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Abstract: Background: Implementation science consistently struggles to convert research evidence 
into practice because resource-heavy synthesis methods lag behind the growing body of literature. 
Conventional systematic reviews take 6 to 24 months to finalize, resulting in a gap between when 
evidence becomes available and when implementation decisions need to be made. Although recent 
developments in artificial intelligence and large language models present potential remedies, they 
also bring up worries regarding preserving implementation science's essential principles, including 
contextual sensitivity, stakeholder involvement, and equity. Methods: We developed a thorough 
integration framework by systematically analyzing empirical evidence on automated synthesis 
performance, assessing requirements specific to implementation science, and utilizing the 
Exploration, Preparation, Implementation, and Sustainment framework to formulate practical 
recommendations. Our analysis explored the capabilities and limitations of automated synthesis 
across nine dimensions essential to implementation science practices. Results: Empirical research 
indicates that automated synthesis can reduce the time needed for screening and data extraction tasks 
by 50-95%, all while achieving accuracy levels similar to those of human reviewers. These automated 
systems facilitate ongoing evidence monitoring and the execution of living systematic reviews that 
were once deemed unrealistic due to limited resources. Nevertheless, there are notable shortcomings 
in capturing contextual nuances; for instance, large language models only reach 13.8% accuracy in 
reference retrieval tasks and face consistent difficulties in interpreting qualitative implementation 
research. Our framework offers phase-specific guidance to ensure responsible integration, 
prioritizing human-AI collaboration instead of replacement and incorporating systematic equity 
safeguards during implementation processes. Discussion: Automated evidence synthesis has the 
potential to significantly bridge the evidence-to-practice gap in implementation science, though it 
must be carefully aligned with core field values. Achieving success requires a deliberate approach 
that harnesses efficiency improvements while upholding the importance of human insight in 
contextual understanding and stakeholder involvement. The framework offers organizations a 
structured strategy for adopting automated synthesis; however, empirical validation through pilot 
projects and studies comparing effectiveness is crucial to assess real-world effects and improve 
integration strategies. 

Keywords: implementation science; evidence synthesis; artificial intelligence; machine learning; 
large language models; knowledge translation; systematic reviews 
 

1. Introduction 

Implementation science was developed to tackle the well-known gap between generating and 
applying evidence in practice. However, despite years of research yielding evidence-based 
interventions, translating discoveries into widespread implementation is still slow, inconsistent, and 
incomplete across fields like healthcare, public health, education, and social services [1]. This ongoing 
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issue leads to subpar outcomes, inefficient use of resources, and persistent inequities that 
compromise the core objective of evidence-based practice.  

Evidence synthesis is a significant hurdle in this translation process, which involves 
systematically gathering, assessing, and integrating research findings to guide implementation 
decisions. While traditional evidence synthesis methods are thorough, they require considerable time 
and resources, generally taking 6 to 24 months and thousands of person-hours to conduct systematic 
reviews [2,3]. This lengthy process clashes with the urgent requirement for prompt and responsive 
implementation of evidence-based practices, especially in fast-changing sectors or crises. The 
increasing pace of research publication exacerbates the situation, with biomedical literature growing 
by around 4,000 new articles each day [4]. As a result, it becomes increasingly challenging for human 
reviewers to stay updated with pertinent evidence, while systematic reviews risk becoming outdated 
soon after they are published as new evidence surfaces [5]. 

Recent advancements in artificial intelligence, especially in machine learning and large language 
models, have showcased their ability to automate essential aspects of evidence synthesis workflows 
[6–10]. This has sparked interest in their potential to tackle long-standing issues, even amidst 
concerns regarding their limitations and risks. However, implementation science presents specific 
demands regarding evidence synthesis that go beyond conventional systematic review methods. The 
field emphasizes understanding not only "what works" but also "for whom, under what conditions, 
and how" [11,12]. Implementation decisions rely on timely, context-specific synthesis that adjusts 
responsively to changing evidence, local circumstances, and practical experiences while upholding 
the field's dedication to stakeholder engagement, contextual sensitivity, and equity considerations.  

The contrast between the efficiency offered by automation and the focus of implementation 
science on detailed understanding of context and stakeholder viewpoints creates both opportunities 
and challenges that must be navigated carefully to uphold the core values of the field while 
harnessing technological advancements. The Exploration, Preparation, Implementation, and 
Sustainment (EPIS) framework provides a proven structure for understanding implementation 
processes and can guide the responsible integration of automated synthesis technologies [13]. 

This study aims to develop a thorough framework for incorporating automated evidence 
synthesis methods into implementation science practices, while considering critical issues related to 
contextual sensitivity, trustworthiness, and equity at the core of the field. By systematically analyzing 
empirical evidence on the performance of automated synthesis, evaluating the specific requirements 
of implementation science, and applying the Exploration, Preparation, Implementation, and 
Sustainment framework, we offer structured guidance for responsible adoption that strikes a balance 
between efficiency improvements and the preservation of vital human expertise in contextual 
interpretation and stakeholder engagement. Our framework advances implementation science by 
introducing the first systematic method for integrating technology that adheres to field principles 
while allowing organizations to utilize automation's proven capabilities to decrease synthesis time 
by 50-95% and to facilitate ongoing evidence monitoring, which has the potential to change the 
translation of evidence into practice significantly. 

2. Methods 

Framework Development Approach 

We developed our integration framework through a systematic, multi-phase process that 
combined evidence synthesis, theoretical application, and principles of implementation science. The 
framework was developed between October 2024 and June 2025, incorporating recent empirical 
evidence and established implementation science theories. 

Literature Analysis and Evidence Synthesis 

We carried out an extensive review of empirical research on automated evidence synthesis 
methods, particularly their potential applications in implementation science. Our search approach 
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focused on peer-reviewed articles from 2020 to 2025 that presented quantitative performance metrics 
for AI-enhanced synthesis techniques, including studies related to automated screening, data 
extraction, living reviews, and measures of synthesis accuracy [6–10,14–19]. 

The literature analysis followed a three-step approach. Initially, we located studies via targeted 
searches in primary databases that emphasized machine learning's role in systematic reviews, the 
effectiveness of large language models in evidence synthesis, and the validation of automated 
screening methods. We also incorporated recent systematic reviews and methodological guidance on 
living systematic reviews [20,21]. Next, we extracted quantitative performance data such as time 
reduction percentages, accuracy metrics, measures of sensitivity and specificity, and comparisons of 
resource utilization between automated and conventional approaches. Finally, we examined 
reported limitations and challenges, focusing on issues like contextual sensitivity, reference accuracy, 
and equity considerations that are particularly pertinent to the field of implementation science. 

Implementation Science Perspective Analysis 

We thoroughly assessed the recognized advantages and disadvantages of automated synthesis, 
focusing specifically on the principles and values of implementation science [11,12,22]. This 
evaluation included aligning the capabilities and limitations of automated synthesis with essential 
requirements of implementation science, such as the necessity for contextual awareness, engagement 
of stakeholders, considerations of equity, and processes rooted in evidence-based decision making. 

Our analytical framework explored five essential dimensions of implementation science. We 
evaluated the requirements for contextual sensitivity by examining how automated methods manage 
subtle implementation factors, including organizational context, population traits, and adaptation 
needs of interventions. We analyzed the effects of stakeholder engagement by investigating how 
automated synthesis could influence the collaborative decision-making processes vital for successful 
implementation. We reviewed equity considerations by considering potential biases within 
automated systems and their impact on various implementation contexts [23,24]. Additionally, we 
assessed the requirements for evidence integration by exploring how automated methods address 
the varied types of evidence necessary for implementation decisions, encompassing both 
effectiveness and implementation research. Lastly, we evaluated the implications for capacity and 
resources by reflecting on the infrastructure, skills, and governance needed for deploying automated 
synthesis across different organizational settings. 

Theoretical Framework Application 

We used the Exploration, Preparation, Implementation, and Sustainment (EPIS) framework [13] 
to structure our integration recommendations. This framework was chosen for its proven, phase-
based model of the implementation process, which has shown effectiveness in various 
implementation contexts and has been validated through systematic review across 50+ applications 
[25]. The four phases of the framework correspond well with the decision points where automated 
synthesis may offer benefits, necessitating different considerations and precautions. 

In our application of EPIS, we systematically mapped opportunities and challenges related to 
automated synthesis across each implementation phase. During the Exploration phase, we explored 
how automated synthesis could aid in needs assessment and intervention identification while 
ensuring stakeholder input and contextual factors are respected. In the Preparation phase, we 
assessed how automated approaches could improve strategy development and adaptation planning 
while adhering to quality and equity standards. In the Implementation phase, we looked into 
possibilities for continuous evidence monitoring and strategy refinement while guaranteeing proper 
human oversight. Lastly, in the Sustainment phase, we evaluated how automated synthesis could 
facilitate ongoing adaptation and quality improvement while developing sustainable capacity and 
governance frameworks. 
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Multi-Dimensional Comparative Assessment 

We conducted a detailed comparative analysis across nine essential dimensions of 
implementation science practice [22,26,27]. This evaluation systematically examined the possible 
advantages and disadvantages of automated synthesis for each dimension, utilizing empirical 
evidence when accessible and implementation science theory when empirical data were scarce. 

The assessment process included developing thorough evaluation matrices for each dimension. 
We gathered quantitative data on synthesis acceleration to save time, weighing potential quality 
trade-offs. To ensure comprehensiveness, we examined scope expansion capabilities against the risks 
of information overload and diminished selectivity. For consistency, we looked into the benefits of 
standardization while being mindful of the dangers of algorithmic rigidity. Regarding contextual 
sensitivity, we assessed automated methods' effectiveness in capturing implementation-relevant 
nuances, identifying possible losses of crucial contextual information. 

Regarding trustworthiness, we evaluated data on accuracy and reliability while addressing 
transparency and auditability challenges [28,29]. For stakeholder engagement, we analyzed resource 
implications alongside potential effects on collaborative processes. To preserve human expertise, we 
explored the possibilities of augmentation while recognizing the risks of skill atrophy [30,31]. When 
considering equity, we assessed the potential for democratization while analyzing the risks of bias 
amplification [23,24]. Lastly, we reviewed the advantages of continuous monitoring and the 
challenges in information management for living evidence capabilities. 

Integration Strategy Development 

Through our evaluation, we established tailored integration strategies that harness the 
advantages of automated synthesis while addressing identified risks. This involved generating 
specific recommendations for each EPIS phase, outlining suitable divisions of human and AI tasks, 
quality assurance protocols, stakeholder engagement methods, and equity protections. 

Our strategy for integration development rests on three essential principles drawn from 
implementation science theory and practice. First, we focused on enhancing human-AI collaboration 
instead of human replacement, ensuring that automation enhances rather than replaces crucial 
human judgment in interpretation and stakeholder interaction. Second, we emphasized equity and 
inclusion by incorporating systematic bias monitoring and diverse stakeholder engagement into all 
recommendations [32]. Third, we highlighted adaptive implementation by developing flexible 
frameworks that adjust to various organizational contexts and changing technological capabilities. 

The human-AI collaboration model central to our framework is implemented through a 
structured workflow that maintains human oversight at critical decision points while utilizing 
automation for efficiency gains. Figure 1 illustrates this collaborative process across six phases, from 
project initiation to continuous monitoring. The workflow highlights strategic handoff points where 
human expertise is essential, particularly for contextual interpretation, stakeholder engagement, and 
quality validation. This collaborative approach ensures that automation enhances rather than 
replaces human judgment in areas where implementation science expertise is irreplaceable. 
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Figure 1. Human-AI Collaboration Workflow for Evidence Synthesis. The workflow illustrates the complete 
synthesis process with color-coded activities: human-led (blue), AI-led (red), collaborative (purple), and decision 
points (orange). Critical handoff points are identified where transitions between human and automated tasks 
occur based on complexity, sensitivity, and quality thresholds. The continuous feedback loop (purple dashed 
line) represents ongoing refinement based on implementation experience and stakeholder input. 

Framework Validation and Testing Considerations 

Although this framework offers a conceptual contribution grounded in existing empirical 
evidence and implementation science theory, our recommendations are crafted to facilitate 
systematic empirical validation. Each recommendation outlines clear, measurable criteria that can be 
assessed through pilot implementations, comparative effectiveness studies, and stakeholder 
assessment research. 

We organized the framework validation method into three levels. For individual 
recommendations, each suggestion contains specific metrics to assess success, such as goals for time 
reduction, accuracy thresholds, stakeholder satisfaction measures, and equity indicators. At the 
phase level, we identified essential outcomes for each EPIS phase that can be evaluated through 
implementation studies, including the quality of needs assessment, effectiveness of strategy 
development, capabilities for implementation monitoring, and success rates for sustainment. At the 
framework level, we outlined overall system outcomes that can be analyzed through longitudinal 
studies, such as reductions in the evidence-to-practice gap, implementation equity improvements, 
and stakeholder capacity development. 

The validation design includes mechanisms for iterative refinement. We organized 
recommendations to integrate feedback from pilot implementations and stakeholder experiences, 
facilitating ongoing framework improvement based on practical testing. This adaptive validation 
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method embodies the principles of implementation science, focusing on learning-driven and context-
aware development that can adapt according to empirical evidence and user requirements. 

3. Results 

3.1. Empirical Evidence on Automated Synthesis Capabilities 

Time Efficiency Gains: Numerous empirical studies indicate significant time savings from 
automated synthesis methods. Screening tasks reveal a 50-90% reduction in time while maintaining 
sensitivity levels that meet or surpass those of human reviewers [6,14–18]. Wang and colleagues 
noted that a screening task could be completed in a single day, which would usually take 530 human 
hours [6]. Data extraction tasks show 90-97% accuracy and cut down extraction time from hours to 
just minutes per study [19,33,34]. 

Enhancements in Comprehensiveness and Consistency: Automated methods expand the inclusion 
scope by lowering the marginal costs of adding new sources [35,36]. Research shows that these 
methods decrease variability in screening decisions and data extraction compared to teams of human 
reviewers [37,38], resulting in fewer conflicts and improved adherence to inclusion criteria [38–40]. 

Living Evidence Capabilities: Automated systems efficiently monitor ongoing literature and live 
systematic reviews [41,42]. Marshall and colleagues showcased robust continuous scanning and alert 
notifications through RobotReviewer Live [41]. Academic knowledge graph frameworks allow for 
integrating new evidence at significantly reduced costs compared to traditional methods [42,43]. The 
development of living systematic reviews has become increasingly feasible through automation, 
addressing previous methodological challenges identified in recent surveys of the field [20]. 

3.2. Identified Limitations and Concerns 

Contextual Sensitivity Challenges: Present AI technologies, such as large language models, have 
limitations in recognizing contextual subtleties and relationships, especially those that involve 
implicit knowledge or narrative interpretation [44,45]. Research shows they might overlook subtle 
yet essential details related to implementation, even when explicitly instructed to focus on such 
factors [46,47]. This limitation is at odds with implementation science, which prioritizes contextual 
understanding [11,12]. It may lead to a preference for quantitative data over qualitative insights that 
are often essential for making implementation decisions [48,49]. 

Trustworthiness Concerns: Large language models show notable deficiencies in reference accuracy 
[28,29], with GPT-4 reaching just 13.8% recall in systematic review reference retrieval tasks [29]. The 
"hallucination" phenomenon poses risks of producing factually incorrect outputs that appear credible 
[50,51], while "black box" processing restricts transparency and auditability. These shortcomings 
weaken the transparency and methodological rigor required by implementation science and threaten 
the stakeholder trust vital for collaborative decision-making. 

Concerns about Equity and Representation: Automated systems can reflect and even intensify 
existing biases found in the literature and the algorithms themselves [23,24]. Technical requirements 
may establish new technological divides [52], which could disadvantage organizations or 
communities that lack sufficient infrastructure or expertise. This situation goes against the principles 
of implementation science that advocate for health equity and context-sensitive practices [53]. 

Table 1 systematically compares these benefits and concerns across key dimensions relevant to 
implementation science. Figure 2 presents this comparative assessment visually through a radar chart 
that plots current automated synthesis performance against implementation science requirements 
across nine critical dimensions. The analysis reveals significant strengths in time efficiency, living 
evidence capabilities, and consistency, where automated methods meet or exceed field requirements. 
However, critical gaps emerge in contextual sensitivity, trustworthiness, and stakeholder 
engagement, where current capabilities fall substantially short of implementation science needs. This 
visual analysis demonstrates that successful integration requires targeted approaches to address 
these limitations while leveraging demonstrated strengths. 
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Table 1. Comparison of Benefits and Concerns: Automated Evidence Synthesis for Implementation Science. 

Dimension Benefits (Evidence) Concerns (Evidence/Considerations) 

Time Efficiency 50-95% reduction in synthesis 

time [6,14–18]; screening tasks 

completed in days vs. months [6] 

Quality may be compromised for speed; 

reduced engagement with literature nuances 

[44,46] 

Comprehensiveness Expanded scope of evidence 

inclusion; reduced cost for 

including additional sources 

[35,36] 

Over-inclusion of irrelevant evidence; 

misinterpretation of diverse study types 

[44,45] 

Consistency Higher inter-rater reliability; 

reduced variability in 

application of criteria [37–39] 

May consistently apply wrong or biased 

criteria; algorithmic rigidity [30,51] 

Living Evidence Enables continuous evidence 

surveillance and synthesis; 

supports dynamic adaptation 

[20,41,42] 

Might create information overload; potential 

for premature adaptation based on single 

studies [31] 

Resource Equity Democratizes access to synthesis 

capabilities across diverse 

settings [54,55] 

May create new technological divides; 

requires infrastructure and expertise [52] 

Contextual Sensitivity Can process more contextual 

information than humans when 

properly directed 

Risk of losing critical contextual nuance and 

implementation-relevant details [11,12,44–47] 

Trustworthiness Standardized, reproducible 

processes 

"Hallucinations" and reference inaccuracies 

[38,39]; black-box processing [50,51] 

Stakeholder 

Engagement 

Frees human resources for 

stakeholder collaboration 

May reduce meaningful stakeholder input in 

synthesis process; technological mediation of 

evidence [53,56] 

Human Expertise Augments human capabilities; 

handles routine tasks 

Risk of skill atrophy; reduced development of 

critical appraisal abilities [30,31] 

Equity Potential for more 

comprehensive representation of 

diverse evidence 

May amplify existing biases in literature; 

perpetuate gaps in underrepresented 

populations [23,24] 
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Figure 2. Multi-dimensional Performance Assessment of Automated Synthesis Capabilities. The radar chart 
compares current automated synthesis performance (solid blue line) against implementation science 
requirements (dashed red line) across nine dimensions. Based on empirical evidence and field requirements, 
performance ratings range from 1 (very poor) to 5 (excellent). 

3.3. EPIS-Guided Integration Framework 

Our comprehensive framework is organized by EPIS implementation phases, providing detailed 
guidance for each stage while emphasizing the core principles that ensure successful integration 
(Figure 3). 

 
Figure 3. EPIS-Guided Integration Framework for Automated Evidence Synthesis. The framework presents 
phase-specific recommendations across four implementation stages: Exploration (blue), Preparation (green), 
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Implementation (orange), and Sustainment (purple). Each phase includes specific activities and considerations 
that balance automation capabilities with human expertise requirements. The framework emphasizes systematic 
progression while maintaining flexibility for organizational adaptation and contextual responsiveness. 

3.3.1. Framework Overview 

The framework tackles the primary issue of incorporating automated synthesis methods into 
implementation science by creating a systematic approach that upholds field values while utilizing 
technological resources [11,12]. Instead of suggesting that automation completely replaces traditional 
synthesis methods, the framework views integration as a meticulously planned process that develops 
across various phases, each defined by unique objectives, activities, and success indicators. 

The framework's architecture mirrors the focus of implementation science on systematic, 
evidence-based methods for changing practices [1,22]. Each phase builds on prior achievements and 
lays the groundwork for future stages, ensuring a seamless transition from the initial needs 
assessment to ongoing sustenance. The EPIS framework serves as the theoretical underpinning for 
this stepwise strategy [13], acknowledging that organizations begin their journey toward automating 
synthesis from different starting points and possess various capabilities. 

3.3.2. Phase-Specific Implementation Guidance 

The Exploration phase lays the groundwork for effective integration by merging automated 
capabilities with human expertise in assessing needs and identifying interventions [54,55]. This phase 
places significant importance on the engagement of stakeholders and the planning of governance 
[53], highlighting that the successful adoption of automated synthesis necessitates wide 
organizational backing and well-defined accountability structures from the beginning. Key activities 
include conducting rapid scoping reviews using automation to identify potential interventions, 
assessing evidence-to-context fit using hybrid methods combining AI and human judgment, 
engaging stakeholders early to understand information needs and assess readiness, and establishing 
governance procedures for diverse stakeholder perspectives. The critical success factor is maintaining 
human oversight for final intervention selection decisions that require contextual comprehension. 

The shift from Exploration to Preparation marks a pivotal moment when organizations decide 
on particular automated synthesis methods, informed by contextual evaluations and stakeholder 
feedback. During the Preparation phase, these decisions are put into action through the organized 
development of strategies and the creation of necessary infrastructure [35,36]. This phase combines 
technical readiness with the protection of equity [23,24], ensuring automated systems are designed 
to enhance, rather than detract from, the commitment of implementation science to serve diverse 
populations and contexts. Key activities include developing comprehensive implementation strategy 
libraries using automated extraction, establishing verification protocols with standardized validation 
procedures, addressing equity through focused bias assessments and targeted enhancements, and 
creating transparency documentation and accountability frameworks. The critical success factor is 
defining an appropriate human-automation task division based on sensitivity and stakes. 

The Implementation phase transition signifies the move from preparation to active deployment. 
It necessitates a careful balance between utilizing automation for efficiency gains [6,14–18] and 
upholding quality standards through human oversight [50,51]. This phase focuses on ongoing 
monitoring and adaptive refinement, acknowledging the need to continuously validate automated 
synthesis performance against implementation science requirements [44–47]. The living evidence 
capabilities established during this phase [20,41,42] are crucial for pinpointing necessary adjustments 
and averting quality degradation over time. Key activities include establishing continuous evidence 
surveillance systems with automated monitoring, utilizing automation for implementation data 
extraction with human validation, developing implementation-specific prompts tailored to 
implementation science concepts, and creating feedback loops for system improvement and 
adaptation. The critical success factor is ensuring human validation of key implementation metrics 
and decisions 
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The sustainment phase transition emphasizes incorporating automated synthesis capabilities 
into organizational routines and institutional frameworks [30,31]. This last phase tackles the vital 
issue of sustaining innovation benefits while developing a lasting capacity for continuous quality 
assurance and system evolution. During this phase, merging automated synthesis with current 
implementation data systems establishes robust information ecosystems that enhance long-term 
organizational efficiency while safeguarding the human expertise necessary for contextual 
interpretation [11,12]. Key activities include creating sustainable human-AI collaborative workflows 
with defined roles, building capacity for critically assessing automated synthesis through training 
and guidance, integrating automated synthesis with implementation data systems, and establishing 
continuous quality monitoring and improvement mechanisms. The critical success factor is 
maintaining effective handoff processes and continuous capacity development. 

3.3.3. Core Principles Integration 

Three fundamental principles guide every implementation phase, ensuring that the integration 
of automated synthesis remains true to the values of implementation science, irrespective of unique 
organizational settings or technological frameworks.  

Human-AI Collaboration principles direct decision-making throughout the framework by 
defining clear distinctions between suitable automated tasks and those requiring human involvement 
[56,57]. This principle helps avoid the frequent trap of either excessively depending on automation 
in situations requiring human judgment or not fully utilizing automation in scenarios where 
efficiency can be enhanced without sacrificing quality [30,31]. 

Systematic Equity Safeguards are ingrained rather than just additional factors, necessitating 
organizations to focus on bias monitoring, inclusive stakeholder engagement, and diverse 
representation throughout every implementation phase [23,24,32]. These safeguards function by 
proactively identifying potential inequities, systematically monitoring automated synthesis outputs 
for bias indicators, and maintaining ongoing engagement with stakeholder communities that 
synthesis decisions could impact. 

Adaptive implementation principles allow the framework to adjust to various organizational 
settings and advancing technological capabilities while upholding essential quality standards [11,12]. 
This principle acknowledges the swift evolution of automated synthesis technologies [6–10], 
necessitating implementation strategies that can integrate new features without complete system 
redesign. 

3.3.4. Implementation Considerations 

The integration process demands coordinated focus across four cross-phase implementation 
domains, as depicted in the framework's implementation considerations panel. The requirements for 
technological infrastructure go beyond merely acquiring software; they also include the development 
of a comprehensive ecosystem, which involves computing resources, data management systems, 
security protocols, and the ability to integrate with current organizational systems [6–10]. It's essential 
to plan these infrastructure considerations starting from the Exploration phase and to refine them 
during implementation to ensure the organization has sufficient capacity to meet its needs while 
addressing possible technological gaps. 

Workforce development signifies an ongoing commitment from the organization that covers all 
implementation phases. It starts with assessing existing capabilities during the Exploration phase and 
continues with constant capacity building through Sustainment [30,31]. This area tackles the vital 
issue of enhancing organizational competence in human-AI collaboration while maintaining key 
expertise in implementation science. Successful workforce development necessitates a coordinated 
focus on technical skill enhancement, change management, and professional development paths that 
acknowledge the dynamic nature of implementation science practice, all while avoiding skill atrophy. 

Governance frameworks should be set up promptly and refined regularly to provide adequate 
oversight and accountability during the adoption of automated synthesis [50,51]. These frameworks 
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cover quality assurance, transparency standards, and stakeholder engagement protocols that uphold 
implementation science principles while considering technological strengths and constraints. The 
success of governance relies on well-defined roles, systematic quality assessments, and flexible 
procedures capable of addressing new challenges like reference accuracy problems or concerns 
around stakeholder trust. 

Equity safeguards serve as both fundamental principles and practical requirements, 
necessitating focused efforts to prevent bias, ensure inclusive access, and promote diverse 
representation at all stages and areas [23,24,32]. These safeguards involve established protocols for 
monitoring automated synthesis outputs, engaging with underrepresented stakeholder 
communities, and creating mechanisms to tackle any inequities that may arise during 
implementation. By spanning all phases, equity safeguards ensure that these factors shape technical 
decisions, organizational practices, and evaluation standards, rather than being considered only 
when issues occur, thereby reinforcing implementation science's core commitment to health equity 
and responsiveness to context. 

4. Discussion 

4.1. Implications for Implementation Science Practice 

Research shows that automated synthesis methods hold transformative potential for 
overcoming ongoing challenges in implementation science, necessitating careful consideration of 
field-specific values and needs [1,5]. The reported capabilities for reducing time by 50-95% across 
various studies [6,14–18] signify more than slight efficiency improvements; they mark a significant 
shift in the time dynamics of translating evidence into practice, potentially transforming the 
operation of implementation science. 

This acceleration tackles a fundamental contradiction in implementation science. While the field 
emphasizes evidence-based practice, the lengthy timelines often needed for thorough evidence 
synthesis clash with the urgent demands of decision-making in implementation [2,3]. Organizations 
that adopt evidence-based practices often encounter regulatory deadlines, funding cycles, or 
emergencies requiring prompt action. When the synthesis process can take months or even years, 
implementation decisions may proceed based on incomplete or outdated evidence. This situation 
undermines the core principle that practice should rely on up-to-date, comprehensive evidence. 

The ability to synthesize living evidence [20,41,42] offers a major opportunity for advancing 
implementation science. This capability facilitates a shift from static, one-time synthesis to dynamic, 
ongoing evidence monitoring that can assist adaptive implementation strategies. This function is 
particularly beneficial in rapidly changing fields where new evidence is constantly arising, in crisis 
situations where advice must adapt to new information, and in innovative intervention areas where 
initial evidence may be sparse yet is anticipated to grow quickly. 

Nevertheless, the recognized limitations in contextual sensitivity [44–47] and reference accuracy 
[28,29] pose essential challenges to the foundational epistemological commitments of implementation 
science. Unlike conventional efficacy research, implementation science focuses on comprehending 
whether interventions are effective, how they operate, for whom they are effective, under what 
circumstances, and with which modifications [11,12]. This focus on context necessitates synthesis 
methods that capture the subtle nuances of implementation environments, mechanisms, and 
moderating factors critical for successful translation. 

The possibility that automated synthesis could consistently ignore or misinterpret qualitative 
evidence [46,47] is a significant issue, especially as implementation science increasingly values 
mixed-methods approaches and realist evaluation frameworks [48,49]. Qualitative implementation 
research offers vital insights regarding context, mechanisms, and stakeholder perspectives that 
quantitative studies often miss. Should automated synthesis techniques unwittingly favor the 
processing of more straightforward quantitative data, they could compromise the methodological 
pluralism and contextual depth that implementation science seeks to uphold. 
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4.2. Theoretical Contributions and Field Evolution 

This framework makes a notable theoretical contribution to implementation science by 
introducing the first systematic method for integrating automated synthesis techniques while 
upholding the field's essential values and epistemological commitments. The EPIS-guided structure 
[13] presents a fresh application of recognized implementation theory to technology adoption within 
the discipline, illustrating how the principles of implementation science can inform the field's 
development. The framework builds upon extensive validation of the EPIS framework across diverse 
implementation contexts [25] and extends its application to technology integration. 

The proposed human-AI collaboration model redefines common beliefs about automation as 
purely a replacement technology. Instead, it views automated synthesis as a means to enhance human 
capabilities while maintaining essential skills like contextual interpretation and stakeholder 
engagement [56,57]. This perspective is consistent with the principles of implementation science, 
highlighting the significance of participatory approaches and acknowledging that successful 
implementation relies on human relationships, trust, and contextual understanding, all of which 
cannot be automated. 

The framework's consistent focus on equity considerations [23,24,32] during every phase of 
implementation marks a significant progress in addressing technological equity in implementation 
science. Instead of regarding equity as an afterthought or additional consideration, the framework 
integrates equity safeguards as essential requirements for ethical automated synthesis 
implementation. This strategy recognizes that technological solutions can unintentionally worsen 
existing inequities if they are not thoughtfully designed and implemented with clear attention to the 
varied needs and contexts of stakeholders. 

The multi-dimensional assessment approach presented here offers a methodological 
contribution for evaluating other technological innovations in implementation science. Conducting a 
systematic comparison of benefits and risks across relevant dimensions provides a template for future 
technology assessments that respects field values while objectively assessing the potential for 
innovation. 

4.3. Implementation Challenges and Organizational Considerations 

This analysis highlights the complexities of effectively integrating automated synthesis across 
various organizational settings. The technological infrastructure needed [6–10] goes beyond merely 
acquiring software; it involves complex ecosystem requirements, such as computing resources, data 
management systems, technical skills, and continuous maintenance support. Numerous 
implementing organizations, especially smaller nonprofits, community-based groups, and resource-
limited health systems, may lack the infrastructure to sustain advanced automated synthesis 
functionalities. 
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Figure 4. Technology Infrastructure Architecture for Automated Evidence Synthesis. The layered architecture 
shows five integrated components: external services (blue), core processing platform (purple), data management 
(green), security and integration (red), and user interfaces (orange). Data flow arrows (green and black) indicate 
information movement between layers. 

This infrastructure gap poses a serious risk that automated synthesis could worsen, rather than 
alleviate, current disparities in access to synthesized evidence [52]. Organizations with ample 
resources may substantially outpace others in evidence synthesis abilities, while those aiding 
vulnerable communities or functioning in resource-limited areas may become even more 
disadvantaged. Tackling this issue calls for collaborative initiatives to create shared resource 
frameworks, technical support programs, and accessible implementation strategies that ensure 
automated synthesis doesn't generate new kinds of technological inequality. 

The workforce development needs highlighted in this analysis indicate that achieving successful 
automated synthesis goes beyond just technical training; it necessitates significant shifts in how 
implementation scientists view their roles and expertise [30,31]. The move toward human-AI 
collaboration calls for the development of new competencies while also preserving traditional critical 
appraisal skills, creating possible conflict between adopting innovations and maintaining existing 
expertise. Organizations must strategically navigate this transition to prevent skill attrition while 
enhancing new capabilities. 

The governance challenges identified through this analysis underscore the necessity for new 
institutional frameworks that offer suitable oversight for automated synthesis, all while upholding 
the essential transparency and accountability standards of implementation science. Conventional 
peer review and quality assurance methods might not adequately assess automated synthesis 
outputs, necessitating the creation of new validation techniques, audit processes, and accountability 
systems [58]. 

4.4. Framework Limitations and Future Development Needs 

Although this framework offers thorough guidance for integrating automated synthesis, there 
are key limitations to consider. It serves as a conceptual contribution grounded in existing evidence, 
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rather than being empirically validated within the field of implementation science. Systematic testing 
through pilot implementations, comparative effectiveness studies, and stakeholder feedback is 
necessary to assess the practical effectiveness of these recommendations and to identify needed 
improvements. 

The fast evolution of AI technology suggests that the capabilities and limitations outlined in this 
analysis could change rapidly, necessitating regular updates to the framework to stay relevant. 
Additionally, the framework's focus on current large language model capabilities may become less 
relevant as new AI technologies are developed or existing ones advance in context awareness and 
reference precision. 

The framework emphasizes organizational-level implementation, which might overlook 
system-level factors that can affect the adoption of automated synthesis throughout the broader field 
of implementation science. Key stakeholders, including professional societies, funding agencies, 
academic institutions, and policymakers, significantly influence technology adoption trends that go 
beyond the choices made by individual organizations. 

Although the equity considerations are thorough, they need continuous attention and 
improvement as the implementation of automated synthesis uncovers new biases or exclusions that 
may not be visible in current theoretical analyses. Equity safeguards within the framework are initial 
strategies that should be adapted based on practical empirical evidence regarding their effectiveness. 

4.5. Research Priorities and Future Directions 

The research agenda arising from this analysis covers various areas that need coordinated 
exploration to facilitate the responsible adoption of automated synthesis in implementation science. 
Method development research should focus on enhancing automated systems' capability to capture 
contextually relevant factors for implementation [11,12,44–47] and creating strategies to blend 
qualitative insights from implementation with automated synthesis methods [48,49]. This effort 
necessitates a strong partnership between implementation scientists and AI researchers to ensure that 
technological advancements cater to the specific needs of implementation science, rather than just 
general synthesis requirements. 

Research on implementation outcomes is vital for assessing if the theoretical advantages of 
automated synthesis result in tangible enhancements in implementation practices [1]. Studies on 
comparative effectiveness that explore traditional versus automated synthesis techniques in real-
world scenarios can help pinpoint where automation is most beneficial and reveal situations where 
conventional methods excel. This research should evaluate not only efficiency metrics but also the 
quality of decisions, stakeholder satisfaction, and final implementation results. 

Research on stakeholder perspectives necessitates a systematic exploration of how various 
implementation stakeholders interpret and utilize automated synthesis products [53], the factors 
affecting trust and acceptance of automated methods [50,51], and strategies for effectively integrating 
diverse viewpoints into the development and assessment of automated methods [56,57]. This inquiry 
should investigate perspectives from various organizational settings, stakeholder roles, and cultural 
contexts to guarantee that automated synthesis development meets the needs of different 
implementation communities. 

Research on governance and ethics needs to develop frameworks that enhance implementation 
equity through automated synthesis rather than detract from it [23,24]. It should also set transparency 
standards suitable for applications in implementation science [50,51] and clarify the distribution of 
responsibility and accountability in human-AI collaborative synthesis [30,31]. This research must 
address both the governance needs at the organizational level and the policy requirements at the field 
level that can inform the responsible adoption of automated synthesis. 

Research on long-term impacts should explore how adopting automated synthesis affects the 
evolution of implementation science. This includes examining changes in methodological 
approaches, theoretical frameworks, and patterns of knowledge accumulation. Gaining insights into 
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these field-level effects is crucial to guarantee that automated synthesis contributes positively to the 
intellectual growth and practical effectiveness of implementation science. 

Conclusion 

Automated evidence synthesis methods offer a transformative potential for implementation 
science, evidenced by their ability to cut synthesis time by 50-95%. They also facilitate ongoing 
evidence monitoring, which could effectively bridge the gap between evidence production and the 
decision-making requirements in implementation. Nevertheless, notable challenges regarding 
contextual sensitivity, reference accuracy, and possible equity implications necessitate thoughtful 
integration strategies that uphold the fundamental values of implementation science, namely 
stakeholder engagement, contextual awareness, and equitable practices. 

The EPIS-guided framework developed in this analysis offers a structured approach to navigate 
this integration challenge through systematic human-AI collaboration instead of replacement, 
comprehensive attention to equity safeguards, and phase-specific implementation guidance. 
Achieving success requires coordinated focus on technological infrastructure, workforce 
development, governance innovation, and equity protection across various organizational contexts. 

Implementation science is at a pivotal point where active involvement in developing automated 
synthesis can mold these technologies to meet the field's specific needs while setting necessary 
boundaries and protections. The field's reaction will influence whether automated synthesis 
strengthens or weakens implementation science's ability to effectively and fairly close the evidence-
to-practice gap. 

The framework and recommendations outlined here establish a basis for responsible adoption, 
yet their true value relies on empirical validation, stakeholder feedback, and ongoing refinement 
informed by practical experiences. By carefully navigating this technological shift while adhering to 
fundamental principles, implementation science can enhance its capacity to foster more effective and 
equitable implementation of evidence-based interventions in various contexts and among diverse 
populations. 

Acknowledgements: The author thanks colleagues at the Institute of Learning (IoL) at MBRU for their 
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