented in [27], which we extend to incorporate the
effects of CMaDE.

5.2. Initial Conditions

We evaluate the CMaDE+SFDM model using the ABM4 method, implemented in a custom-developed
code that requires a specific set of initial conditions. Additionally, the ABM4 solution is incorporated
into the CLASS code [28], necessitating the specification of initial conditions appropriate for this
procedure. As discussed in Section 6, we compare the CMaDE+SFDM model with reference models:
CMaDE+CDM, ΛSFDM, and ΛCDM, ensuring a uniform set of initial conditions for fair compari-
son. The expected behavior of key quantities during simulation should qualitatively align with the
predictions of the reference model (ΛCDM). However, minor adjustments to the initial conditions
are necessary to ensure consistency across evaluated models. Notably, models incorporating CMaDE
require higher curvature and a modified H0 value to accurately recover the CMB and MPS observables.

As a first approximation, solutions using the ABM4 method are obtained by evolving backwards
in time from a0 = 1 to ai = 10−6. This ensures that the ODEs are evaluated during crucial epochs,
including the rapid oscillation phase of SFDM and key cosmological events such as the CMB decoupling
(a ∼ 10−4). The selected initial conditions are based on observational constraints from the Planck
mission [29]. Accounting for nonzero curvature, the reference parameters at a0 = 1 are as follows: the
curvature density parameter Ω0

k = 0.001, the Hubble constant H0 = 100h km/s/Mpc = 0.67, which
corresponds to H0 = 1.43 × 10−33 eV in natural units (c = h̄ = 1). Additional parameters include
the baryon contribution Ω0

bh2 = 0.0224, total matter density (dark matter and baryons) Ω0
M = 0.30,

photon density Ω0
γh2 = 2.47 × 10−5, and neutrino density Ω0

νh2 = 1.68 × 10−5. The dark energy (DE)
contribution is then determined via the Friedmann constraint:

Ω0
M = 1 − Ωb − ΩDM − Ωγ − Ων − Ωk. (26)

The present-day value of the variable θ is determined by considering Equation (24). In this
equation, the term y1 = 2m/H grows significantly at late cosmic times, including at t = t0, the current
age of the universe. At this epoch, y1 dominates the equation, leading to θ′ ≃ 2y1, which implies
θ̇ ≃ 2m. Consequently, integrating over time yields θ ≃ 2mt. Using the universe’s age as given in
the ΛCDM model [29] and the SFDM mass m = 10−22 eV, we obtain t = t0 = 13.79 × 109 yrs =

6.61 × 1032 eV−1. Thus, the initial condition for the angular variable in the SFDM numerical formalism
is:

θ0 = 1.32 × 1013. (27)

6. Results
6.1. Base Results: ΛSFDM Model

The numerical integration of the SFDM equations, as discussed in Section 5, provides a robust
test for the ABM4 numerical scheme. The results confirm that the evolution of energy densities
closely follows the expected ΛCDM trends. As seen in Figure 1a, radiation dominates until a ∼ 10−4,
transitioning into a matter-dominated phase up to a ∼ 0.5, followed by the onset of dark energy
domination. The relative deviations in Ω and H (Figures 1b,c) remain small, supporting the accuracy
of the numerical solution.
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Figure 1. Comparison of key cosmological parameters in the SFDM model without the GWB. (a) Evolution
of the density parameters Ω for different components: ΩDM (scalar field dark matter), ΩDE (dark energy as a
cosmological constant), Ων (relativistic neutrinos), Ωγ (radiation), and Ωb (baryonic matter) over the scale factor a.
(b) Relative error in Ω compared to the ΛCDM model. (c) Relative deviation in the Hubble parameter H between
the SFDM and ΛCDM models, with a maximum discrepancy of 1.26% for H and 2.57% for Ω.

A critical aspect of SFDM is its equation of state parameter, wΦ. As illustrated in Figure 2a, wΦ

exhibits rapid oscillations around zero, ensuring that its time-averaged value remains ⟨wΦ⟩ ≈ 0. This
is a hallmark of SFDM, allowing it to behave as an effective dust component with ρDM ∝ a−3, aligning
with standard cosmological predictions [27].
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(a) Parameter wϕ of the equation of state for dark mat-
ter as a scalar field (SFDM) with respect to the scale
factor a. It is observed that wϕ oscillates rapidly around
wϕ = 0, indicating that it behaves like ordinary matter.
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(b) Effective equation of state (EoS) parameter for
dark energy as a gravitational wave background
(CMaDE), weff, as a function of redshift z, within the
SFDM+CMaDE model. The convergence to weff → −1
at high z ensures consistency during the recombination
epoch.

Figure 2. Equation of state parameters for SFDM (a) and CMaDE (b).

To verify the numerical accuracy of our simulations, we examine two key diagnostics: the Friedmann
constraint F = ∑i Ωi and the predictor-corrector discrepancy in the ABM4 scheme. Figure 3a shows that
the Friedmann constraint is satisfied to high precision, with deviations below 10−6, ensuring numerical
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stability. Additionally, the ABM4 corrector refines predictions within an error of |yP − yC| < 10−5

(Figure 3b), further confirming the reliability of the numerical implementation.
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(a) Friedmann constraint F = ∑i Ωi as a function
of the scale factor a. The SFDM+CMaDE model
maintains numerical consistency, with deviations
from unity at the 10−7 level.
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(b) Discrepancy between the predictor and correc-
tor in the ABM4 integration method for Ωi, evalu-
ated within the SFDM+CMaDE model. The small
differences validate the numerical accuracy of the
solution.

Figure 3. Comparison of numerical consistency in the SFDM+CMaDE model. (Left) The Friedmann constraint
remains accurate within a deviation of 10−7. (Right) The predictor-corrector discrepancies validate the numerical
solution.

6.2. Cosmological Evolution in the CMaDE+SFDM Model

Introducing the CMaDE model into the SFDM framework leads to a subtle yet significant modification
in the evolution of the energy densities. Figure 4a confirms that the general structure of the cosmic
evolution remains unchanged, with radiation, matter, and dark energy domination phases occurring
at the expected epochs. However, Figure 4b reveals a small but noticeable interaction between SFDM
and the GWB-induced dark energy component for a ≥ 10−1.
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Figure 4. Comparison of the SFDM+CMaDE model with ΛCDM. (a) Evolution of density parameters Ωi. (b)
Relative error in Ωi compared to ΛCDM. (c) Relative deviation in the Hubble parameter H, with a maximum
difference of 5.97% for H and 13.09% for Ωi.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2025 doi:10.20944/preprints202502.2030.v1

https://doi.org/10.20944/preprints202502.2030.v1


11 of 17

Figure 2b further supports the self-consistency of the SFDM+CMaDE model, showing that
weff converges to −1 at high redshift. This behavior is crucial for ensuring that the model remains
compatible with observational constraints during recombination and beyond.

These findings validate the robustness of our numerical methods and confirm that the
SFDM+CMaDE model remains a viable alternative to ΛCDM. The results presented here establish a
solid foundation for further exploration, including perturbation analyses and their impact on structure
formation, which will be discussed in the following sections.

6.3. CMB and MPS Prediction

The cosmic microwave background (CMB) is one of the most precisely measured cosmological ob-
servables. Comparing observational data with theoretical predictions for the CMB is essential for
assessing the validity of models describing dark energy and dark matter. In this section, we present the
numerical results for the CMB and the Mass Power Spectrum (MPS), considering the GWB as a form
of dark energy (CMaDE) and modeling dark matter as a scalar field. The methodology for obtaining
these results using the CLASS code is detailed in Appendix A.

A similar pattern emerges in the MPS predictions, as shown in Figure 5b. The results for LCDM
and LSFDM remain nearly identical, except for the expected cutoff at k ∼ 101 hMpc−1, characteristic
of SFDM models with a mass mΦ ∼ 10−22 eV. When introducing CMaDE as dark energy, whether
combined with CDM or SFDM, the overall behavior remains consistent with their respective Λ-based
counterparts, with minor variations primarily at k > 10−1 hMpc−1.
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Figure 5. Comparison of key cosmological observables for the evaluated dark energy and dark matter models.
(Left) CMB temperature spectrum and its relative deviation from ΛCDM. (Right) Mass Power Spectrum (MPS),
highlighting the impact on structure formation.

The strong agreement between the CMB and MPS predictions for CMaDE, CDM, SFDM, and Λ
suggests that all tested combinations remain viable. Notably, the CMaDE+SFDM model retains the
essential characteristics to be considered a promising candidate for describing cosmic evolution. It is im-
portant to emphasize that CMaDE has been implemented in CLASS using a heuristic approach, meaning
that further refinements, particularly in the numerical integration of the ODEs, are necessary. Inter-
estingly, models incorporating CMaDE require H0 > H0ΛCDM and Ωk > 0. Specifically, the required
values for the CMaDE+CDM and CMaDE+SFDM models are (H0 = 72.6 km s−1 Mpc−1, Ωk = 0.018)
and (H0 = 77.0 km s−1 Mpc−1, Ωk = 0.048) , respectively, to ensure consistency with the observed
CMB and MPS results.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2025 doi:10.20944/preprints202502.2030.v1

https://doi.org/10.20944/preprints202502.2030.v1


12 of 17

This need for adjustments is not unprecedented. Previous studies [30] have demonstrated that
allowing for a nonzero curvature and an H0 value differing from the Planck2018 prediction improves
the agreement between CMaDE and ΛCDM. The results presented here indicate that CMaDE’s impact
on the CMB follows a favorable trend, reinforcing the expectation that further refinements in the
CMaDE+SFDM model could enable precise observational comparisons and a deeper assessment of its
viability as a unified explanation for dark energy and dark matter.

Finally, Figure 6 presents the evolution of the density parameters Ω, as computed by CLASS under
the chosen initial conditions, for different cosmic components as a function of the scale factor a. The
results show that all models predict identical epochs of radiation, matter, and dark energy domination.
However, models including CMaDE display slight deviations from the LCDM and LSFDM references
during the dark energy-dominated epoch. This effect may stem from the energy transfer between dark
matter and dark energy described in Equation (6).
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Figure 6. (Left) Hubble parameter evolution for the evaluated dark energy models: CMaDE and Λ, and for
the dark matter models: CDM and SFDM, showing how different scenarios impact cosmic expansion. (Right)
Density parameters for the same models, illustrating the evolution of the dark energy and dark matter components
throughout cosmic history.

This deviation is further evident in the Hubble parameter evolution shown in Figure 6, where
a maximum deviation of approximately 10% appears during the dark energy-dominated era for the
CMaDE+CDM model. The effect is even more pronounced in the CMaDE+SFDM model, requiring
an adjustment of nearly 20% in H0 during the late stages of cosmic evolution. This modification is
crucial to match the reported CMB and MPS predictions. The implications and potential causes of this
behavior will be explored further in Section 7.

7. Conclusions
This work explores an alternative cosmological framework where dark energy emerges as a gravita-
tional wave background (CMaDE) [13] and dark matter is described by a scalar field (SFDM) [27]. To
test this model, we numerically solve the governing equations (Equation (17)) using the fourth-order
Adams–Bashforth–Moulton method and adapt the CLASS code to incorporate CMaDE, allowing us to
compute the CMB temperature spectrum and the Mass Power Spectrum (MPS).

Our findings (Section 6) indicate that the CMaDE+SFDM model closely follows ΛCDM predictions
for key cosmological observables, including the evolution of energy densities and the power spectra
(Figure 5). However, achieving this agreement requires a higher Hubble constant (H0) and a small
positive curvature (Ωk), specifically: (H0 = 77.0 km s−1 Mpc−1, Ωk = 0.048) . A similar trend is seen
in the CMaDE+CDM case: (H0 = 72.6 km s−1 Mpc−1, Ωk = 0.018) , implying that CMaDE alters
late-time cosmic expansion while preserving consistency with early-universe evolution [13].

Examining the evolution of H(t) (Figures 1c and 4c), we find that SFDM alone already reproduces
ΛCDM within a deviation of ∆H/H ≈1.26%, whereas incorporating CMaDE increases this difference
to ∆H/H ≈5.97%. This suggests that CMaDE could help alleviate the Hubble tension, though it
requires values of H0 significantly higher than those reported by Planck [29].
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Several caveats must be considered: i) the current CLASS implementation of CMaDE is heuristic
and should ideally be replaced with direct numerical integration of the background equations; ii)
while SFDM perturbations are accounted for, CMaDE perturbations are neglected, which may subtly
affect the predicted spectra; iii) the parameter values used here require rigorous Bayesian inference
for proper statistical validation. Despite these limitations, our results suggest that CMaDE+SFDM is
worth further investigation.

Figure 2a,b confirm that the fundamental behavior of SFDM and CMaDE remains intact. SFDM
effectively mimics CDM with ρ ∼ a−3, while CMaDE exhibits a redshift-dependent equation of
state, asymptotically approaching weff → −1 at high redshifts (z > 106), ensuring consistency with
early-universe observations.

Modeling dark energy as a GWB provides a natural coupling to both CDM and SFDM, though it
systematically favors a larger H0 than ΛCDM. Future observational campaigns, such as DESI and LSST,
will be critical in testing this framework against precision cosmological data. However, the tension in
H0 and Ωk (H0 = 77.0 km s−1 Mpc−1, Ωk = 0.048) underscores the need for refined constraints.

Further progress requires improvements to the CLASS implementation, particularly by incor-
porating CMaDE perturbations, which could have subtle but important effects on CMB and MPS
predictions. While our analysis has focused on large-scale cosmic evolution, an intriguing direction is
the potential astrophysical implications of SFDM in galaxy formation and structure growth.

One of the most compelling aspects of CMaDE is its ability to reinterpret dark energy as a low-
frequency GWB, introducing an additional term in Einstein’s equations that numerically behaves
like the cosmological constant. This could provide an alternative explanation for cosmic acceleration,
potentially offering a deeper theoretical understanding of dark energy.

The combination of CMaDE and SFDM presents a promising alternative to standard ΛCDM
cosmology, bridging dark energy and dark matter into a unified framework. Recent gravitational
wave background detections add further motivation to explore these ideas, possibly linking them to
stochastic quantum theories [31].

The next decade promises significant advancements in cosmology, with new observational data
poised to test models beyond ΛCDM. While CMaDE+SFDM remains a developing hypothesis, its
theoretical foundations make it a strong contender for challenging the prevailing paradigm. The search
for a deeper understanding of the universe continues.
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DM Dark Matter
DE Dark Energy
CMaDE Cosmic Microwave as Dark Energy
SFDM Scalar Field Dark Matter
GWB Gravitational Wave Background
EoS Equation of State
CDM Cold Dark Matter
CMB Cosmic Microwave Background
MPS Matter Power Spectrum

Appendix A. Interpolation of Energy Densities
The interpolations of ρdm and ρde, which depend on the scale factor a, are essential for evaluating the
impact of the CMaDE model on observables such as the CMB and the MPS, as well as the evolution
of other relevant quantities in the universe within the CLASS framework. These energy densities
were initially obtained through a custom code based on the ABM4 numerical method for solving
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ODEs, as described in https://github.com/edwphysics/SFDM-CMaDE. In this work, we focus on the
interpolation of energy densities for the dark matter and dark energy components in the CMaDE+CDM
and CMaDE+SFDM models. The interpolations were generated using the Fit[] module of Mathematica
[32]. To integrate these interpolations into the modified CLASS code that includes the contribution
from CMaDE, the energy density expressions were replaced as detailed in A. The precise forms of the
interpolations for both models are discussed in this section.

Appendix A.1. Interpolations in CMaDE+CDM

The CMaDE+CDM model provides a simple approach to incorporating the energy of the Gravitational
Wave Background (GWB) into the evolution of the universe. It treats dark energy (DE) using the
CMaDE model, as described in Section 2, and dark matter (DM) as Cold Dark Matter (CDM). In this
model, the energy densities for both dark energy and dark matter are computed using the ABM4
method, with interpolations used to simplify the expressions.

For the dark energy density, the interpolation procedure yields a smooth functional form for
the energy density ρde. The interpolation is a power series expansion in terms of the e-folding
variable N = log(a), truncated to the 15th order. The choice of truncation order ensures that the
interpolation remains accurate, with the absolute and relative errors between the ABM4 solution and
the interpolation staying within sub-percent precision, as shown in Figure A1a.

(a) Comparison for the dark energy density ρde in the
CMaDE+CDM model.

(b) Comparison for the dark matter energy density ρdm

in the CMaDE+CDM model.
Figure A1. Comparison between the ABM4 solution (dashed) and the interpolation (solid) of the energy densities
in the CMaDE+CDM model. The top panels show the energy densities for dark energy (a) and dark matter (b),
while the middle and bottom panels display the relative and absolute deviations between the ABM4 solution and
the interpolation, respectively.

Similarly, for the dark matter energy density ρdm, the interpolation is also expressed as a series
of terms that describe its dependence on N. This interpolation is similarly precise, as evidenced by
the relative and absolute errors in Figure A1b. The precise interpolation of the energy densities for
both DE and DM in the CMaDE+CDM model ensures a highly accurate and computationally efficient
representation of the model’s energy components.

The middle and bottom panels of Figure A1a,b show the relative and absolute deviations between
the ABM4 solution and the interpolation for the energy densities of dark energy and dark matter,
respectively. These figures highlight the accuracy of the interpolation method used to model the energy
densities in the CMaDE+CDM framework.
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Appendix A.2. Interpolations in CMaDE+SFDM

In this case, the energy densities for dark matter (DM) and dark energy (DE) in the CMaDE+SFDM
model were computed using the same interpolation procedure as in the previous section, based on the
ABM4 solution. For both components, the interpolation method was applied to accurately capture
the energy densities over a wide range of scale factor values. The interpolation was performed using
a combination of polynomial and exponential functions, providing highly accurate results with sub-
percentage precision. Notably, for both DE and DM, it was not necessary to truncate the polynomial
expansions to very high orders, ensuring computational efficiency without compromising accuracy.

(a) Comparison for the dark matter energy density ρdm

in the CMaDE+SFDM model.
(b) Comparison for the dark energy density ρde in the
CMaDE+SFDM model.

Figure A2. Comparison between the ABM4 solution (black dotted), the interpolation (solid), and the ΛCDM
model (red dotted) for the energy densities of dark matter (a) and dark energy (b) in the CMaDE+SFDM model.
The middle and bottom panels show the relative and absolute deviations between the ABM4 solution and the
interpolation, respectively.

The relative and absolute deviations between the ABM4 solution and the interpolation are shown
in the figures, with the respective comparison also made to the ΛCDM model. These interpolations
are important for understanding the evolution of the universe under the influence of both dark matter
and dark energy in the CMaDE+SFDM model, and they are used within the modified CLASS code to
evaluate observables such as the CMB and the MPS.
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