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Abstract: Background: Implementation science consistently struggles to convert research evidence
into practice because resource-heavy synthesis methods lag behind the growing body of literature.
Conventional systematic reviews take 6 to 24 months to finalize, resulting in a gap between when
evidence becomes available and when implementation decisions need to be made. Although recent
developments in artificial intelligence and large language models present potential remedies, they
also bring up worries regarding preserving implementation science's essential principles, including
contextual sensitivity, stakeholder involvement, and equity. Methods: We developed a thorough
integration framework by systematically analyzing empirical evidence on automated synthesis
performance, assessing requirements specific to implementation science, and utilizing the
Exploration, Preparation, Implementation, and Sustainment framework to formulate practical
recommendations. Our analysis explored the capabilities and limitations of automated synthesis
across nine dimensions essential to implementation science practices. Results: Empirical research
indicates that automated synthesis can reduce the time needed for screening and data extraction tasks
by 50-95%, all while achieving accuracy levels similar to those of human reviewers. These automated
systems facilitate ongoing evidence monitoring and the execution of living systematic reviews that
were once deemed unrealistic due to limited resources. Nevertheless, there are notable shortcomings
in capturing contextual nuances; for instance, large language models only reach 13.8% accuracy in
reference retrieval tasks and face consistent difficulties in interpreting qualitative implementation
research. Our framework offers phase-specific guidance to ensure responsible integration,
prioritizing human-Al collaboration instead of replacement and incorporating systematic equity
safeguards during implementation processes. Discussion: Automated evidence synthesis has the
potential to significantly bridge the evidence-to-practice gap in implementation science, though it
must be carefully aligned with core field values. Achieving success requires a deliberate approach
that harnesses efficiency improvements while upholding the importance of human insight in
contextual understanding and stakeholder involvement. The framework offers organizations a
structured strategy for adopting automated synthesis; however, empirical validation through pilot
projects and studies comparing effectiveness is crucial to assess real-world effects and improve
integration strategies.

Keywords: implementation science; evidence synthesis; artificial intelligence; machine learning;
large language models; knowledge translation; systematic reviews

1. Introduction

Implementation science was developed to tackle the well-known gap between generating and
applying evidence in practice. However, despite years of research yielding evidence-based
interventions, translating discoveries into widespread implementation is still slow, inconsistent, and
incomplete across fields like healthcare, public health, education, and social services [1]. This ongoing
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issue leads to subpar outcomes, inefficient use of resources, and persistent inequities that
compromise the core objective of evidence-based practice.

Evidence synthesis is a significant hurdle in this translation process, which involves
systematically gathering, assessing, and integrating research findings to guide implementation
decisions. While traditional evidence synthesis methods are thorough, they require considerable time
and resources, generally taking 6 to 24 months and thousands of person-hours to conduct systematic
reviews [2,3]. This lengthy process clashes with the urgent requirement for prompt and responsive
implementation of evidence-based practices, especially in fast-changing sectors or crises. The
increasing pace of research publication exacerbates the situation, with biomedical literature growing
by around 4,000 new articles each day [4]. As a result, it becomes increasingly challenging for human
reviewers to stay updated with pertinent evidence, while systematic reviews risk becoming outdated
soon after they are published as new evidence surfaces [5].

Recent advancements in artificial intelligence, especially in machine learning and large language
models, have showcased their ability to automate essential aspects of evidence synthesis workflows
[6-10]. This has sparked interest in their potential to tackle long-standing issues, even amidst
concerns regarding their limitations and risks. However, implementation science presents specific
demands regarding evidence synthesis that go beyond conventional systematic review methods. The
field emphasizes understanding not only "what works" but also "for whom, under what conditions,
and how" [11,12]. Implementation decisions rely on timely, context-specific synthesis that adjusts
responsively to changing evidence, local circumstances, and practical experiences while upholding
the field's dedication to stakeholder engagement, contextual sensitivity, and equity considerations.

The contrast between the efficiency offered by automation and the focus of implementation
science on detailed understanding of context and stakeholder viewpoints creates both opportunities
and challenges that must be navigated carefully to uphold the core values of the field while
harnessing technological advancements. The Exploration, Preparation, Implementation, and
Sustainment (EPIS) framework provides a proven structure for understanding implementation
processes and can guide the responsible integration of automated synthesis technologies [13].

This study aims to develop a thorough framework for incorporating automated evidence
synthesis methods into implementation science practices, while considering critical issues related to
contextual sensitivity, trustworthiness, and equity at the core of the field. By systematically analyzing
empirical evidence on the performance of automated synthesis, evaluating the specific requirements
of implementation science, and applying the Exploration, Preparation, Implementation, and
Sustainment framework, we offer structured guidance for responsible adoption that strikes a balance
between efficiency improvements and the preservation of vital human expertise in contextual
interpretation and stakeholder engagement. Our framework advances implementation science by
introducing the first systematic method for integrating technology that adheres to field principles
while allowing organizations to utilize automation's proven capabilities to decrease synthesis time
by 50-95% and to facilitate ongoing evidence monitoring, which has the potential to change the
translation of evidence into practice significantly.

2. Methods

Framework Development Approach

We developed our integration framework through a systematic, multi-phase process that
combined evidence synthesis, theoretical application, and principles of implementation science. The
framework was developed between October 2024 and June 2025, incorporating recent empirical
evidence and established implementation science theories.

Literature Analysis and Evidence Synthesis

We carried out an extensive review of empirical research on automated evidence synthesis
methods, particularly their potential applications in implementation science. Our search approach
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focused on peer-reviewed articles from 2020 to 2025 that presented quantitative performance metrics
for Al-enhanced synthesis techniques, including studies related to automated screening, data
extraction, living reviews, and measures of synthesis accuracy [6-10,14-19].

The literature analysis followed a three-step approach. Initially, we located studies via targeted
searches in primary databases that emphasized machine learning's role in systematic reviews, the
effectiveness of large language models in evidence synthesis, and the validation of automated
screening methods. We also incorporated recent systematic reviews and methodological guidance on
living systematic reviews [20,21]. Next, we extracted quantitative performance data such as time
reduction percentages, accuracy metrics, measures of sensitivity and specificity, and comparisons of
resource utilization between automated and conventional approaches. Finally, we examined
reported limitations and challenges, focusing on issues like contextual sensitivity, reference accuracy,
and equity considerations that are particularly pertinent to the field of implementation science.

Implementation Science Perspective Analysis

We thoroughly assessed the recognized advantages and disadvantages of automated synthesis,
focusing specifically on the principles and values of implementation science [11,12,22]. This
evaluation included aligning the capabilities and limitations of automated synthesis with essential
requirements of implementation science, such as the necessity for contextual awareness, engagement
of stakeholders, considerations of equity, and processes rooted in evidence-based decision making.

Our analytical framework explored five essential dimensions of implementation science. We
evaluated the requirements for contextual sensitivity by examining how automated methods manage
subtle implementation factors, including organizational context, population traits, and adaptation
needs of interventions. We analyzed the effects of stakeholder engagement by investigating how
automated synthesis could influence the collaborative decision-making processes vital for successful
implementation. We reviewed equity considerations by considering potential biases within
automated systems and their impact on various implementation contexts [23,24]. Additionally, we
assessed the requirements for evidence integration by exploring how automated methods address
the varied types of evidence necessary for implementation decisions, encompassing both
effectiveness and implementation research. Lastly, we evaluated the implications for capacity and
resources by reflecting on the infrastructure, skills, and governance needed for deploying automated
synthesis across different organizational settings.

Theoretical Framework Application

We used the Exploration, Preparation, Implementation, and Sustainment (EPIS) framework [13]
to structure our integration recommendations. This framework was chosen for its proven, phase-
based model of the implementation process, which has shown effectiveness in various
implementation contexts and has been validated through systematic review across 50+ applications
[25]. The four phases of the framework correspond well with the decision points where automated
synthesis may offer benefits, necessitating different considerations and precautions.

In our application of EPIS, we systematically mapped opportunities and challenges related to
automated synthesis across each implementation phase. During the Exploration phase, we explored
how automated synthesis could aid in needs assessment and intervention identification while
ensuring stakeholder input and contextual factors are respected. In the Preparation phase, we
assessed how automated approaches could improve strategy development and adaptation planning
while adhering to quality and equity standards. In the Implementation phase, we looked into
possibilities for continuous evidence monitoring and strategy refinement while guaranteeing proper
human oversight. Lastly, in the Sustainment phase, we evaluated how automated synthesis could
facilitate ongoing adaptation and quality improvement while developing sustainable capacity and
governance frameworks.
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Multi-Dimensional Comparative Assessment

We conducted a detailed comparative analysis across nine essential dimensions of
implementation science practice [22,26,27]. This evaluation systematically examined the possible
advantages and disadvantages of automated synthesis for each dimension, utilizing empirical
evidence when accessible and implementation science theory when empirical data were scarce.

The assessment process included developing thorough evaluation matrices for each dimension.
We gathered quantitative data on synthesis acceleration to save time, weighing potential quality
trade-offs. To ensure comprehensiveness, we examined scope expansion capabilities against the risks
of information overload and diminished selectivity. For consistency, we looked into the benefits of
standardization while being mindful of the dangers of algorithmic rigidity. Regarding contextual
sensitivity, we assessed automated methods' effectiveness in capturing implementation-relevant
nuances, identifying possible losses of crucial contextual information.

Regarding trustworthiness, we evaluated data on accuracy and reliability while addressing
transparency and auditability challenges [28,29]. For stakeholder engagement, we analyzed resource
implications alongside potential effects on collaborative processes. To preserve human expertise, we
explored the possibilities of augmentation while recognizing the risks of skill atrophy [30,31]. When
considering equity, we assessed the potential for democratization while analyzing the risks of bias
amplification [23,24]. Lastly, we reviewed the advantages of continuous monitoring and the
challenges in information management for living evidence capabilities.

Integration Strategy Development

Through our evaluation, we established tailored integration strategies that harness the
advantages of automated synthesis while addressing identified risks. This involved generating
specific recommendations for each EPIS phase, outlining suitable divisions of human and Al tasks,
quality assurance protocols, stakeholder engagement methods, and equity protections.

Our strategy for integration development rests on three essential principles drawn from
implementation science theory and practice. First, we focused on enhancing human-AlI collaboration
instead of human replacement, ensuring that automation enhances rather than replaces crucial
human judgment in interpretation and stakeholder interaction. Second, we emphasized equity and
inclusion by incorporating systematic bias monitoring and diverse stakeholder engagement into all
recommendations [32]. Third, we highlighted adaptive implementation by developing flexible
frameworks that adjust to various organizational contexts and changing technological capabilities.

The human-Al collaboration model central to our framework is implemented through a
structured workflow that maintains human oversight at critical decision points while utilizing
automation for efficiency gains. Figure 1 illustrates this collaborative process across six phases, from
project initiation to continuous monitoring. The workflow highlights strategic handoff points where
human expertise is essential, particularly for contextual interpretation, stakeholder engagement, and
quality validation. This collaborative approach ensures that automation enhances rather than
replaces human judgment in areas where implementation science expertise is irreplaceable.
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Phase 1: Project Initiation
Define Research Question Establish Inclusion Criteria Design Search Strategy
and Implementation Context and Quality Standards and Configure Al Systems
(Human Expertise Required) (Human Judgment Critical) (Human + Al Collaboration)
Phase 2: Literature Search and Screening
Automated Literature Search Al-Powered Screening Human Validation
Multiple Databases Title/Abstract Review & Sample Review and Calibration e
(Accuracy Verification) S

(Al: Speed and Comprehensiveness) (50-90% time reduction)

Phase 3: Full-Text Review and Data Extraction

Contextual Analysis
Qualitative Insights
(Human expertise essential)

Automated Data Extraction
Structured Data Elements
(90-97% accuracy reported)

Full-Text Assessment
Al + Human Review
(Context-sensitive decisions)

Phase 4: Quality Assurance and Validation

dooT yoeqgpaa4 snonuiuo)

Risk Assessment
Bias and Quality Check
(Critical human judgment)

Domain Expertise Review Community Input and Review

(High-stakes decisions) (Equity and relevance check)

Expert Validation Stakeholder Engagement H
Phase 5: Synthesis and Reporting '
Implementation Guidance ;'
Practical Recommendations H
(Context-specific advice) '

Automated Synthesis Expert Interpretation
Pattern Recognition Contextual Meaning
(Statistical aggregation) (Clinical significance)

Phase 6: Living Evidence and Continuous Monitoring

Strategy Adaptation
Implementation Modification
(Contextual expertise)

Impact Assessment
Implementation Implications
(Human judgment required)

Automated Evidence Surveillance

New Literature Monitoring
(Real-time alerts and updates)

Figure 1. Human-AI Collaboration Workflow for Evidence Synthesis. The workflow illustrates the complete
synthesis process with color-coded activities: human-led (blue), Al-led (red), collaborative (purple), and decision
points (orange). Critical handoff points are identified where transitions between human and automated tasks
occur based on complexity, sensitivity, and quality thresholds. The continuous feedback loop (purple dashed

line) represents ongoing refinement based on implementation experience and stakeholder input.

Framework Validation and Testing Considerations

Although this framework offers a conceptual contribution grounded in existing empirical
evidence and implementation science theory, our recommendations are crafted to facilitate
systematic empirical validation. Each recommendation outlines clear, measurable criteria that can be
assessed through pilot implementations, comparative effectiveness studies, and stakeholder
assessment research.

We organized the framework validation method into three levels. For individual
recommendations, each suggestion contains specific metrics to assess success, such as goals for time
reduction, accuracy thresholds, stakeholder satisfaction measures, and equity indicators. At the
phase level, we identified essential outcomes for each EPIS phase that can be evaluated through
implementation studies, including the quality of needs assessment, effectiveness of strategy
development, capabilities for implementation monitoring, and success rates for sustainment. At the
framework level, we outlined overall system outcomes that can be analyzed through longitudinal
studies, such as reductions in the evidence-to-practice gap, implementation equity improvements,

and stakeholder capacity development.
The validation design includes mechanisms for iterative refinement. We organized

recommendations to integrate feedback from pilot implementations and stakeholder experiences,
facilitating ongoing framework improvement based on practical testing. This adaptive validation

the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202506.0749.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2025 d0i:10.20944/preprints202506.0749.v1

6 of 18

method embodies the principles of implementation science, focusing on learning-driven and context-
aware development that can adapt according to empirical evidence and user requirements.

3. Results

3.1. Empirical Evidence on Automated Synthesis Capabilities

Time Efficiency Gains: Numerous empirical studies indicate significant time savings from
automated synthesis methods. Screening tasks reveal a 50-90% reduction in time while maintaining
sensitivity levels that meet or surpass those of human reviewers [6,14-18]. Wang and colleagues
noted that a screening task could be completed in a single day, which would usually take 530 human
hours [6]. Data extraction tasks show 90-97% accuracy and cut down extraction time from hours to
just minutes per study [19,33,34].

Enhancements in Comprehensiveness and Consistency: Automated methods expand the inclusion
scope by lowering the marginal costs of adding new sources [35,36]. Research shows that these
methods decrease variability in screening decisions and data extraction compared to teams of human
reviewers [37,38], resulting in fewer conflicts and improved adherence to inclusion criteria [38—40].

Living Evidence Capabilities: Automated systems efficiently monitor ongoing literature and live
systematic reviews [41,42]. Marshall and colleagues showcased robust continuous scanning and alert
notifications through RobotReviewer Live [41]. Academic knowledge graph frameworks allow for
integrating new evidence at significantly reduced costs compared to traditional methods [42,43]. The
development of living systematic reviews has become increasingly feasible through automation,
addressing previous methodological challenges identified in recent surveys of the field [20].

3.2. Identified Limitations and Concerns

Contextual Sensitivity Challenges: Present Al technologies, such as large language models, have
limitations in recognizing contextual subtleties and relationships, especially those that involve
implicit knowledge or narrative interpretation [44,45]. Research shows they might overlook subtle
yet essential details related to implementation, even when explicitly instructed to focus on such
factors [46,47]. This limitation is at odds with implementation science, which prioritizes contextual
understanding [11,12]. It may lead to a preference for quantitative data over qualitative insights that
are often essential for making implementation decisions [48,49].

Trustworthiness Concerns: Large language models show notable deficiencies in reference accuracy
[28,29], with GPT-4 reaching just 13.8% recall in systematic review reference retrieval tasks [29]. The
"hallucination” phenomenon poses risks of producing factually incorrect outputs that appear credible
[50,51], while "black box" processing restricts transparency and auditability. These shortcomings
weaken the transparency and methodological rigor required by implementation science and threaten
the stakeholder trust vital for collaborative decision-making.

Concerns about Equity and Representation: Automated systems can reflect and even intensify
existing biases found in the literature and the algorithms themselves [23,24]. Technical requirements
may establish new technological divides [52], which could disadvantage organizations or
communities that lack sufficient infrastructure or expertise. This situation goes against the principles
of implementation science that advocate for health equity and context-sensitive practices [53].

Table 1 systematically compares these benefits and concerns across key dimensions relevant to
implementation science. Figure 2 presents this comparative assessment visually through a radar chart
that plots current automated synthesis performance against implementation science requirements
across nine critical dimensions. The analysis reveals significant strengths in time efficiency, living
evidence capabilities, and consistency, where automated methods meet or exceed field requirements.
However, critical gaps emerge in contextual sensitivity, trustworthiness, and stakeholder
engagement, where current capabilities fall substantially short of implementation science needs. This
visual analysis demonstrates that successful integration requires targeted approaches to address
these limitations while leveraging demonstrated strengths.
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Table 1. Comparison of Benefits and Concerns: Automated Evidence Synthesis for Implementation Science.

Dimension

Time Efficiency

Comprehensiveness

Consistency

Living Evidence

Resource Equity

Contextual Sensitivity

Trustworthiness

Stakeholder

Engagement

Human Expertise

Equity

Benefits (Evidence)

50-95% reduction in synthesis
time [6,14-18]; screening tasks

completed in days vs. months [6]

Expanded scope of evidence

inclusion; reduced cost for
including additional sources
[35,36]

Higher inter-rater reliability;
reduced variability in

application of criteria [37-39]

Enables continuous evidence
surveillance and  synthesis;
supports dynamic adaptation
[20,41,42]

Democratizes access to synthesis

capabilities  across  diverse

settings [54,55]

Can process more contextual

information than humans when

properly directed

Standardized, reproducible
processes

Frees human resources for

stakeholder collaboration

Augments human capabilities;

handles routine tasks

Potential for more
comprehensive representation of

diverse evidence

Concerns (Evidence/Considerations)

Quality may be compromised for speed;
reduced engagement with literature nuances

[44,46]

Over-inclusion of irrelevant evidence;
misinterpretation of diverse study types

[44,45]

May consistently apply wrong or biased

criteria; algorithmic rigidity [30,51]

Might create information overload; potential
for premature adaptation based on single

studies [31]

May create new technological divides;

requires infrastructure and expertise [52]

Risk of losing critical contextual nuance and

implementation-relevant details [11,12,44-47]

"Hallucinations" and reference inaccuracies

[38,39]; black-box processing [50,51]

May reduce meaningful stakeholder input in
synthesis process; technological mediation of

evidence [53,56]

Risk of skill atrophy; reduced development of

critical appraisal abilities [30,31]

May amplify existing biases in literature;

perpetuate underrepresented

gaps in
populations [23,24]
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Time Efficiency

Human Expertise

Stakeholder Engagement Comprehensiveness

Trustworthiness o Consistency

Contextual Sensitivity Living Evidence

Resource Equity

Figure 2. Multi-dimensional Performance Assessment of Automated Synthesis Capabilities. The radar chart
compares current automated synthesis performance (solid blue line) against implementation science
requirements (dashed red line) across nine dimensions. Based on empirical evidence and field requirements,

performance ratings range from 1 (very poor) to 5 (excellent).

3.3. EPIS-Guided Integration Framework

Our comprehensive framework is organized by EPIS implementation phases, providing detailed
guidance for each stage while emphasizing the core principles that ensure successful integration
(Figure 3).

EXPLORATION

Needs Assessment & Solution Identification

PREPARATION

Strategy Development & System Preparation

SUSTAINMENT

Long-term Maintenance & Improvement

Key Activities: Key Activities:

® Conduct rapid scoping reviews using
automation to identify potential interventions

Assess evidence-to-context fit using hybrid
methods combining Al and human judgment
Engage stakeholders early to understand
information needs and assess readiness
Establish governance procedures for
diverse stakeholder perspectives

Critical Success Factor:

Maintain human oversight for final
intervention selection decisions

® Develop comprehensive implementation
strategy libraries using automated extraction

Establish verification protocols with
standardized validation procedures

Address equity through focused bias
assessments and targeted enhancements
Create transparency documentation
and accountability frameworks

Critical Success Factor:

Define appropriate human-automation
task division based on sensitivity

B Key Activities:

* Establish continuous evidence surveillance
systems with automated monitoring

*  Utiize automation for implementation
data extraction with human validation
*  Develop implementation-specific prompts
tailored to implementation science concopts
* Create foedback loops for system
improvement and adaptation
Critical Success Factor:

Ensure human validation of key
implementation metrics and decisions

Key Activities:

Create sustainable human-Al collaborative
workflows with defined roles

® Build capacity for critical assessment

and stakeholder training programs

® Integrate automated synthesis with

implementation data systems

®  Establish continuous quality monitoring

and improvement mechanisms

Critical Success Factor:

Maintain effective handoff processes
and continuous capacity development

g Core Integration Principles Applied Across All Phases ¥
E)
2\
o Human-Al Collaboration y ic Equity Safeg Adaptive Implementation o
1
) + Augmentation rather than replacement of human expertise + Embedded bias monitoring and mitigation strategies - C framework diversity 2
I’ o « Preserve essential contextual interpretation capabilities « Inclusive stakeholder involvement in synthesis processes * Flexible evolving with 3,
K] + Maintain stakeholder engagement throughout synthesis process « Enhanced support for underrepresented contexts « Continuous learning and refinement mechanisms a ¢
: 2o
4 <3
]
8 ~ 2
A Cross-Phase Imp ion Considerations s S
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.| Technological Infrastructure Workforce Development Governance Structures Equity Safeguards o
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Figure 3. EPIS-Guided Integration Framework for Automated Evidence Synthesis. The framework presents

phase-specific recommendations across four implementation stages: Exploration (blue), Preparation (green),
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Implementation (orange), and Sustainment (purple). Each phase includes specific activities and considerations
that balance automation capabilities with human expertise requirements. The framework emphasizes systematic

progression while maintaining flexibility for organizational adaptation and contextual responsiveness.

3.3.1. Framework Overview

The framework tackles the primary issue of incorporating automated synthesis methods into
implementation science by creating a systematic approach that upholds field values while utilizing
technological resources [11,12]. Instead of suggesting that automation completely replaces traditional
synthesis methods, the framework views integration as a meticulously planned process that develops
across various phases, each defined by unique objectives, activities, and success indicators.

The framework's architecture mirrors the focus of implementation science on systematic,
evidence-based methods for changing practices [1,22]. Each phase builds on prior achievements and
lays the groundwork for future stages, ensuring a seamless transition from the initial needs
assessment to ongoing sustenance. The EPIS framework serves as the theoretical underpinning for
this stepwise strategy [13], acknowledging that organizations begin their journey toward automating
synthesis from different starting points and possess various capabilities.

3.3.2. Phase-Specific Implementation Guidance

The Exploration phase lays the groundwork for effective integration by merging automated
capabilities with human expertise in assessing needs and identifying interventions [54,55]. This phase
places significant importance on the engagement of stakeholders and the planning of governance
[53], highlighting that the successful adoption of automated synthesis necessitates wide
organizational backing and well-defined accountability structures from the beginning. Key activities
include conducting rapid scoping reviews using automation to identify potential interventions,
assessing evidence-to-context fit using hybrid methods combining Al and human judgment,
engaging stakeholders early to understand information needs and assess readiness, and establishing
governance procedures for diverse stakeholder perspectives. The critical success factor is maintaining
human oversight for final intervention selection decisions that require contextual comprehension.

The shift from Exploration to Preparation marks a pivotal moment when organizations decide
on particular automated synthesis methods, informed by contextual evaluations and stakeholder
feedback. During the Preparation phase, these decisions are put into action through the organized
development of strategies and the creation of necessary infrastructure [35,36]. This phase combines
technical readiness with the protection of equity [23,24], ensuring automated systems are designed
to enhance, rather than detract from, the commitment of implementation science to serve diverse
populations and contexts. Key activities include developing comprehensive implementation strategy
libraries using automated extraction, establishing verification protocols with standardized validation
procedures, addressing equity through focused bias assessments and targeted enhancements, and
creating transparency documentation and accountability frameworks. The critical success factor is
defining an appropriate human-automation task division based on sensitivity and stakes.

The Implementation phase transition signifies the move from preparation to active deployment.
It necessitates a careful balance between utilizing automation for efficiency gains [6,14-18] and
upholding quality standards through human oversight [50,51]. This phase focuses on ongoing
monitoring and adaptive refinement, acknowledging the need to continuously validate automated
synthesis performance against implementation science requirements [44-47]. The living evidence
capabilities established during this phase [20,41,42] are crucial for pinpointing necessary adjustments
and averting quality degradation over time. Key activities include establishing continuous evidence
surveillance systems with automated monitoring, utilizing automation for implementation data
extraction with human validation, developing implementation-specific prompts tailored to
implementation science concepts, and creating feedback loops for system improvement and
adaptation. The critical success factor is ensuring human validation of key implementation metrics
and decisions
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The sustainment phase transition emphasizes incorporating automated synthesis capabilities
into organizational routines and institutional frameworks [30,31]. This last phase tackles the vital
issue of sustaining innovation benefits while developing a lasting capacity for continuous quality
assurance and system evolution. During this phase, merging automated synthesis with current
implementation data systems establishes robust information ecosystems that enhance long-term
organizational efficiency while safeguarding the human expertise necessary for contextual
interpretation [11,12]. Key activities include creating sustainable human-AlI collaborative workflows
with defined roles, building capacity for critically assessing automated synthesis through training
and guidance, integrating automated synthesis with implementation data systems, and establishing
continuous quality monitoring and improvement mechanisms. The critical success factor is
maintaining effective handoff processes and continuous capacity development.

3.3.3. Core Principles Integration

Three fundamental principles guide every implementation phase, ensuring that the integration
of automated synthesis remains true to the values of implementation science, irrespective of unique
organizational settings or technological frameworks.

Human-AI Collaboration principles direct decision-making throughout the framework by
defining clear distinctions between suitable automated tasks and those requiring human involvement
[56,57]. This principle helps avoid the frequent trap of either excessively depending on automation
in situations requiring human judgment or not fully utilizing automation in scenarios where
efficiency can be enhanced without sacrificing quality [30,31].

Systematic Equity Safeguards are ingrained rather than just additional factors, necessitating
organizations to focus on bias monitoring, inclusive stakeholder engagement, and diverse
representation throughout every implementation phase [23,24,32]. These safeguards function by
proactively identifying potential inequities, systematically monitoring automated synthesis outputs
for bias indicators, and maintaining ongoing engagement with stakeholder communities that
synthesis decisions could impact.

Adaptive implementation principles allow the framework to adjust to various organizational
settings and advancing technological capabilities while upholding essential quality standards [11,12].
This principle acknowledges the swift evolution of automated synthesis technologies [6-10],
necessitating implementation strategies that can integrate new features without complete system
redesign.

3.3.4. Implementation Considerations

The integration process demands coordinated focus across four cross-phase implementation
domains, as depicted in the framework's implementation considerations panel. The requirements for
technological infrastructure go beyond merely acquiring software; they also include the development
of a comprehensive ecosystem, which involves computing resources, data management systems,
security protocols, and the ability to integrate with current organizational systems [6—10]. It's essential
to plan these infrastructure considerations starting from the Exploration phase and to refine them
during implementation to ensure the organization has sufficient capacity to meet its needs while
addressing possible technological gaps.

Workforce development signifies an ongoing commitment from the organization that covers all
implementation phases. It starts with assessing existing capabilities during the Exploration phase and
continues with constant capacity building through Sustainment [30,31]. This area tackles the vital
issue of enhancing organizational competence in human-Al collaboration while maintaining key
expertise in implementation science. Successful workforce development necessitates a coordinated
focus on technical skill enhancement, change management, and professional development paths that
acknowledge the dynamic nature of implementation science practice, all while avoiding skill atrophy.

Governance frameworks should be set up promptly and refined regularly to provide adequate
oversight and accountability during the adoption of automated synthesis [50,51]. These frameworks
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cover quality assurance, transparency standards, and stakeholder engagement protocols that uphold
implementation science principles while considering technological strengths and constraints. The
success of governance relies on well-defined roles, systematic quality assessments, and flexible
procedures capable of addressing new challenges like reference accuracy problems or concerns
around stakeholder trust.

Equity safeguards serve as both fundamental principles and practical requirements,
necessitating focused efforts to prevent bias, ensure inclusive access, and promote diverse
representation at all stages and areas [23,24,32]. These safeguards involve established protocols for
monitoring automated synthesis outputs, engaging with underrepresented stakeholder
communities, and creating mechanisms to tackle any inequities that may arise during
implementation. By spanning all phases, equity safeguards ensure that these factors shape technical
decisions, organizational practices, and evaluation standards, rather than being considered only
when issues occur, thereby reinforcing implementation science's core commitment to health equity
and responsiveness to context.

4. Discussion

4.1. Implications for Implementation Science Practice

Research shows that automated synthesis methods hold transformative potential for
overcoming ongoing challenges in implementation science, necessitating careful consideration of
field-specific values and needs [1,5]. The reported capabilities for reducing time by 50-95% across
various studies [6,14-18] signify more than slight efficiency improvements; they mark a significant
shift in the time dynamics of translating evidence into practice, potentially transforming the
operation of implementation science.

This acceleration tackles a fundamental contradiction in implementation science. While the field
emphasizes evidence-based practice, the lengthy timelines often needed for thorough evidence
synthesis clash with the urgent demands of decision-making in implementation [2,3]. Organizations
that adopt evidence-based practices often encounter regulatory deadlines, funding cycles, or
emergencies requiring prompt action. When the synthesis process can take months or even years,
implementation decisions may proceed based on incomplete or outdated evidence. This situation
undermines the core principle that practice should rely on up-to-date, comprehensive evidence.

The ability to synthesize living evidence [20,41,42] offers a major opportunity for advancing
implementation science. This capability facilitates a shift from static, one-time synthesis to dynamic,
ongoing evidence monitoring that can assist adaptive implementation strategies. This function is
particularly beneficial in rapidly changing fields where new evidence is constantly arising, in crisis
situations where advice must adapt to new information, and in innovative intervention areas where
initial evidence may be sparse yet is anticipated to grow quickly.

Nevertheless, the recognized limitations in contextual sensitivity [44-47] and reference accuracy
[28,29] pose essential challenges to the foundational epistemological commitments of implementation
science. Unlike conventional efficacy research, implementation science focuses on comprehending
whether interventions are effective, how they operate, for whom they are effective, under what
circumstances, and with which modifications [11,12]. This focus on context necessitates synthesis
methods that capture the subtle nuances of implementation environments, mechanisms, and
moderating factors critical for successful translation.

The possibility that automated synthesis could consistently ignore or misinterpret qualitative
evidence [46,47] is a significant issue, especially as implementation science increasingly values
mixed-methods approaches and realist evaluation frameworks [48,49]. Qualitative implementation
research offers vital insights regarding context, mechanisms, and stakeholder perspectives that
quantitative studies often miss. Should automated synthesis techniques unwittingly favor the
processing of more straightforward quantitative data, they could compromise the methodological
pluralism and contextual depth that implementation science seeks to uphold.
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4.2. Theoretical Contributions and Field Evolution

This framework makes a notable theoretical contribution to implementation science by
introducing the first systematic method for integrating automated synthesis techniques while
upholding the field's essential values and epistemological commitments. The EPIS-guided structure
[13] presents a fresh application of recognized implementation theory to technology adoption within
the discipline, illustrating how the principles of implementation science can inform the field's
development. The framework builds upon extensive validation of the EPIS framework across diverse
implementation contexts [25] and extends its application to technology integration.

The proposed human-AlI collaboration model redefines common beliefs about automation as
purely a replacement technology. Instead, it views automated synthesis as a means to enhance human
capabilities while maintaining essential skills like contextual interpretation and stakeholder
engagement [56,57]. This perspective is consistent with the principles of implementation science,
highlighting the significance of participatory approaches and acknowledging that successful
implementation relies on human relationships, trust, and contextual understanding, all of which
cannot be automated.

The framework's consistent focus on equity considerations [23,24,32] during every phase of
implementation marks a significant progress in addressing technological equity in implementation
science. Instead of regarding equity as an afterthought or additional consideration, the framework
integrates equity safeguards as essential requirements for ethical automated synthesis
implementation. This strategy recognizes that technological solutions can unintentionally worsen
existing inequities if they are not thoughtfully designed and implemented with clear attention to the
varied needs and contexts of stakeholders.

The multi-dimensional assessment approach presented here offers a methodological
contribution for evaluating other technological innovations in implementation science. Conducting a
systematic comparison of benefits and risks across relevant dimensions provides a template for future
technology assessments that respects field values while objectively assessing the potential for
innovation.

4.3. Implementation Challenges and Organizational Considerations

This analysis highlights the complexities of effectively integrating automated synthesis across
various organizational settings. The technological infrastructure needed [6-10] goes beyond merely
acquiring software; it involves complex ecosystem requirements, such as computing resources, data
management systems, technical skills, and continuous maintenance support. Numerous
implementing organizations, especially smaller nonprofits, community-based groups, and resource-
limited health systems, may lack the infrastructure to sustain advanced automated synthesis
functionalities.
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This infrastructure gap poses a serious risk that automated synthesis could worsen, rather than
alleviate, current disparities in access to synthesized evidence [52]. Organizations with ample
resources may substantially outpace others in evidence synthesis abilities, while those aiding
vulnerable communities or functioning in resource-limited areas may become even more
disadvantaged. Tackling this issue calls for collaborative initiatives to create shared resource
frameworks, technical support programs, and accessible implementation strategies that ensure
automated synthesis doesn't generate new kinds of technological inequality.

The workforce development needs highlighted in this analysis indicate that achieving successful
automated synthesis goes beyond just technical training; it necessitates significant shifts in how
implementation scientists view their roles and expertise [30,31]. The move toward human-Al
collaboration calls for the development of new competencies while also preserving traditional critical
appraisal skills, creating possible conflict between adopting innovations and maintaining existing
expertise. Organizations must strategically navigate this transition to prevent skill attrition while
enhancing new capabilities.

The governance challenges identified through this analysis underscore the necessity for new
institutional frameworks that offer suitable oversight for automated synthesis, all while upholding
the essential transparency and accountability standards of implementation science. Conventional
peer review and quality assurance methods might not adequately assess automated synthesis
outputs, necessitating the creation of new validation techniques, audit processes, and accountability
systems [58].

4.4. Framework Limitations and Future Development Needs

Although this framework offers thorough guidance for integrating automated synthesis, there
are key limitations to consider. It serves as a conceptual contribution grounded in existing evidence,
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rather than being empirically validated within the field of implementation science. Systematic testing
through pilot implementations, comparative effectiveness studies, and stakeholder feedback is
necessary to assess the practical effectiveness of these recommendations and to identify needed
improvements.

The fast evolution of Al technology suggests that the capabilities and limitations outlined in this
analysis could change rapidly, necessitating regular updates to the framework to stay relevant.
Additionally, the framework's focus on current large language model capabilities may become less
relevant as new Al technologies are developed or existing ones advance in context awareness and
reference precision.

The framework emphasizes organizational-level implementation, which might overlook
system-level factors that can affect the adoption of automated synthesis throughout the broader field
of implementation science. Key stakeholders, including professional societies, funding agencies,
academic institutions, and policymakers, significantly influence technology adoption trends that go
beyond the choices made by individual organizations.

Although the equity considerations are thorough, they need continuous attention and
improvement as the implementation of automated synthesis uncovers new biases or exclusions that
may not be visible in current theoretical analyses. Equity safeguards within the framework are initial
strategies that should be adapted based on practical empirical evidence regarding their effectiveness.

4.5. Research Priorities and Future Directions

The research agenda arising from this analysis covers various areas that need coordinated
exploration to facilitate the responsible adoption of automated synthesis in implementation science.
Method development research should focus on enhancing automated systems' capability to capture
contextually relevant factors for implementation [11,12,44-47] and creating strategies to blend
qualitative insights from implementation with automated synthesis methods [48,49]. This effort
necessitates a strong partnership between implementation scientists and Al researchers to ensure that
technological advancements cater to the specific needs of implementation science, rather than just
general synthesis requirements.

Research on implementation outcomes is vital for assessing if the theoretical advantages of
automated synthesis result in tangible enhancements in implementation practices [1]. Studies on
comparative effectiveness that explore traditional versus automated synthesis techniques in real-
world scenarios can help pinpoint where automation is most beneficial and reveal situations where
conventional methods excel. This research should evaluate not only efficiency metrics but also the
quality of decisions, stakeholder satisfaction, and final implementation results.

Research on stakeholder perspectives necessitates a systematic exploration of how various
implementation stakeholders interpret and utilize automated synthesis products [53], the factors
affecting trust and acceptance of automated methods [50,51], and strategies for effectively integrating
diverse viewpoints into the development and assessment of automated methods [56,57]. This inquiry
should investigate perspectives from various organizational settings, stakeholder roles, and cultural
contexts to guarantee that automated synthesis development meets the needs of different
implementation communities.

Research on governance and ethics needs to develop frameworks that enhance implementation
equity through automated synthesis rather than detract from it [23,24]. It should also set transparency
standards suitable for applications in implementation science [50,51] and clarify the distribution of
responsibility and accountability in human-AI collaborative synthesis [30,31]. This research must
address both the governance needs at the organizational level and the policy requirements at the field
level that can inform the responsible adoption of automated synthesis.

Research on long-term impacts should explore how adopting automated synthesis affects the
evolution of implementation science. This includes examining changes in methodological
approaches, theoretical frameworks, and patterns of knowledge accumulation. Gaining insights into
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these field-level effects is crucial to guarantee that automated synthesis contributes positively to the
intellectual growth and practical effectiveness of implementation science.

Conclusion

Automated evidence synthesis methods offer a transformative potential for implementation
science, evidenced by their ability to cut synthesis time by 50-95%. They also facilitate ongoing
evidence monitoring, which could effectively bridge the gap between evidence production and the
decision-making requirements in implementation. Nevertheless, notable challenges regarding
contextual sensitivity, reference accuracy, and possible equity implications necessitate thoughtful
integration strategies that uphold the fundamental values of implementation science, namely
stakeholder engagement, contextual awareness, and equitable practices.

The EPIS-guided framework developed in this analysis offers a structured approach to navigate
this integration challenge through systematic human-Al collaboration instead of replacement,
comprehensive attention to equity safeguards, and phase-specific implementation guidance.
Achieving success requires coordinated focus on technological infrastructure, workforce
development, governance innovation, and equity protection across various organizational contexts.

Implementation science is at a pivotal point where active involvement in developing automated
synthesis can mold these technologies to meet the field's specific needs while setting necessary
boundaries and protections. The field's reaction will influence whether automated synthesis
strengthens or weakens implementation science's ability to effectively and fairly close the evidence-
to-practice gap.

The framework and recommendations outlined here establish a basis for responsible adoption,
yet their true value relies on empirical validation, stakeholder feedback, and ongoing refinement
informed by practical experiences. By carefully navigating this technological shift while adhering to
fundamental principles, implementation science can enhance its capacity to foster more effective and
equitable implementation of evidence-based interventions in various contexts and among diverse
populations.
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