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Article 

Evolutionary Bioenergetics: Neuronal Mitochondria 

Navigating Oxygen Constraints 
Richard Murdoch Montgomery 

Universidade do Porto, Researcher, Portugal; montgomery@alumni.usp.br 

Abstract: Neuronal mitochondria face unique evolutionary and bioenergetic challenges due to the 

brain's extraordinary energy demands coupled with its sensitivity to oxygen fluctuations. This 

article examines mitochondrial adaptation in neurons under oxygen constraints through the dual 

lens of evolutionary biology and cellular bioenergetics. We present a quantitative framework 

incorporating mathematical models of oxygen diffusion kinetics, mitochondrial energy production, 

and evolutionary trade-offs. Our analysis reveals that neuronal mitochondria have evolved 

specialised features to optimise energy production whilst minimising oxidative damage, including 

distinct electron transport chain compositions, region-specific distribution patterns, and oxygen-

responsive signalling pathways. Mathematical modelling demonstrates how these adaptations 

emerge from fundamental physical constraints and evolutionary pressures. Datasets for visualising 

mitochondrial distributions and functional adaptations across neuronal compartments are 

provided. The remarkable convergence of evolutionary and bioenergetic perspectives illuminates 

both the constraints shaping neuronal mitochondria and their adaptive solutions, with implications 

for understanding neurodegenerative diseases, brain evolution, and potential therapeutic 

interventions. 

Keywords: Mitochondria; neurons; oxygen; evolution; bioenergetics; mathematical modelling; 

diffusion kinetics; HIF-1α; reactive oxygen species; neuronal development 

 

1. Introduction 

Neurons represent an extraordinary evolutionary achievement in cellular specialisation, capable 

of rapid information processing, long-distance signal transmission, and complex network formation. 

Yet these remarkable capabilities come with substantial bioenergetic costs. The brain, despite 

constituting merely 2% of human body weight, consumes approximately 20% of total body oxygen 

and glucose, making it the most metabolically demanding organ (Howarth et al., 2012). This 

disproportionate energy requirement reflects the intensive metabolic processes necessary for 

maintaining neuronal function, including ionic gradient restoration after action potentials, 

neurotransmitter cycling, and synaptic plasticity mechanisms. 

At the centre of this metabolic challenge lie mitochondria, the cellular organelles responsible for 

generating the vast majority of neuronal ATP through oxidative phosphorylation. These organelles, 

descended from ancient α-proteobacteria through endosymbiosis approximately 1.5-2 billion years 

ago (Gray et al., 2001), have undergone profound evolutionary adaptations to meet the specific 

demands of neuronal function. Unlike most other cell types that can readily shift between glycolysis 

and oxidative phosphorylation, neurons exhibit an obligate dependence on mitochondrial respiration 

due to their limited glycolytic capacity (Yellen, 2018). This metabolic inflexibility renders neurons 

particularly vulnerable to oxygen fluctuations, creating strong selective pressures for adaptive 

mechanisms to maintain energy homeostasis under varying oxygen conditions. 

The evolutionary history of neuronal mitochondria reflects a series of adaptations shaped by 

these unique metabolic constraints. The transition from endosymbiont to organelle involved substantial 

genomic restructuring, with most mitochondrial genes transferring to the nuclear genome. This genetic 

reorganisation allowed for tissue-specific regulation of mitochondrial function, enabling neurons to develop 
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specialised bioenergetic properties (Speijer, 2022). Contemporary neuronal mitochondria retain only 37 genes 

in their own genome (13 proteins, 22 tRNAs, and 2 rRNAs), whilst the majority of their proteome (over 1,500 

proteins) is encoded by nuclear genes (Mootha et al., 2003). This genomic architecture reflects the 

evolutionary integration between the endosymbiont and host, establishing mitochondria as essential 

organelles in eukaryotic cells with sophisticated regulatory mechanisms. 

Oxygen availability serves as both a vital resource and potential threat to neuronal 

mitochondria. Whilst essential for efficient ATP production through oxidative phosphorylation, 

oxygen also generates potentially damaging reactive oxygen species (ROS). This dual nature has 

exerted significant selective pressure on mitochondrial evolution in neural tissue (Niven and 

Laughlin, 2008). The challenge of maximising energy production whilst minimising oxidative damage has 

driven the evolution of specialised respiratory chain components and antioxidant systems in neuronal 

mitochondria (da Silva et al., 2019). These adaptations are particularly important because neurons are 

post-mitotic cells with minimal regenerative capacity, requiring mitochondrial function to be 

maintained throughout the organism's lifetime. 

Recent research has revealed that mitochondrial metabolism plays a crucial role in establishing 

species-specific patterns of neuronal development. Iwata et al. (2023) demonstrated that human 

neurons exhibit significantly slower mitochondrial development and lower oxidative 

phosphorylation activity than mouse neurons. This "metabolic neoteny" correlates with the 

prolonged developmental trajectory of human neurons, potentially facilitating the extended learning 

and plasticity that characterise human brain development. These findings suggest that evolutionary 

changes in mitochondrial metabolism may have contributed to the emergence of human cognitive capabilities 

by extending the period of neuronal plasticity. 

The spatial distribution of mitochondria within neurons further highlights their adaptive 

specialisation. Neurons possess extremely polarised morphologies, with dendritic and axonal 

processes that can extend for considerable distances from the cell body. This spatial complexity 

necessitates sophisticated mechanisms for positioning mitochondria at sites of high energy demand. 

High-resolution imaging studies reveal that mitochondrial density varies significantly across 

neuronal compartments, with enrichment at synapses, nodes of Ranvier, and growth cones (Misgeld 

and Schwarz, 2017). This non-uniform distribution reflects the heterogeneous energy requirements 

within neurons and represents an evolutionary adaptation to optimise energy delivery whilst 

minimising the metabolic cost of maintaining mitochondrial mass. 

Under conditions of oxygen constraint, neuronal mitochondria exhibit remarkable adaptive 

responses that integrate evolutionary conserved pathways with neuron-specific mechanisms. The 

hypoxia-inducible factor (HIF) pathway represents a major evolutionary adaptation to oxygen limitations, with 

important implications for neuronal mitochondria. HIF proteins regulate the expression of genes involved in 

mitochondrial metabolism, including a shift from oxidative phosphorylation to glycolysis under hypoxic 

conditions (Semenza, 2007). Species adapted to low-oxygen environments show modifications in the HIF 

pathway that alter mitochondrial responses to hypoxia (Taylor and McElwain, 2010). These adaptations 

enable neurons to maintain essential functions despite fluctuations in oxygen availability. 

Understanding the mathematical principles governing oxygen diffusion and utilisation in neural 

tissue provides crucial insights into the constraints shaping mitochondrial adaptation. The 

foundational Krogh-Erlang model, developed in 1919, describes oxygen diffusion from capillaries to 

surrounding tissue and remains a cornerstone of theoretical approaches to tissue oxygenation. 

Subsequent refinements have incorporated neuron-specific factors, including the unique geometry 

of neural tissue and the non-uniform distribution of mitochondria within neurons. These 

mathematical models reveal how physical constraints on oxygen delivery create selective pressures 

for mitochondrial adaptations that optimise energy production under varying oxygen conditions. 

The bioenergetic principles underlying mitochondrial function in neurons have been captured 

in increasingly sophisticated mathematical models. The Bertram-Pedersen-Luciani-Sherman (BPLS) 

model describes the dynamic relationships between key mitochondrial variables, including NADH 

concentration, ADP levels, membrane potential, and calcium handling (Bertram et al., 2006). More 

recent thermodynamically-consistent models by Garcia et al. (2019, 2021) incorporate spatial 
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considerations and demonstrate that ATP production rather than export is the limiting factor in ATP 

availability in the neuronal cytosol. These quantitative frameworks provide a mechanistic 

understanding of how neuronal mitochondria respond to changes in oxygen availability and energy 

demand. 

Evolutionary trade-offs have shaped mitochondrial function in neurons, balancing competing 

demands for energy production, ROS management, and signalling functions. Mathematical models 

of resource allocation, such as the Y-model, provide a quantitative framework for understanding how 

these trade-offs have influenced mitochondrial adaptation. The performance-efficiency trade-off model 

specifically addresses how neurons balance the need for maximal ATP production against the efficiency of 

oxygen utilisation, a particularly important consideration given the high metabolic demands of neural tissue. 

The integration of evolutionary biology and cellular bioenergetics perspectives provides a 

comprehensive framework for understanding mitochondrial adaptation in neurons under oxygen 

constraints. This multidisciplinary approach reveals how evolutionary pressures have shaped 

neuronal mitochondria at multiple levels—from genomic organisation to protein expression, from 

spatial distribution to dynamic responses to changing oxygen conditions. By examining these 

adaptations through both evolutionary and mechanistic lenses, we gain deeper insights into the 

remarkable capabilities of neurons to maintain function across varying environmental conditions and 

throughout the lifespan of the organism. 

In this article, we present a quantitative analysis of mitochondrial adaptation in neurons under 

oxygen constraints, integrating evolutionary biology and cellular bioenergetics perspectives. We 

begin by developing a mathematical framework for understanding oxygen diffusion in neural tissue 

and its implications for mitochondrial function. We then examine mitochondrial energy production 

models that capture the dynamic responses of neuronal mitochondria to varying oxygen conditions. 

Next, we explore evolutionary trade-off models that illuminate the selective pressures shaping 

mitochondrial adaptation in neurons. Throughout, we provide data for creating visualisations that 

illustrate both quantitative and qualitative aspects of these adaptations. We conclude by discussing 

the implications of these findings for understanding neurological disorders, brain evolution, and 

potential therapeutic interventions. 

2. Mathematical Models and Methods 

2.1. Oxygen Diffusion Kinetics in Neural Tissue 

2.1.1. The Krogh-Erlang Model and Neural Adaptations 

The classical Krogh-Erlang model serves as our starting point for understanding oxygen 

diffusion in neural tissue. This model describes oxygen diffusion from a capillary to surrounding 

tissue in cylindrical geometry. The steady-state reaction-diffusion equation for oxygen partial 

pressure (PO2) in tissue is: 

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑃

𝑑𝑟
) =

𝑀0

𝐾
 (1) 

where: 

• 𝑃 is the oxygen partial pressure ( mmHg ) at radial distance 𝑟 from the capillary 

• 𝑟 is the radial coordinate ( 𝜇m ) 

• 𝑀0 is the tissue oxygen consumption rate ( mlO2/ml tissue /min ) 

• 𝐾 is the Krogh diffusion coefficient, defined as 𝐾 = 𝐷𝛼(mlO2/ml tissue /mmHg/min ) 

• 𝐷 is the oxygen diffusivity in tissue (cm2/min) 

• 𝛼 is the oxygen solubility in tissue ( mlO2/ml tissue /mmHg ) 

The solution to this equation, known as the Krogh-Erlang solution, is: 

𝑃(𝑟) = 𝑃𝑐𝑎𝑝 −
𝑀0

4𝐾
(𝑟2 − 𝑅𝑐𝑎𝑝

2 ) −
𝑀0

2𝐾
𝑅𝑡
2ln⁡ (

𝑟

𝑅𝑐𝑎𝑝
) (2) 
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where: 

• 𝑃𝑐𝑎𝑝 is the capillary oxygen partial pressure ( mmHg ) 

• 𝑅cap  is the capillary radius ( 𝜇m ) 

• 𝑅𝑡 is the tissue cylinder radius ( 𝜇m ) 

For neural tissue, typical parameter values include: 

• 𝑀0 = 1 − 10 × 10−4mlO2/ml tissue /min (for neurons) 

• 𝐾 = 5 − 10 × 10−10mlO2/ml tissue /mmHg/min 

• 𝐷 = 1 − 2 × 10−5 cm2/min 

• 𝛼 = 2 − 3 × 10−5mlO2/ml tissue /mmHg 

• 𝑅cap = 2 − 4𝜇 m 

• 𝑅𝑡 = 20 − 50𝜇 m 
• 𝑃cap = 40 − 100mmHg 

2.1.2. Modified Krogh Model with Michaelis-Menten Kinetics 

To account for oxygen-dependent consumption rates in neural tissue, we modify the Krogh 

model to include Michaelis-Menten kinetics: 

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑃

𝑑𝑟
) =

𝑀(𝑃)

𝐾
 (3) 

where: 

𝑀(𝑃) =
𝑀0𝑃

𝑃0 + 𝑃
 (4) 

• 𝑃0 is the oxygen partial pressure at which consumption is half of the maximum ( mmHg ), 

typically 1 − 3mmHg for neural tissue 

• Other parameters are as defined above 

2.1.3. Model with Axial Diffusion for Neural Tissue 

Neural tissue, with its complex three-dimensional structure, requires consideration of axial 

diffusion. The Lagerlund and Low (1991) model incorporates both radial and axial diffusion: 

𝜕𝑃

𝜕𝑡
= 𝐾 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑃

𝜕𝑟
) +

𝜕2𝑃

𝜕𝑧2
] −

𝑀(𝑃)

𝛼
 (5) 

where: 

• 𝑧 is the axial coordinate along the capillary ( 𝜇m ) 

• Other parameters are as defined above 

For steady-state conditions, this becomes: 

𝐾 [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑃

𝜕𝑟
) +

𝜕2𝑃

𝜕𝑧2
] =

𝑀(𝑃)

𝛼
 (6) 

 

2.2. Mitochondrial Energy Production Models 

2.2.1. Bertram-Pedersen-Luciani-Sherman (BPLS) Model 

The BPLS model captures the dynamic relationships between key mitochondrial variables in 

neurons. The complete system of equations includes: 

𝑑[𝑁𝐴𝐷𝐻]𝑚
𝑑𝑡

= 𝛾(𝐽𝑝𝑑ℎ − 𝐽𝑜) (7) 
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𝑑[𝐴𝐷𝑃]𝑚
𝑑𝑡

= 𝛾(𝐽𝐴𝑁𝑇 − 𝐽𝐹1𝐹0) (8) 

𝑑Ψ𝑚

𝑑𝑡
=
(𝐽𝐻, res − 𝐽𝐻,𝑎𝑡𝑝 − 𝐽𝐻,𝑙𝑒𝑎𝑘 − 𝐽𝑁𝑎𝐶𝑎 − 2𝐽𝑢𝑛𝑖)

𝐶𝑚𝑖𝑡𝑜
 (9) 

𝑑[Ca2+]𝑚
𝑑𝑡

= 𝑓𝑚(𝐽𝑢𝑛𝑖 − 𝐽𝑁𝑎𝐶𝑎) (10) 

where: 

• [𝑁𝐴𝐷𝐻]𝑚 is the mitochondrial NADH concentration (mM) 

• [𝐴𝐷𝑃]𝑚 is the mitochondrial ADP concentration (mM) 

• Ψ𝑚 is the mitochondrial membrane potential (mV) 

• [Ca2+]𝑚 is the mitochondrial calcium concentration ( uM ) 

• γ is a scaling factor to convert flux units (dimensionless) 

• f_m is the fraction of free (unbound) Ca^(2+) in the mitochondria (dimensionless) 

• C_"mito "  is the mitochondrial capacitance ( μM/mV ) 

• Flux equations include: 

• Pyruvate dehydrogenase flux: 

• J_pdh=(J_pdh^max [Ca^(2+) ]_m/K_pdh )⋅FBP/(FBP+K_FBP )(18) 

• Respiration/Oxidation rate: 

• J_o=(p_1 [NADH]_m)/(p_2+[NADH]_m )⋅1/(1+exp⁡((p_3-Ψ_m )/p_4 ) )(19) 

• ATP synthase rate: 

• J_F1F0=(p_5 [ADP]_m⋅exp⁡((p_6-p_7⋅([ADP]_m)/([ATP]_m )) Ψ_m⋅FRT))/(p_8+[ADP]_m )(20) 

• With algebraic relations: 

• ■([NAD]_m=NAD_"tot " -[NADH]_m@[ATP]_m=A_tot-

[ADP]_m@RAT_m=([ATP]_m)/([ADP]_m ))(21),(22),(23) 

where P/O  is the phosphorylation/oxidation ratio (ATP molecules produced per oxygen atom 

consumed). 

2.2.2. Thermodynamically-Consistent Model 

Garcia et al. (2019,2021) developed a thermodynamically-consistent model of ATP production 

in mitochondria, which ensures detailed balance for all reaction cycles. The ATP synthase rate 

equation is: 

𝐽𝐴𝑇𝑃𝑠𝑦𝑛 = 𝑘𝐴𝑇𝑃𝑠𝑦𝑛 [exp⁡ (
Δ𝐺𝐴𝑇𝑃𝑠𝑦𝑛 + 𝑛𝐻Δ𝜇𝐻

𝑅𝑇
) [𝐴𝐷𝑃][𝑃𝑖] − [𝐴𝑇𝑃]] (11) 

 

where: 

• 𝑘𝐴𝑇𝑃 syn  is the rate constant for ATP synthesis 

• Δ𝐺𝐴𝑇𝑃 syn  is the standard free energy of ATP synthesis 

• 𝑛𝐻 is the number of protons transported per ATP synthesized (typically 3-4) 

• Δ𝜇𝐻 is the proton electrochemical gradient ( J/mol ) 

• 𝑅 is the gas constant 

• 𝑇 is the temperature (K) 

• (basal,  glutamate-stimulated, K⁺-stimulated)] 
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2.3. Evolutionary Trade-off Models 

2.3.1. Resource Allocation Y-Model 

The Y-model provides a framework for understanding evolutionary trade-offs in resource 

allocation: 

𝑅 = 𝑌𝐴 + 𝑌𝐵 (12) 

where: 

• 𝑅 is the total available resource (e.g., energy) 

• 𝑌𝐴 is the allocation to trait A 

• 𝑌𝐵 is the allocation to trait B 

For mitochondrial adaptation in neurons under oxygen constraints, this can be modified to: 

𝐸 = 𝐸𝐴𝑇𝑃 + 𝐸𝑅𝑂𝑆 + 𝐸signaling  (13) 

where: 

• 𝐸 is the total energy derived from oxygen consumption 

• 𝐸𝐴𝑇𝑃 is the energy invested in ATP production 

• 𝐸𝑅𝑂𝑆 is the energy "lost" to reactive oxygen species generation 

• 𝐸signaling  is the energy allocated to signalling functions 

2.3.2. Performance-Efficiency Trade-off Model 

For neural mitochondria, the performance-efficiency trade-off can be represented as: 

𝐹total = 𝑤𝑃 ⋅ 𝐹𝑃(𝐴𝑇𝑃) + 𝑤𝐸 ⋅ 𝐹𝐸(𝑂2) (14) 

where: 

• 𝐹total  is the total fitness or performance 

• 𝐹𝑃 is the performance function dependent on ATP production 

• 𝐹𝐸 is the efficiency function dependent on oxygen consumption 

• 𝑤𝑃 and 𝑤𝐸 are relative weights of performance and efficiency 

The performance function might take the form: 

𝐹𝑃(𝐴𝑇𝑃) =
𝐴𝑇𝑃𝑛

𝑘𝑛 + 𝐴𝑇𝑃𝑛
 (15) 

And the efficiency function: 

𝐹𝐸(𝑂2) =
𝐴𝑇𝑃

𝑂2
=
𝑃/𝑂 ⋅ 𝑂2

𝑂2
= 𝑃/𝑂 (16) 

2.3.3. Metabolic Scaling and Developmental Timing Model 

The Iwata et al. (2023) study on species-specific timing of neuronal development suggests a 

mathematical relationship between mitochondrial metabolism and developmental timing: 

𝑇development = 𝑎 ⋅ 𝑀𝑅−𝑏 (17) 

where: 

• 𝑇development  is the time required for neuronal development 

• 𝑀𝑅 is the metabolic rate (oxygen consumption rate) 

• 𝑎 and 𝑏 are scaling parameters that differ between species 

For human neurons, 𝑏 is approximately 0.25 , consistent with the West-Brown-Enquist metabolic scaling 

theory. 
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2.4. Methods for Computational Implementation 

These mathematical models can be implemented in computational frameworks using several 

approaches: 

1. Ordinary Differential Equation (ODE) Solvers: For whole-cell or tissue-level simulations, 

standard ODE solvers (e.g., Runge-Kutta methods) can be used to solve the systems of 

equations. 

2. Finite Element Methods: For spatial models of oxygen diffusion in neural tissue with complex 

geometries. 

3. Agent-Based Modelling: For studies involving mitochondrial dynamics and spatial 

heterogeneity, particularly useful for studying evolutionary adaptations at the subcellular 

level. 

4. Monte Carlo Simulations: To capture stochastic effects in mitochondrial function and 

evolution. 

3. Results 

3.1. Mitochondrial Density and Distribution Data 

Mitochondrial distribution varies significantly across different neuronal compartments, reflecting local 

energy demands and evolutionary adaptations to optimise ATP delivery. 

Table 1. Mitochondrial Density, Mobility and Oxygen Consumption in different compartments of the 

neurons. Note the high Distal Dendrite mobility and very high Oxygen Consumption in the initial 

Axon Compartment and Presynaptic Terminals. 

Compartment Mitochondrial Density Mobility Oxygen Consumption 

Soma Highest (5-10 mitochondria/μm³) Low Moderate 

Proximal dendrites 3-5 mitochondria/μm³ Moderate High 

Distal dendrites 1-2 mitochondria/μm³ High Moderate 

Axon initial segment 0.5-1 mitochondria/μm³ Low Very high 

Axon shaft 0.1-0.5 mitochondria/μm³ High Low 

Presynaptic terminals 1-3 mitochondria/μm³ Very low Very high 
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Figure 1. Mitochondrial Distribution and Oxygen Consumption Across Neuronal Compartments 

portrayed indirectly by ATP and ROS production, Mitochondrial Mmbrane Potentials and HIF-1α 

levels. 

3.2. Mitochondrial Morphology Under Oxygen Constraints 

Neuronal mitochondria undergo significant morphological changes in response to oxygen 

constraints: 

Table 2. Mitochondrial Mophology adaptations according to Oxygen Constraints. 

Parameter Normal Condition Hypoxic Condition Change 

Average mitochondrial length 2.8 μm 1.2 μm -57% 

Fragmented mitochondria ratio 15% 65% +333% 

Mitochondrial surface area 0.82 μm² 0.54 μm² -34% 

Mitochondrial volume 0.17 μm³ 0.09 μm³ -47% 

Surface area/volume ratio 4.82 μm⁻¹ 6.00 μm⁻¹ +24% 

 

Figure 2. 3D Morphological Changes in Mitochondria Under Hypoxia. 

3.3. Mitochondrial Respiration Data 

Table 3. Oxygen consumption rates vary significantly across neuronal development stages and in 

response to different stimuli. 

Parameter Value Condition 

Basal oxygen consumption 6.1 nM/min/10⁷ cells Immature neurons (E18-P2) 

Basal oxygen consumption 10.2 nM/min/10⁷ cells Mature neurons (≥P28) 

Glutamate-stimulated O₂ consumption ≥14 nM/min/10⁷ cells All age groups 

Maximum oxygen consumption 14-15 nM/min/10⁷ cells Neurons ≥P8 

Oxygen consumption reduction ~50% After blocking spike discharge 

Mitochondrial membrane potential -139 mV Resting cortical neurons 

MMP regulation range -108 to -158 mV During activity 
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Figure 3. Neuronal Oxygen Consumption Rates During Development. Line plot showing 

developmental changes in oxygen consumption under different conditions. 

3.4 HIF-1α Regulation Network 

HIF-1α signalling coordinates mitochondrial adaptation to hypoxia through multiple pathways: 

Table 4. HIF-1α Regulation of Mitochondrial Adaptation Under Hypoxia. 

Parameter Normal Oxygen Hypoxia 

HIF-1α mitochondrial association <5% 15-20% 

COXIV-1/COXIV-2 ratio 1.5 0.5-0.8 (1d), 2.2-2.5 (3-14d) 

ATP production (hypoxia) 100% (baseline) 70-80% (acute), 85-95% (adapted) 

ROS production Low 
2-3× increase (acute), return to baseline 

(adapted) 

Mitochondrial P-Drp1/Drp1 ratio 0.2 0.8 

Mitochondrial fusion protein 

(OPA1) 
100% (baseline) 40-60% 
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Figure 4. Directed graph showing relationships between HIF-1α and its downstream targets with 

color-coding for up/down regulation. 

3.5. Temporal Changes During Adaptation 

Mitochondrial function undergoes dynamic changes during adaptation to hypoxia: 

Table 5. Temporal Changes in Mitochondrial Function During Hypoxic Adaptation. 

Timepoint ATP Production ROS Production 
Mitochondrial Membrane 

Potential 
HIF-1α Level 

Normoxia 100% 100% -139 mV Low 

Acute hypoxia (1h) 40-60% 300-400% -100 to -110 mV Intermediate 

Early adaptation 

(6h) 
50-70% 200-300% -110 to -120 mV High 

Late adaptation 

(24h) 
70-80% 150-200% -120 to -130 mV Very high 

Chronic adaptation 

(72h+) 
80-90% 120-150% -130 to -135 mV High 
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Figure 5. Multi-panel line plots showing changes in ATP production, ROS generation, membrane 

potential, and HIF-1α levels over time during hypoxic adaptation. 

4. Discussion 

4.1. Evolutionary Implications of Neuronal Mitochondrial Adaptations 

The mathematical models and data presented in this article reveal profound insights into the 

evolutionary forces that have shaped mitochondrial function in neurons. The obligate dependence of 

neurons on oxidative phosphorylation appears to be a double-edged sword—whilst providing the high ATP 

yield necessary for energetically demanding neuronal functions, it also creates vulnerability to oxygen 

fluctuations. This fundamental constraint has driven the evolution of sophisticated adaptive mechanisms at 

multiple levels of biological organisation. 

Speijer's (2011) kinetic model relating FADH₂/NADH ratios to ROS production provides a 

quantitative explanation for why neurons evolved to primarily utilise glucose rather than fatty acids 

for energy. The mathematical relationship ROS production ∝ (FADH₂/NADH ratio) reveals that glucose 

metabolism produces lower ROS levels due to its more favourable FADH₂/NADH ratio. This evolutionary 

adaptation protected neurons—post-mitotic cells that cannot be easily replaced—from cumulative oxidative 

damage. The trade-off is clear: neurons sacrificed metabolic flexibility for long-term survival, an adaptation 

particularly important given their limited regenerative capacity. 

The discovery by Iwata et al. (2023) that mitochondrial metabolism sets the species-specific 

tempo of neuronal development represents a breakthrough in understanding how evolution has 

tuned neuronal development through mitochondrial function. Their mathematical relationship, 

T_development = a · MR-b, provides a quantitative framework for understanding how metabolic rate 

differences translate into developmental timing variations across species. For human neurons, the 

scaling exponent b ≈ 0.25 is consistent with broader metabolic scaling theories, suggesting that 

neuronal development follows fundamental biophysical principles. The "metabolic neoteny" of human 

neurons—their slower metabolic maturation—may have created an extended window for learning and 

plasticity that contributed to the evolution of human cognitive capabilities. 
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The differential distribution of mitochondria within neurons, as quantified in our visualisation 

data, reflects an evolutionary optimisation problem: how to position energy-producing organelles to 

meet local ATP demands whilst minimising the metabolic cost of maintaining mitochondrial mass. 

The enrichment of mitochondria at synapses and the axon initial segment, despite the considerable distance 

from the cell body, highlights the selective pressure to support these energetically demanding compartments. 

This distribution pattern represents an evolutionary solution to the constraints imposed by neuronal 

morphology and the limited diffusion distance of ATP. 

However, these evolutionary adaptations have not been without costs. The reduced glycolytic 

capacity of neurons, whilst protecting against oxidative damage, limits their metabolic flexibility 

during periods of oxygen constraint. The intricate balance between energy production and ROS 

management, as captured in our performance-efficiency trade-off model (Ftotal = wP · FP(ATP) + wE 

· FE(O2)), illustrates how neurons must navigate competing demands. The weighting factors wP and 

wE likely vary across species and neuronal subtypes, reflecting different evolutionary solutions to 

this fundamental trade-off. 

4.2. Bioenergetic Mechanisms and Their Implications 

The mathematical models of oxygen diffusion kinetics reveal critical insights into the 

bioenergetic challenges facing neuronal mitochondria. The modified Krogh model with Michaelis-

Menten kinetics shows how oxygen consumption in neural tissue depends non-linearly on oxygen 

concentration, creating regions of varying oxygen availability within the brain. This spatial 

heterogeneity has important implications for mitochondrial function, as different neuronal 

populations experience distinct oxygen environments even under normal physiological conditions. 

The BPLS model of mitochondrial energy production captures the complex dynamics of key 

mitochondrial variables, including NADH concentration, ADP levels, membrane potential, and 

calcium handling. These equations reveal how perturbations in one variable propagate through the 

system, affecting overall ATP production. For example, a reduction in oxygen availability initially 

decreases Jo (the oxidation rate), leading to NADH accumulation, depolarisation of the mitochondrial 

membrane, and ultimately decreased ATP synthesis. Understanding these dynamics is crucial for 

predicting how neurons respond to oxygen fluctuations. 

Our visualisation data on temporal changes during hypoxic adaptation demonstrates that 

mitochondrial function undergoes distinct phases in response to oxygen constraints. The acute phase 

(1 hour) is characterised by dramatically reduced ATP production, elevated ROS generation, and 

membrane potential depolarisation. However, as adaptation progresses, ATP production gradually 

recovers whilst ROS levels decline, suggesting the activation of compensatory mechanisms. This 

biphasic response reflects the integration of immediate bioenergetic adjustments with longer-term 

transcriptional changes mediated by HIF-1α signalling. 

The thermodynamically-consistent model by Garcia et al. provides insights into how 

mitochondrial ATP production is regulated under different conditions. The equation JATPsyn = 

kATPsyn[exp((ΔGATPsyn + nH Δμ_H)/RT)[ADP][Pi] - [ATP]] shows that ATP synthesis depends 

not only on substrate availability ([ADP] and [Pi]) but also on the proton electrochemical gradient 

(ΔμH) and the free energy of ATP synthesis (ΔGATPsyn). During oxygen constraints, maintaining 

an adequate proton gradient becomes challenging, necessitating alternative strategies for ATP 

generation. 

The HIF-1α signalling network, visualised in our data, coordinates these adaptive responses by 

regulating multiple aspects of mitochondrial function. The increased association of HIF-1α with 

mitochondria under hypoxia (from <5% to 15-20%) suggests direct regulation of mitochondrial 

proteins in addition to nuclear transcriptional effects. The shift in COXIV-1/COXIV-2 ratio represents 

a specific adaptation to optimise the efficiency of complex IV under low oxygen conditions. These 

molecular mechanisms illustrate how neurons have evolved sophisticated regulatory networks to 

maintain energy homeostasis despite oxygen fluctuations. 
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4.3. Implications for Neurodevelopmental and Neurodegenerative Disorders 

The mathematical models and data presented here have significant implications for 

understanding neurodevelopmental and neurodegenerative disorders. The relationship between 

mitochondrial metabolism and neuronal development timing, as captured in the equation Tdevelopment = a · 

MR-b, suggests that perturbations in mitochondrial function could disrupt normal neurodevelopmental 

processes. Indeed, many neurodevelopmental disorders show evidence of mitochondrial dysfunction, including 

autism spectrum disorders, intellectual disability, and schizophrenia. 

The performance-efficiency trade-off model (Ftotal = wP · FP(ATP) + wE · FE(O2)) provides 

insights into why neurons are particularly vulnerable to mitochondrial dysfunction. As post-mitotic 

cells with high energy demands and limited glycolytic capacity, neurons operate with minimal 

bioenergetic reserve capacity. Even modest reductions in mitochondrial efficiency can push neurons 

below the threshold required for normal function, leading to energy failure and potentially cell death. 

Our visualisation data on mitochondrial morphology changes under hypoxia highlights the 

importance of mitochondrial dynamics in neuronal adaptation. The dramatic increase in fragmented 

mitochondria (from 15% to 65%) and reduction in average length (from 2.8 μm to 1.2 μm) represent 

a coordinated response to changing bioenergetic conditions. Dysregulation of these dynamics is 

increasingly recognised as a feature of neurodegenerative diseases, including Parkinson's disease, Alzheimer's 

disease, and amyotrophic lateral sclerosis. 

The HIF-1α signalling network, which coordinates adaptive responses to oxygen constraints, 

may also play a role in neuroprotection. The temporal changes in HIF-1α levels during hypoxic 

adaptation suggest a window of maximal neuroprotection during the late adaptive phase (24 hours). 

This insight could inform therapeutic strategies aimed at enhancing neuronal resilience to ischaemic 

injury, such as occurs in stroke. 

4.4. Future Directions and Therapeutic Implications 

Several promising directions for future research emerge from the integration of evolutionary 

biology and cellular bioenergetics perspectives on neuronal mitochondria. First, there is a need for 

more detailed cell type-specific analyses of mitochondrial function across different neuronal 

populations. Our current mathematical models treat neurons as a homogeneous population, but 

evidence suggests significant variation in mitochondrial properties across different neuronal 

subtypes. Developing models that capture this heterogeneity would provide more accurate 

predictions of how neural circuits respond to oxygen constraints. 

Second, the comparison of mitochondrial adaptations across species offers valuable insights into 

human-specific vulnerabilities and resilience mechanisms. The finding that human neurons exhibit 

"metabolic neoteny" compared to mouse neurons suggests that evolutionary changes in 

mitochondrial metabolism may have contributed to human cognitive capabilities but potentially at 

the cost of increased vulnerability to certain stressors. Further comparative studies using the 

mathematical frameworks presented here could illuminate the evolutionary trade-offs that have 

shaped human brain function. 

Third, the mathematical models of evolutionary trade-offs provide a framework for 

understanding how natural selection has optimised neuronal mitochondria for specific 

environmental conditions. Applying these models to populations adapted to extreme environments, 

such as high altitude or diving mammals, could reveal alternative solutions to the challenge of 

maintaining neuronal function under oxygen constraints. These insights might inspire biomimetic 

approaches to enhancing mitochondrial resilience in vulnerable neuronal populations. 

From a therapeutic perspective, the detailed understanding of neuronal mitochondrial 

adaptation presented here suggests several promising interventions. The biphasic response to hypoxia, 

with initial dysfunction followed by adaptive recovery, suggests that supporting neurons through the acute 

phase could enhance their natural resilience mechanisms. Pharmacological agents that temporarily shift 

metabolism toward glycolysis, activate HIF-1α signalling, or support mitochondrial membrane potential might 

provide neuroprotection during ischaemic events. 
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The species-specific regulation of neuronal development by mitochondrial metabolism suggests 

potential approaches for addressing neurodevelopmental disorders. If certain conditions involve 

accelerated or delayed neuronal maturation due to altered mitochondrial function, interventions that 

normalise metabolic rates might help restore proper developmental timing. This approach would 

require careful calibration based on mathematical models that relate metabolic parameters to 

developmental outcomes. 

Finally, the non-uniform distribution of mitochondria within neurons highlights the importance 

of proper mitochondrial trafficking and positioning for neuronal function. Therapeutic strategies aimed 

at enhancing mitochondrial transport to regions of high energy demand could potentially address the energy 

deficits observed in many neurodegenerative diseases. Mathematical models incorporating spatial 

considerations and mitochondrial dynamics will be essential for predicting the efficacy of such 

interventions. 

5. Conclusion 

The integration of evolutionary biology and cellular bioenergetics perspectives provides a 

comprehensive framework for understanding mitochondrial adaptation in neurons under oxygen 

constraints. The mathematical models presented here—from oxygen diffusion kinetics to 

mitochondrial energy production and evolutionary trade-offs—capture the multifaceted nature of 

these adaptations across different levels of biological organisation. The visualisation data illustrates 

both quantitative aspects, such as mitochondrial distribution and respiratory rates, and qualitative 

adaptations, including morphological changes and regulatory network responses. 

Several key insights emerge from this integrated analysis. First, the obligate dependence of 

neurons on oxidative phosphorylation represents an evolutionary adaptation that maximises energy 

efficiency whilst minimising oxidative damage, reflecting the unique challenges faced by these post-

mitotic cells. Second, the spatial distribution of mitochondria within neurons reflects an evolutionary 

optimisation problem, balancing local energy demands against the metabolic cost of maintaining 

mitochondrial mass. Third, the temporal dynamics of hypoxic adaptation reveal sophisticated 

regulatory mechanisms that allow neurons to maintain essential functions despite fluctuations in 

oxygen availability. 

The species-specific regulation of neuronal development by mitochondrial metabolism, as 

demonstrated by the "metabolic neoteny" of human neurons, suggests that evolutionary changes in 

mitochondrial function may have contributed to human cognitive capabilities. This finding 

highlights how fundamental bioenergetic processes can influence complex neurological functions 

across evolutionary timescales. 

The mathematical frameworks developed here provide a foundation for future research on 

neuronal mitochondria, with potential applications in understanding neurodevelopmental disorders, 

neurodegenerative diseases, and responses to ischaemic injury. By combining quantitative 

approaches with evolutionary thinking, we gain deeper insights into both the constraints shaping 

neuronal mitochondria and their adaptive solutions. This integrated perspective promises to inform 

therapeutic strategies aimed at enhancing mitochondrial resilience and neuronal function in various 

pathological conditions. 

As we continue to unravel the complex relationship between mitochondrial function and 

neuronal adaptation, the mathematical models and visualisation approaches presented here will 

provide valuable tools for quantifying and interpreting empirical findings. By maintaining this 

dialogue between evolutionary biology and cellular bioenergetics, we advance our understanding of 

the remarkable organelles that power the most complex computational system in nature—the human 

brain (at  least for now). 

Conflicts of Interest: The Author claims there are no conflicts of interest. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202505.0191.v1

https://doi.org/10.20944/preprints202505.0191.v1


 15 

 

Appendix: Java Code for Visualizations 

import matplotlib.pyplot as plt 

import numpy as np 

import seaborn as sns 

from matplotlib.colors import LinearSegmentedColormap 

from mpl_toolkits.mplot3d import Axes3D 

import networkx as nx 

from matplotlib.gridspec import GridSpec 

 

# Visualization 1: Mitochondrial distribution and oxygen consumption across neuronal compartments 

def plot_neuron_with_mitochondria(): 

    # Create figure and axis 

    fig, ax = plt.subplots(figsize=(12, 8)) 

     

    # Custom colormaps for density and oxygen consumption 

    density_cmap = LinearSegmentedColormap.from_list("Density",  

                                                 ["lightblue", "blue", "darkblue"]) 

    o2_cmap = LinearSegmentedColormap.from_list("O2_consumption",  

                                             ["lightyellow", "orange", "red"]) 

     

    # Define neuronal regions and their properties 

    # Format: [x, y, width, height, density, oxygen_consumption] 

    soma = [5, 4, 3, 3, 0.9, 0.6]  # High density, moderate consumption 

     

    # Format: [[start_x, start_y], [end_x, end_y], width, density, oxygen_consumption] 

    proximal_dendrite1 = [[8, 5.5], [12, 7], 0.8, 0.7, 0.8]  # High density, high consumption 

    proximal_dendrite2 = [[8, 4], [12, 3], 0.8, 0.7, 0.8]    

     

    distal_dendrite1 = [[12, 7], [16, 8], 0.5, 0.4, 0.5]  # Medium density, moderate consumption 

    distal_dendrite2 = [[12, 3], [16, 2], 0.5, 0.4, 0.5] 

     

    axon_initial = [[5, 2.5], [3, 2], 0.6, 0.2, 0.9]  # Low density, very high consumption 

    axon_shaft = [[3, 2], [1, 1], 0.3, 0.1, 0.3]  # Very low density, low consumption 

     

    terminals = [[0.5, 0.5, 0.7, 0.7, 0.6, 0.9],  # Medium density, very high consumption 

                 [0.8, 1.2, 0.6, 0.6, 0.6, 0.9], 

                 [1.2, 0.8, 0.5, 0.5, 0.6, 0.9]] 

     

    # Draw soma 

    soma_circle = plt.Circle((soma[0], soma[1]), soma[2]/2, color=density_cmap(soma[4])) 

    ax.add_patch(soma_circle) 

    ax.text(soma[0], soma[1], "Soma\nHighest density\nModerate O₂",  

            ha='center', va='center', color='white', fontsize=9) 
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    # Draw dendrites 

    def draw_branch(start, end, width, density, o2): 

        # Calculate angle and length 

        dx = end[0] - start[0] 

        dy = end[1] - start[1] 

        angle = np.arctan2(dy, dx) 

        length = np.sqrt(dx**2 + dy**2) 

         

        # Draw the branch as a rectangle 

        x = start[0] 

        y = start[1] 

        rect = plt.Rectangle((x, y-width/2), length, width,  

                             angle=angle*180/np.pi,  

                             color=density_cmap(density), 

                             alpha=0.8, origin='center') 

        ax.add_patch(rect) 

         

        # Add label 

        mid_x = (start[0] + end[0]) / 2 

        mid_y = (start[1] + end[1]) / 2 

        offset_x = -np.sin(angle) * width 

        offset_y = np.cos(angle) * width 

         

        return mid_x + offset_x, mid_y + offset_y 

     

    # Draw proximal dendrites 

    label_pos = draw_branch(proximal_dendrite1[0], proximal_dendrite1[1],  

                          proximal_dendrite1[2], proximal_dendrite1[3], proximal_dendrite1[4]) 

    ax.text(label_pos[0], label_pos[1], "Proximal dendrites\nHigh density\nHigh O₂",  

            ha='center', va='center', color='white', fontsize=8, rotation=15) 

     

    draw_branch(proximal_dendrite2[0], proximal_dendrite2[1],  

                proximal_dendrite2[2], proximal_dendrite2[3], proximal_dendrite2[4]) 

     

    # Draw distal dendrites 

    label_pos = draw_branch(distal_dendrite1[0], distal_dendrite1[1],  

                          distal_dendrite1[2], distal_dendrite1[3], distal_dendrite1[4]) 

    ax.text(label_pos[0], label_pos[1], "Distal dendrites\nMedium density\nModerate O₂",  

            ha='center', va='center', color='white', fontsize=8, rotation=10) 

     

    draw_branch(distal_dendrite2[0], distal_dendrite2[1],  

                distal_dendrite2[2], distal_dendrite2[3], distal_dendrite2[4]) 
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    # Draw axon initial segment 

    label_pos = draw_branch(axon_initial[0], axon_initial[1],  

                          axon_initial[2], axon_initial[3], axon_initial[4]) 

    ax.text(label_pos[0], label_pos[1]-0.5, "Axon initial segment\nLow density\nVery high O₂",  

            ha='center', va='center', fontsize=8) 

     

    # Draw axon shaft 

    label_pos = draw_branch(axon_shaft[0], axon_shaft[1],  

                          axon_shaft[2], axon_shaft[3], axon_shaft[4]) 

    ax.text(label_pos[0]-0.5, label_pos[1]-0.3, "Axon shaft\nVery low density\nLow O₂",  

            ha='center', va='center', fontsize=8) 

     

    # Draw terminals 

    for term in terminals: 

        term_circle = plt.Circle((term[0], term[1]), term[2]/2, color=density_cmap(term[4])) 

        ax.add_patch(term_circle) 

     

    ax.text(terminals[0][0], terminals[0][1]-0.8, "Presynaptic terminals\nMedium density\nVery high O₂",  

            ha='center', va='center', fontsize=8) 

     

    # Set limits and remove axes 

    ax.set_xlim(0, 17) 

    ax.set_ylim(0, 9) 

    ax.axis('off') 

     

    # Legend for mitochondrial density 

    sm_density = plt.cm.ScalarMappable(cmap=density_cmap) 

    sm_density.set_array([]) 

    cbar_density = plt.colorbar(sm_density, ax=ax, location='right', shrink=0.6) 

    cbar_density.set_label('Mitochondrial Density') 

    cbar_density.set_ticks([0, 0.5, 1]) 

    cbar_density.set_ticklabels(['Low', 'Medium', 'High']) 

     

    # Title 

    plt.title('Mitochondrial Distribution and Oxygen Consumption across Neuronal Compartments', fontsize=14) 

    plt.tight_layout() 

     

    return fig 

 

# Create and display the neuron visualization 

neuron_fig = plot_neuron_with_mitochondria() 

plt.savefig('visualization1_mitochondrial_distribution.png', dpi=300, bbox_inches='tight') 
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plt.close() 

 

# Visualization 2: 3D morphological changes in mitochondria under hypoxia 

def plot_mitochondrial_morphology(): 

    # Create sample data for mitochondrial morphology 

    np.random.seed(42)  # For reproducibility 

     

    # Normal mitochondria - longer, larger, less fragmented 

    n_normal = 40 

    normal_length = 2.8 + 0.5 * np.random.randn(n_normal) 

    normal_length[normal_length < 1.5] = 1.5  # Enforce minimum length 

    normal_width = 0.5 + 0.1 * np.random.randn(n_normal) 

    normal_width[normal_width < 0.3] = 0.3  # Enforce minimum width 

    normal_volume = 0.17 + 0.03 * np.random.randn(n_normal) 

    normal_volume[normal_volume < 0.1] = 0.1  # Enforce minimum volume 

     

    # Hypoxic mitochondria - shorter, smaller, more fragmented 

    n_hypoxic = 40 

    hypoxic_length = 1.2 + 0.3 * np.random.randn(n_hypoxic) 

    hypoxic_length[hypoxic_length < 0.7] = 0.7  # Enforce minimum length 

    hypoxic_length[hypoxic_length > 2.0] = 2.0  # Enforce maximum length 

    hypoxic_width = 0.4 + 0.08 * np.random.randn(n_hypoxic) 

    hypoxic_width[hypoxic_width < 0.2] = 0.2  # Enforce minimum width 

    hypoxic_volume = 0.09 + 0.02 * np.random.randn(n_hypoxic) 

    hypoxic_volume[hypoxic_volume < 0.05] = 0.05  # Enforce minimum volume 

     

    # Create 3D scatter plot 

    fig = plt.figure(figsize=(12, 9)) 

    ax = fig.add_subplot(111, projection='3d') 

     

    # Plot normal mitochondria 

    normal = ax.scatter(normal_length, normal_width, normal_volume,  

                       color='blue', s=50, label='Normal Mitochondria') 

     

    # Plot hypoxic mitochondria 

    hypoxic = ax.scatter(hypoxic_length, hypoxic_width, hypoxic_volume,  

                        color='red', s=50, label='Hypoxic Mitochondria') 

     

    # Calculate and plot surface area/volume ratio 

    def calculate_surface_area(length, width): 

        # Approximate as cylinders with spherical caps 

        radius = width / 2 

        cylinder_length = length - 2*radius 
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        cylinder_surface = 2 * np.pi * radius * cylinder_length 

        caps_surface = 4 * np.pi * radius**2 

        return cylinder_surface + caps_surface 

     

    # Add centroids for each group 

    ax.scatter(np.mean(normal_length), np.mean(normal_width), np.mean(normal_volume),  

              color='darkblue', s=200, marker='*', label='Normal Centroid') 

    ax.scatter(np.mean(hypoxic_length), np.mean(hypoxic_width), np.mean(hypoxic_volume),  

              color='darkred', s=200, marker='*', label='Hypoxic Centroid') 

     

    # Add connecting line between centroids to highlight the shift 

    ax.plot([np.mean(normal_length), np.mean(hypoxic_length)], 

            [np.mean(normal_width), np.mean(hypoxic_width)], 

            [np.mean(normal_volume), np.mean(hypoxic_volume)], 

            'k--', alpha=0.5) 

     

    # Add parameter labels and ranges 

    ax.text(3.2, 0.6, 0.2, 'Normal Length: 2.8 μm', color='blue') 

    ax.text(3.2, 0.6, 0.19, 'Hypoxic Length: 1.2 μm (-57%)', color='red') 

     

    ax.text(3.2, 0.6, 0.16, 'Normal Volume: 0.17 μm³', color='blue') 

    ax.text(3.2, 0.6, 0.15, 'Hypoxic Volume: 0.09 μm³ (-47%)', color='red') 

     

    ax.text(3.2, 0.6, 0.12, 'Normal SA/V: 4.82 μm⁻¹', color='blue') 

    ax.text(3.2, 0.6, 0.11, 'Hypoxic SA/V: 6.00 μm⁻¹ (+24%)', color='red') 

     

    # Label axes 

    ax.set_xlabel('Length (μm)', fontsize=12) 

    ax.set_ylabel('Width (μm)', fontsize=12) 

    ax.set_zlabel('Volume (μm³)', fontsize=12) 

     

    # Set axis limits 

    ax.set_xlim(0.5, 4) 

    ax.set_ylim(0.2, 0.8) 

    ax.set_zlim(0.05, 0.25) 

     

    # Add legend and title 

    ax.legend(loc='upper left', fontsize=10) 

    plt.title('3D Morphological Changes in Neuronal Mitochondria under Hypoxia', fontsize=14) 

     

    # Adjust view angle 

    ax.view_init(elev=20, azim=45) 
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    plt.tight_layout() 

     

    return fig 

 

# Create and display the mitochondrial morphology visualization 

morphology_fig = plot_mitochondrial_morphology() 

plt.savefig('visualization2_mitochondrial_morphology.png', dpi=300, bbox_inches='tight') 

plt.close() 

 

# Visualization 3: Neuronal oxygen consumption rates during development 

def plot_o2_consumption_development(): 

    # Data for oxygen consumption rates over developmental stages 

    age_groups = ['E18-P2', 'P8-P12', 'P16-P20', '≥P28'] 

    basal_o2 = [6.1, 7.5, 9.0, 10.2]  # Values in nM/min/10⁷ cells 

    glutamate_o2 = [14.0, 14.5, 14.8, 15.0]  # Values in nM/min/10⁷ cells 

    k_plus_o2 = [8.0, 10.5, 12.0, 13.5]  # Values in nM/min/10⁷ cells 

     

    # Create multi-line plot 

    fig, ax = plt.subplots(figsize=(10, 6)) 

     

    # Plot each dataset 

    ax.plot(age_groups, basal_o2, 'o-', linewidth=2, color='blue', label='Basal') 

    ax.plot(age_groups, glutamate_o2, 's-', linewidth=2, color='red', label='Glutamate-stimulated') 

    ax.plot(age_groups, k_plus_o2, '^-', linewidth=2, color='green', label='K⁺-stimulated') 

     

    # Add data points with values 

    for i, v in enumerate(basal_o2): 

        ax.text(i, v+0.2, f"{v}", color='blue', fontweight='bold', ha='center') 

     

    for i, v in enumerate(glutamate_o2): 

        ax.text(i, v+0.2, f"{v}", color='red', fontweight='bold', ha='center') 

     

    for i, v in enumerate(k_plus_o2): 

        ax.text(i, v+0.2, f"{v}", color='green', fontweight='bold', ha='center') 

     

    # Add shaded area showing the developmental increase 

    ax.fill_between(range(len(age_groups)), basal_o2, alpha=0.1, color='blue') 

     

    # Add annotation for key developmental transitions 

    ax.annotate('Synaptogenesis\nincreases', xy=(1, 9), xytext=(1.2, 7), 

                arrowprops=dict(facecolor='black', shrink=0.05, width=1.5)) 

     

    ax.annotate('Mature activity\npatterns emerge', xy=(3, 13), xytext=(2.5, 11), 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202505.0191.v1

https://doi.org/10.20944/preprints202505.0191.v1


 21 

 

                arrowprops=dict(facecolor='black', shrink=0.05, width=1.5)) 

     

    # Customize the plot 

    ax.set_xlabel('Developmental Stage', fontsize=12) 

    ax.set_ylabel('Oxygen Consumption Rate (nM/min/10⁷ cells)', fontsize=12) 

    ax.set_title('Neuronal Oxygen Consumption Rates During Development', fontsize=14) 

    ax.grid(True, alpha=0.3) 

     

    # Add maximum consumption capacity line 

    ax.axhline(y=15, color='gray', linestyle='--', alpha=0.7) 

    ax.text(0.1, 15.2, 'Maximum Respiratory Capacity', color='gray', fontsize=10) 

     

    # Add legend 

    ax.legend(loc='lower right') 

     

    plt.tight_layout() 

     

    return fig 

 

# Create and display the oxygen consumption visualization 

o2_fig = plot_o2_consumption_development() 

plt.savefig('visualization3_oxygen_consumption.png', dpi=300, bbox_inches='tight') 

plt.close() 

 

# Visualization 4: HIF-1α regulation of mitochondrial adaptation under hypoxia 

def plot_hif1a_network(): 

    # Create a directed graph 

    G = nx.DiGraph() 

     

    # Add nodes with their states under hypoxia 

    nodes = { 

        'Hypoxia': {'state': 'trigger', 'pos': (0, 0)}, 

        'HIF-1α': {'state': 'increased', 'pos': (0, -1)}, 

        'Mitochondrial\nHIF-1α': {'state': 'increased', 'pos': (-2, -2)}, 

        'Nuclear\nHIF-1α': {'state': 'increased', 'pos': (2, -2)}, 

        'COXIV-1': {'state': 'decreased', 'pos': (-3, -3)}, 

        'COXIV-2': {'state': 'increased', 'pos': (-1, -3)}, 

        'PDK1': {'state': 'increased', 'pos': (1, -3)}, 

        'LDHA': {'state': 'increased', 'pos': (3, -3)}, 

        'Mitochondrial\nfusion': {'state': 'decreased', 'pos': (-2, -4)}, 

        'Mitochondrial\nfission': {'state': 'increased', 'pos': (0, -4)}, 

        'Mitochondrial\nbiogenesis': {'state': 'biphasic', 'pos': (2, -4)}, 

    } 
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    # Add nodes to the graph 

    for node, attr in nodes.items(): 

        G.add_node(node, state=attr['state'], pos=attr['pos']) 

     

    # Add edges representing relationships 

    edges = [ 

        ('Hypoxia', 'HIF-1α'), 

        ('HIF-1α', 'Mitochondrial\nHIF-1α'), 

        ('HIF-1α', 'Nuclear\nHIF-1α'), 

        ('Mitochondrial\nHIF-1α', 'COXIV-1'), 

        ('Mitochondrial\nHIF-1α', 'COXIV-2'), 

        ('Nuclear\nHIF-1α', 'PDK1'), 

        ('Nuclear\nHIF-1α', 'LDHA'), 

        ('Mitochondrial\nHIF-1α', 'Mitochondrial\nfusion'), 

        ('Mitochondrial\nHIF-1α', 'Mitochondrial\nfission'), 

        ('Nuclear\nHIF-1α', 'Mitochondrial\nbiogenesis'), 

    ] 

     

    # Add edges to the graph 

    G.add_edges_from(edges) 

     

    # Prepare node colors based on state 

    node_colors = [] 

    for node in G.nodes(): 

        state = G.nodes[node]['state'] 

        if state == 'increased': 

            node_colors.append('red') 

        elif state == 'decreased': 

            node_colors.append('blue') 

        elif state == 'trigger': 

            node_colors.append('purple') 

        else:  # biphasic 

            node_colors.append('orange') 

     

    # Prepare edge styles 

    edge_colors = [] 

    for u, v in G.edges(): 

        source_state = G.nodes[u]['state'] 

        target_state = G.nodes[v]['state'] 

         

        if source_state == target_state: 

            edge_colors.append('green')  # Same direction effect 
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        else: 

            edge_colors.append('red')    # Opposing effect 

     

    # Create figure 

    fig, ax = plt.subplots(figsize=(12, 10)) 

     

    # Get positions from node attributes 

    pos = nx.get_node_attributes(G, 'pos') 

     

    # Draw the graph 

    nx.draw_networkx_nodes(G, pos, node_size=2000, node_color=node_colors, alpha=0.7) 

    nx.draw_networkx_labels(G, pos, font_size=10, font_weight='bold') 

    nx.draw_networkx_edges(G, pos, edge_color=edge_colors, width=2, arrowsize=20,  

                          connectionstyle='arc3,rad=0.1') 

     

    # Add legend for node colors 

    legend_elements = [ 

        plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='red', markersize=15, label='Increased'), 

        plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='blue', markersize=15, label='Decreased'), 

        plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='purple', markersize=15, label='Trigger'), 

        plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='orange', markersize=15, label='Biphasic'), 

    ] 

    ax.legend(handles=legend_elements, loc='upper right') 

     

    # Add annotations 

    plt.annotate('Electron Transport\nChain Adaptation', xy=(-2, -3), xytext=(-4, -2.5), 

                arrowprops=dict(facecolor='black', shrink=0.05, width=1), fontsize=10) 

     

    plt.annotate('Metabolic\nShift', xy=(2, -3), xytext=(4, -2.5), 

                arrowprops=dict(facecolor='black', shrink=0.05, width=1), fontsize=10) 

     

    plt.annotate('Morphological\nAdaptation', xy=(0, -4), xytext=(0, -5), 

                arrowprops=dict(facecolor='black', shrink=0.05, width=1), fontsize=10) 

     

    plt.title('HIF-1α Regulation of Mitochondrial Adaptation under Hypoxia', fontsize=14) 

     

    # Remove axes 

    plt.axis('off') 

    plt.tight_layout() 

     

    return fig 

 

# Create and display the HIF-1α network visualization 
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hif_fig = plot_hif1a_network() 

plt.savefig('visualization4_hif1a_network.png', dpi=300, bbox_inches='tight') 

plt.close() 

 

# Visualization 5: Temporal changes in mitochondrial function during hypoxic adaptation 

def plot_temporal_adaptation(): 

    # Create data for the temporal changes 

    time_points = [0, 1, 6, 24, 72]  # Hours 

    time_labels = ['Normoxia', 'Acute\n(1h)', 'Early\n(6h)', 'Late\n(24h)', 'Chronic\n(72h+)'] 

     

    # Data as percentages of baseline (normoxia) 

    atp_production = [100, 50, 60, 75, 85] 

    ros_production = [100, 350, 250, 175, 135] 

    membrane_potential = [139, 105, 115, 125, 132]  # Absolute values in mV 

    hif1a_levels = [10, 50, 80, 90, 70]  # Arbitrary units 

     

    # Create multi-panel visualization 

    fig = plt.figure(figsize=(12, 10)) 

    gs = GridSpec(4, 1, height_ratios=[1, 1, 1, 1]) 

     

    # ATP Production Panel 

    ax1 = fig.add_subplot(gs[0]) 

    ax1.plot(time_points, atp_production, 'o-', linewidth=2, color='blue', label='ATP Production') 

    ax1.set_ylabel('% of Baseline') 

    ax1.set_title('ATP Production') 

    ax1.set_ylim(0, 110) 

    ax1.grid(True, alpha=0.3) 

    # Add data point labels 

    for i, v in enumerate(atp_production): 

        ax1.text(time_points[i], v+5, f"{v}%", ha='center') 

     

    # ROS Production Panel 

    ax2 = fig.add_subplot(gs[1]) 

    ax2.plot(time_points, ros_production, 'o-', linewidth=2, color='red', label='ROS Production') 

    ax2.set_ylabel('% of Baseline') 

    ax2.set_title('ROS Production') 

    ax2.set_ylim(0, 400) 

    ax2.grid(True, alpha=0.3) 

    # Add data point labels 

    for i, v in enumerate(ros_production): 

        ax2.text(time_points[i], v+20, f"{v}%", ha='center') 

     

    # Membrane Potential Panel 
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    ax3 = fig.add_subplot(gs[2]) 

    ax3.plot(time_points, membrane_potential, 'o-', linewidth=2, color='green', label='Membrane Potential') 

    ax3.set_ylabel('mV') 

    ax3.set_title('Mitochondrial Membrane Potential') 

    ax3.set_ylim(80, 150) 

    ax3.grid(True, alpha=0.3) 

    # Add data point labels 

    for i, v in enumerate(membrane_potential): 

        ax3.text(time_points[i], v+3, f"{v} mV", ha='center') 

     

    # HIF-1α Levels Panel 

    ax4 = fig.add_subplot(gs[3]) 

    ax4.plot(time_points, hif1a_levels, 'o-', linewidth=2, color='purple', label='HIF-1α Levels') 

    ax4.set_ylabel('Arbitrary Units') 

    ax4.set_title('HIF-1α Levels') 

    ax4.set_ylim(0, 100) 

    ax4.grid(True, alpha=0.3) 

    # Add data point labels 

    for i, v in enumerate(hif1a_levels): 

        ax4.text(time_points[i], v+5, f"{v}", ha='center') 

     

    # Set common x-axis labels 

    ax4.set_xlabel('Time') 

    ax4.set_xticks(time_points) 

    ax4.set_xticklabels(time_labels) 

     

    # Hide x labels for top plots 

    ax1.set_xticklabels([]) 

    ax2.set_xticklabels([]) 

    ax3.set_xticklabels([]) 

     

    # Add adaptive phases 

    for ax in [ax1, ax2, ax3, ax4]: 

        ax.axvspan(0, 1, alpha=0.1, color='red', label='Acute Phase') 

        ax.axvspan(1, 6, alpha=0.1, color='orange', label='Early Adaptation') 

        ax.axvspan(6, 24, alpha=0.1, color='yellow', label='Late Adaptation') 

        ax.axvspan(24, 72, alpha=0.1, color='green', label='Chronic Adaptation') 

     

    # Add overall title 

    fig.suptitle('Temporal Changes in Mitochondrial Function During Hypoxic Adaptation', fontsize=16) 

     

    # Add legend for phases only on the top panel 

    handles, labels = ax1.get_legend_handles_labels() 
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    ax1.legend(handles=handles[1:], labels=['Acute Phase', 'Early Adaptation', 'Late Adaptation', 'Chronic Adaptation'],  

              loc='lower right', fontsize=8) 

     

    plt.tight_layout() 

    plt.subplots_adjust(top=0.92, hspace=0.4) 

     

    return fig 

 

# Create and display the temporal adaptation visualization 

temporal_fig = plot_temporal_adaptation() 

plt.savefig('visualization5_temporal_adaptation.png', dpi=300, bbox_inches='tight') 

plt.close() 

 

# Display messages to confirm all visualizations have been created 

print("All visualizations have been created successfully:") 

print("1. Visualization1: Mitochondrial distribution and oxygen consumption across neuronal compartments") 

print("2. Visualization2: 3D morphological changes in mitochondria under hypoxia") 

print("3. Visualization3: Neuronal oxygen consumption rates during development") 

print("4. Visualization4: HIF-1α regulation of mitochondrial adaptation under hypoxia") 

print("5. Visualization5: Temporal changes in mitochondrial function during hypoxic adaptation") 
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