Pre prints.org

Article Not peer-reviewed version

Evolutionary Bioenergetics: Neuronal
Mitochondria Navigating Oxygen
Constraints

Richard Murdoch Montgomery ’

Posted Date: 5 May 2025
doi: 10.20944/preprints202505.0191.v1

Keywords: Mitochondria; neurons; oxygen; evolution; bioenergetics; mathematical modelling; diffusion
kinetics; HIF-1a; reactive oxygen species; neuronal development

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4114297

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2025 d0i:10.20944/preprints202505.0191.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Evolutionary Bioenergetics: Neuronal Mitochondria

Navigating Oxygen Constraints
Richard Murdoch Montgomery

Universidade do Porto, Researcher, Portugal; montgomery@alumni.usp.br

Abstract: Neuronal mitochondria face unique evolutionary and bioenergetic challenges due to the
brain's extraordinary energy demands coupled with its sensitivity to oxygen fluctuations. This
article examines mitochondrial adaptation in neurons under oxygen constraints through the dual
lens of evolutionary biology and cellular bioenergetics. We present a quantitative framework
incorporating mathematical models of oxygen diffusion kinetics, mitochondrial energy production,
and evolutionary trade-offs. Our analysis reveals that neuronal mitochondria have evolved
specialised features to optimise energy production whilst minimising oxidative damage, including
distinct electron transport chain compositions, region-specific distribution patterns, and oxygen-
responsive signalling pathways. Mathematical modelling demonstrates how these adaptations
emerge from fundamental physical constraints and evolutionary pressures. Datasets for visualising
mitochondrial distributions and functional adaptations across neuronal compartments are
provided. The remarkable convergence of evolutionary and bioenergetic perspectives illuminates
both the constraints shaping neuronal mitochondria and their adaptive solutions, with implications
for understanding neurodegenerative diseases, brain evolution, and potential therapeutic
interventions.

Keywords: Mitochondria; neurons; oxygen; evolution; bioenergetics; mathematical modelling;
diffusion kinetics; HIF-1a; reactive oxygen species; neuronal development

1. Introduction

Neurons represent an extraordinary evolutionary achievement in cellular specialisation, capable
of rapid information processing, long-distance signal transmission, and complex network formation.
Yet these remarkable capabilities come with substantial bioenergetic costs. The brain, despite
constituting merely 2% of human body weight, consumes approximately 20% of total body oxygen
and glucose, making it the most metabolically demanding organ (Howarth et al., 2012). This
disproportionate energy requirement reflects the intensive metabolic processes necessary for
maintaining neuronal function, including ionic gradient restoration after action potentials,
neurotransmitter cycling, and synaptic plasticity mechanisms.

At the centre of this metabolic challenge lie mitochondria, the cellular organelles responsible for
generating the vast majority of neuronal ATP through oxidative phosphorylation. These organelles,
descended from ancient a-proteobacteria through endosymbiosis approximately 1.5-2 billion years
ago (Gray et al., 2001), have undergone profound evolutionary adaptations to meet the specific
demands of neuronal function. Unlike most other cell types that can readily shift between glycolysis
and oxidative phosphorylation, neurons exhibit an obligate dependence on mitochondrial respiration
due to their limited glycolytic capacity (Yellen, 2018). This metabolic inflexibility renders neurons
particularly vulnerable to oxygen fluctuations, creating strong selective pressures for adaptive
mechanisms to maintain energy homeostasis under varying oxygen conditions.

The evolutionary history of neuronal mitochondria reflects a series of adaptations shaped by
these unique metabolic constraints. The transition from endosymbiont to organelle involved substantial
genomic restructuring, with most mitochondrial genes transferring to the nuclear genome. This genetic
reorganisation allowed for tissue-specific regulation of mitochondrial function, enabling neurons to develop
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specialised bioenergetic properties (Speijer, 2022). Contemporary neuronal mitochondria retain only 37 genes
in their own genome (13 proteins, 22 tRNAs, and 2 rRNAs), whilst the majority of their proteome (over 1,500
proteins) is encoded by nuclear genes (Mootha et al., 2003). This genomic architecture reflects the
evolutionary integration between the endosymbiont and host, establishing mitochondria as essential
organelles in eukaryotic cells with sophisticated regulatory mechanisms.

Oxygen availability serves as both a vital resource and potential threat to neuronal
mitochondria. Whilst essential for efficient ATP production through oxidative phosphorylation,
oxygen also generates potentially damaging reactive oxygen species (ROS). This dual nature has
exerted significant selective pressure on mitochondrial evolution in neural tissue (Niven and
Laughlin, 2008). The challenge of maximising energy production whilst minimising oxidative damage has
driven the evolution of specialised respiratory chain components and antioxidant systems in neuronal
mitochondria (da Silva et al., 2019). These adaptations are particularly important because neurons are
post-mitotic cells with minimal regenerative capacity, requiring mitochondrial function to be
maintained throughout the organism's lifetime.

Recent research has revealed that mitochondrial metabolism plays a crucial role in establishing
species-specific patterns of neuronal development. Iwata et al. (2023) demonstrated that human
neurons exhibit significantly slower mitochondrial development and lower oxidative
phosphorylation activity than mouse neurons. This "metabolic neoteny" correlates with the
prolonged developmental trajectory of human neurons, potentially facilitating the extended learning
and plasticity that characterise human brain development. These findings suggest that evolutionary
changes in mitochondrial metabolism may have contributed to the emergence of human cognitive capabilities
by extending the period of neuronal plasticity.

The spatial distribution of mitochondria within neurons further highlights their adaptive
specialisation. Neurons possess extremely polarised morphologies, with dendritic and axonal
processes that can extend for considerable distances from the cell body. This spatial complexity
necessitates sophisticated mechanisms for positioning mitochondria at sites of high energy demand.
High-resolution imaging studies reveal that mitochondrial density varies significantly across
neuronal compartments, with enrichment at synapses, nodes of Ranvier, and growth cones (Misgeld
and Schwarz, 2017). This non-uniform distribution reflects the heterogeneous energy requirements
within neurons and represents an evolutionary adaptation to optimise energy delivery whilst
minimising the metabolic cost of maintaining mitochondrial mass.

Under conditions of oxygen constraint, neuronal mitochondria exhibit remarkable adaptive
responses that integrate evolutionary conserved pathways with neuron-specific mechanisms. The
hypoxia-inducible factor (HIF) pathway represents a major evolutionary adaptation to oxygen limitations, with
important implications for neuronal mitochondria. HIF proteins regulate the expression of genes involved in
mitochondrial metabolism, including a shift from oxidative phosphorylation to glycolysis under hypoxic
conditions (Semenza, 2007). Species adapted to low-oxygen environments show modifications in the HIF
pathway that alter mitochondrial responses to hypoxia (Taylor and McElwain, 2010). These adaptations
enable neurons to maintain essential functions despite fluctuations in oxygen availability.

Understanding the mathematical principles governing oxygen diffusion and utilisation in neural
tissue provides crucial insights into the constraints shaping mitochondrial adaptation. The
foundational Krogh-Erlang model, developed in 1919, describes oxygen diffusion from capillaries to
surrounding tissue and remains a cornerstone of theoretical approaches to tissue oxygenation.
Subsequent refinements have incorporated neuron-specific factors, including the unique geometry
of neural tissue and the non-uniform distribution of mitochondria within neurons. These
mathematical models reveal how physical constraints on oxygen delivery create selective pressures
for mitochondrial adaptations that optimise energy production under varying oxygen conditions.

The bioenergetic principles underlying mitochondrial function in neurons have been captured
in increasingly sophisticated mathematical models. The Bertram-Pedersen-Luciani-Sherman (BPLS)
model describes the dynamic relationships between key mitochondrial variables, including NADH
concentration, ADP levels, membrane potential, and calcium handling (Bertram et al., 2006). More
recent thermodynamically-consistent models by Garcia et al. (2019, 2021) incorporate spatial
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considerations and demonstrate that ATP production rather than export is the limiting factor in ATP
availability in the neuronal cytosol. These quantitative frameworks provide a mechanistic
understanding of how neuronal mitochondria respond to changes in oxygen availability and energy
demand.

Evolutionary trade-offs have shaped mitochondrial function in neurons, balancing competing
demands for energy production, ROS management, and signalling functions. Mathematical models
of resource allocation, such as the Y-model, provide a quantitative framework for understanding how
these trade-offs have influenced mitochondrial adaptation. The performance-efficiency trade-off model
specifically addresses how neurons balance the need for maximal ATP production against the efficiency of
oxygen utilisation, a particularly important consideration given the high metabolic demands of neural tissue.

The integration of evolutionary biology and cellular bioenergetics perspectives provides a
comprehensive framework for understanding mitochondrial adaptation in neurons under oxygen
constraints. This multidisciplinary approach reveals how evolutionary pressures have shaped
neuronal mitochondria at multiple levels—from genomic organisation to protein expression, from
spatial distribution to dynamic responses to changing oxygen conditions. By examining these
adaptations through both evolutionary and mechanistic lenses, we gain deeper insights into the
remarkable capabilities of neurons to maintain function across varying environmental conditions and
throughout the lifespan of the organism.

In this article, we present a quantitative analysis of mitochondrial adaptation in neurons under
oxygen constraints, integrating evolutionary biology and cellular bioenergetics perspectives. We
begin by developing a mathematical framework for understanding oxygen diffusion in neural tissue
and its implications for mitochondrial function. We then examine mitochondrial energy production
models that capture the dynamic responses of neuronal mitochondria to varying oxygen conditions.
Next, we explore evolutionary trade-off models that illuminate the selective pressures shaping
mitochondrial adaptation in neurons. Throughout, we provide data for creating visualisations that
illustrate both quantitative and qualitative aspects of these adaptations. We conclude by discussing
the implications of these findings for understanding neurological disorders, brain evolution, and
potential therapeutic interventions.

2. Mathematical Models and Methods
2.1. Oxygen Diffusion Kinetics in Neural Tissue

2.1.1. The Krogh-Erlang Model and Neural Adaptations

The classical Krogh-Erlang model serves as our starting point for understanding oxygen
diffusion in neural tissue. This model describes oxygen diffusion from a capillary to surrounding
tissue in cylindrical geometry. The steady-state reaction-diffusion equation for oxygen partial
pressure (PO,) in tissue is:

L2

rdr K

where:

e P is the oxygen partial pressure ( mmHg ) at radial distance r from the capillary

e 1 is the radial coordinate ( um )

e M, is the tissue oxygen consumption rate ( ml02/ml tissue /min )

e K is the Krogh diffusion coefficient, defined as K = Da(mlO,/ml tissue /mmHg/min )
e D is the oxygen diffusivity in tissue (cm?/min)

e « is the oxygen solubility in tissue ( mlO,/ml tissue /mmHg )

The solution to this equation, known as the Krogh-Erlang solution, is:

M, M, T
P(r) = Pugp — K (r? —R%,) — K R?In (R ) )
cap
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where:

e Py is the capillary oxygen partial pressure (mmHg )
hd Rcap
® R, isthe tissue cylinder radius ( um )

is the capillary radius ( um )

For neural tissue, typical parameter values include:

e My=1-—10x%x10"*mlO,/ml tissue /min (for neurons)
e K=5-10x10"1ml02/ml tissue /mmHg/min

¢ D=1-2x1075cm?/min

e a=2-3%x10"°ml0,/ml tissue /mmHg

® Rgp =2-4um

e R, =20-50um

* P4 =40—-100mmHg

2.1.2. Modified Krogh Model with Michaelis-Menten Kinetics

To account for oxygen-dependent consumption rates in neural tissue, we modify the Krogh
model to include Michaelis-Menten kinetics:

1d ( dP\ M(P)
a5 ©)
where:
MyP
MP) =5 @

e P, is the oxygen partial pressure at which consumption is half of the maximum ( mmHg ),
typically 1 — 3mmHg for neural tissue
e  Other parameters are as defined above

2.1.3. Model with Axial Diffusion for Neural Tissue

Neural tissue, with its complex three-dimensional structure, requires consideration of axial
diffusion. The Lagerlund and Low (1991) model incorporates both radial and axial diffusion:

OP_KIO( 6P> 9*P] M(P) 5
ot " |ror\"ar) T 922 a ©)
where:
ez is the axial coordinate along the capillary ( um )
e  Other parameters are as defined above
For steady-state conditions, this becomes:
X 1 6( ap) a’P| _ M(P) 6
ror\'or) " 0z2| T« ©

2.2. Mitochondrial Energy Production Models

2.2.1. Bertram-Pedersen-Luciani-Sherman (BPLS) Model

The BPLS model captures the dynamic relationships between key mitochondrial variables in
neurons. The complete system of equations includes:

d[NADH],,

dt = y(]pdh _]o) (7)
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d[ADP],,
% =Y anr — Jr1ro) ®)
dl'ym _ (]H res _]H,atp _]H,leak _]NaCa - 2]uni) (9)
dt - Chito
dlc 2+ m
% = fm(]uni — Inaca) (10)

where:

e [NADH],, is the mitochondrial NADH concentration (mM)

e [ADP],, is the mitochondrial ADP concentration (mM)

e ¥, is the mitochondrial membrane potential (mV)

e [Ca?*],, is the mitochondrial calcium concentration (uM )

e  visascaling factor to convert flux units (dimensionless)

e { mis the fraction of free (unbound) Ca”(2+) in the mitochondria (dimensionless)
e C_"mito" isthe mitochondrial capacitance (uM/mV )

e  Flux equations include:

e  Pyruvate dehydrogenase flux:

¢ J_pdh=(J_pdh”max [Ca"(2+) ]_m/K_pdh )-FBP/(FBP+K_FBP )(18)

e  Respiration/Oxidation rate:

e ] o=(p_1 [NADH]_m)/(p_2+[NADH]_m )-1/(1+expii((p_3-¥_m )/p_4 ) )(19)
e  ATP synthase rate:

e  With algebraic relations:

e m([NAD]_m=NAD_"tot " -INADH]_m@[ATP]_m=A_tot-
[ADP]_m@RAT_m=([ATP]_m)/([ADP]_m ))(21),(22),(23)

where P/O is the phosphorylation/oxidation ratio (ATP molecules produced per oxygen atom

consumed).

2.2.2. Thermodynamically-Consistent Model
Garciaetal. (2019,2021) developed a thermodynamically-consistent model of ATP production

in mitochondria, which ensures detailed balance for all reaction cycles. The ATP synthase rate

equation is:

AGprpsyn + Ny
RT

Jarpsyn = Karpsyn [exp ( )[ADP] [P] — [ATP]] (11)

where:

®  karpsyn is the rate constant for ATP synthesis

®  AGprpgsyn is the standard free energy of ATP synthesis

e ny is the number of protons transported per ATP synthesized (typically 3-4)
e Apy is the proton electrochemical gradient ( ]J/mol )

® R is the gas constant

e T isthe temperature (K)

e (basal, glutamate-stimulated, K*-stimulated)]
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2.3. Evolutionary Trade-off Models

2.3.1. Resource Allocation Y-Model

The Y-model provides a framework for understanding evolutionary trade-offs in resource
allocation:

where:

® R is the total available resource (e.g., energy)
e Y, isthe allocation to trait A
e Yy is the allocation to trait B

For mitochondrial adaptation in neurons under oxygen constraints, this can be modified to:
E = Eyrp + Egos + Esignaling (13)
where:

e E is the total energy derived from oxygen consumption

e E,rp is the energy invested in ATP production

e Epps is the energy "lost" to reactive oxygen species generation
*  Eggnaling 1S the energy allocated to signalling functions

2.3.2. Performance-Efficiency Trade-off Model
For neural mitochondria, the performance-efficiency trade-off can be represented as:
Fiotat = wp - Fp(ATP) + wg - Fg(03) (14)
where:

e  Fia is the total fitness or performance

e  Fp is the performance function dependent on ATP production

e  Fg is the efficiency function dependent on oxygen consumption
e wp and wg are relative weights of performance and efficiency

The performance function might take the form:

ATP™
_ 15
Fp(ATP) = o— s (15)
And the efficiency function:
ATP P/O-0
Fo(00) =5 =12 % = p o (16)
0, 0,

2.3.3. Metabolic Scaling and Developmental Timing Model

The Iwata et al. (2023) study on species-specific timing of neuronal development suggests a
mathematical relationship between mitochondrial metabolism and developmental timing:
Tdevelopment =a- MR (17)
where:

®  Tgevelopment iS the time required for neuronal development
e MR is the metabolic rate (oxygen consumption rate)
e a and b are scaling parameters that differ between species

For human neurons, b is approximately 0.25, consistent with the West-Brown-Enquist metabolic scaling
theory.
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2.4. Methods for Computational Implementation

These mathematical models can be implemented in computational frameworks using several
approaches:

1.  Ordinary Differential Equation (ODE) Solvers: For whole-cell or tissue-level simulations,
standard ODE solvers (e.g., Runge-Kutta methods) can be used to solve the systems of
equations.

2. Finite Element Methods: For spatial models of oxygen diffusion in neural tissue with complex
geometries.

3. Agent-Based Modelling: For studies involving mitochondrial dynamics and spatial
heterogeneity, particularly useful for studying evolutionary adaptations at the subcellular
level.

4. Monte Carlo Simulations: To capture stochastic effects in mitochondrial function and

evolution.
3. Results

3.1. Mitochondrial Density and Distribution Data

Mitochondrial distribution varies significantly across different neuronal compartments, reflecting local
energy demands and evolutionary adaptations to optimise ATP delivery.

Table 1. Mitochondrial Density, Mobility and Oxygen Consumption in different compartments of the
neurons. Note the high Distal Dendrite mobility and very high Oxygen Consumption in the initial
Axon Compartment and Presynaptic Terminals.

Compartment Mitochondrial Density Mobility Oxygen Consumption
Soma Highest (5-10 mitochondria/um?3) Low Moderate
Proximal dendrites 3-5 mitochondria/pum3 Moderate High
Distal dendrites 1-2 mitochondria/um3 High Moderate
Axon initial segment 0.5-1 mitochondria/pum? Low Very high
Axon shaft 0.1-0.5 mitochondria/pm?3 High Low
Presynaptic terminals 1-3 mitochondria/pum? Very low Very high

Mitochondrial distribution and oxygen consumption across neuronal compartments

Mitochondria Distribution Oxygen Consumption
120 |
4 -
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S 80 £ 34
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Figure 1. Mitochondrial Distribution and Oxygen Consumption Across Neuronal Compartments
portrayed indirectly by ATP and ROS production, Mitochondrial Mmbrane Potentials and HIF-1a
levels.

3.2. Mitochondrial Morphology Under Oxygen Constraints

Neuronal mitochondria undergo significant morphological changes in response to oxygen
constraints:

Table 2. Mitochondrial Mophology adaptations according to Oxygen Constraints.

Parameter Normal Condition Hypoxic Condition = Change
Average mitochondrial length 2.8 um 1.2 um -57%
Fragmented mitochondria ratio 15% 65% +333%
Mitochondrial surface area 0.82 pm? 0.54 pm? -34%
Mitochondrial volume 0.17 um? 0.09 um? -47%
Surface area/volume ratio 4.82 um™ 6.00 pm™ +24%

3-D Morphological Changes in Neuronal Mitochondria Under Hypoxia
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Figure 2. 3D Morphological Changes in Mitochondria Under Hypoxia.

3.3. Mitochondrial Respiration Data

Table 3. Oxygen consumption rates vary significantly across neuronal development stages and in
response to different stimuli.

Parameter Value Condition
Basal oxygen consumption 6.1 nM/min/107 cells Immature neurons (E18-P2)
Basal oxygen consumption 10.2 nM/min/107 cells Mature neurons (=P28)
Glutamate-stimulated O, consumption =14 nM/min/107 cells All age groups
Maximum oxygen consumption 14-15 nM/min/107 cells Neurons =P8
Oxygen consumption reduction ~50% After blocking spike discharge
Mitochondrial membrane potential -139 mV Resting cortical neurons

MMP regulation range -108 to -158 mV During activity
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Neuronal Oxygen Consumption Across Development
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Figure 3. Neuronal Oxygen Consumption Rates During Development. Line plot showing
developmental changes in oxygen consumption under different conditions.

3.4 HIF-1a Regulation Network

HIF-1a signalling coordinates mitochondrial adaptation to hypoxia through multiple pathways:

Table 4. HIF-1a Regulation of Mitochondrial Adaptation Under Hypoxia.

Parameter Normal Oxygen Hypoxia

HIF-1a mitochondrial association <5% 15-20%

COXIV-1/COXIV-2 ratio 1.5 0.5-0.8 (1d), 2.2-2.5 (3-14d)
ATP production (hypoxia) 100% (baseline) 70-80% (acute), 85-95% (adapted)
ROS production Low 2-3x increase (acute), return to baseline
(adapted)
Mitochondrial P-Drp1/Drp1 ratio 0.2 0.8
Mitochondrial fusion protein 100% (baseline) 40-60%

(OPA1)
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HIF-1la Regulation of Mitochondrial Adaptation Under Hypoxia
; Trigger
Increased
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Biphasic
Figure 4. Directed graph showing relationships between HIF-1a and its downstream targets with
color-coding for up/down regulation.
3.5. Temporal Changes During Adaptation
Mitochondrial function undergoes dynamic changes during adaptation to hypoxia:
Table 5. Temporal Changes in Mitochondrial Function During Hypoxic Adaptation.
Mitochondrial Memb
Timepoint ATP ProductionROS Production 00 onend . SN HIF-1a Level
Potential
Normoxia 100% 100% -139 mV Low
Acute hypoxia (1h) 40-60% 300-400% -100 to -110 mV Intermediate
Earl i
ary igﬁftatlon 50-70% 200-300% -110 to -120 mV High
Late adaptati
ate sz}}:)a on 70-80% 150-200% -120 to -130 mV Very high
hroni .
Chronic adaptation g g0, 120-150% -130 to -135 mV High

(72h+)
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Temporal Changes in Mitochondrial Function During Hypoxic Adaptation
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Figure 5. Multi-panel line plots showing changes in ATP production, ROS generation, membrane
potential, and HIF-1a levels over time during hypoxic adaptation.

4. Discussion

4.1. Evolutionary Implications of Neuronal Mitochondrial Adaptations

The mathematical models and data presented in this article reveal profound insights into the
evolutionary forces that have shaped mitochondrial function in neurons. The obligate dependence of
neurons on oxidative phosphorylation appears to be a double-edged sword —whilst providing the high ATP
yield necessary for energetically demanding neuronal functions, it also creates vulnerability to oxygen
fluctuations. This fundamental constraint has driven the evolution of sophisticated adaptive mechanisms at
multiple levels of biological organisation.

Speijer's (2011) kinetic model relating FADH,/NADH ratios to ROS production provides a
quantitative explanation for why neurons evolved to primarily utilise glucose rather than fatty acids
for energy. The mathematical relationship ROS production oc (FADH,/NADH ratio) reveals that glucose
metabolism produces lower ROS levels due to its more favourable FADH,/NADH ratio. This evolutionary
adaptation protected neurons—post-mitotic cells that cannot be easily replaced —from cumulative oxidative
damage. The trade-off is clear: neurons sacrificed metabolic flexibility for long-term survival, an adaptation
particularly important given their limited regenerative capacity.

The discovery by Iwata et al. (2023) that mitochondrial metabolism sets the species-specific
tempo of neuronal development represents a breakthrough in understanding how evolution has
tuned neuronal development through mitochondrial function. Their mathematical relationship,
T_development = a - MR, provides a quantitative framework for understanding how metabolic rate
differences translate into developmental timing variations across species. For human neurons, the
scaling exponent b = 0.25 is consistent with broader metabolic scaling theories, suggesting that
neuronal development follows fundamental biophysical principles. The “metabolic neoteny” of human
neurons—their slower metabolic maturation—may have created an extended window for learning and
plasticity that contributed to the evolution of human cognitive capabilities.
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The differential distribution of mitochondria within neurons, as quantified in our visualisation
data, reflects an evolutionary optimisation problem: how to position energy-producing organelles to
meet local ATP demands whilst minimising the metabolic cost of maintaining mitochondrial mass.
The enrichment of mitochondria at synapses and the axon initial segment, despite the considerable distance
from the cell body, highlights the selective pressure to support these energetically demanding compartments.
This distribution pattern represents an evolutionary solution to the comstraints imposed by neuronal
morphology and the limited diffusion distance of ATP.

However, these evolutionary adaptations have not been without costs. The reduced glycolytic
capacity of neurons, whilst protecting against oxidative damage, limits their metabolic flexibility
during periods of oxygen constraint. The intricate balance between energy production and ROS
management, as captured in our performance-efficiency trade-off model (Ftotal = wP - FP(ATP) + wE
- FE(O2)), illustrates how neurons must navigate competing demands. The weighting factors wP and
wE likely vary across species and neuronal subtypes, reflecting different evolutionary solutions to
this fundamental trade-off.

4.2. Bioenergetic Mechanisms and Their Implications

The mathematical models of oxygen diffusion kinetics reveal critical insights into the
bioenergetic challenges facing neuronal mitochondria. The modified Krogh model with Michaelis-
Menten kinetics shows how oxygen consumption in neural tissue depends non-linearly on oxygen
concentration, creating regions of varying oxygen availability within the brain. This spatial
heterogeneity has important implications for mitochondrial function, as different neuronal
populations experience distinct oxygen environments even under normal physiological conditions.

The BPLS model of mitochondrial energy production captures the complex dynamics of key
mitochondrial variables, including NADH concentration, ADP levels, membrane potential, and
calcium handling. These equations reveal how perturbations in one variable propagate through the
system, affecting overall ATP production. For example, a reduction in oxygen availability initially
decreases Jo (the oxidation rate), leading to NADH accumulation, depolarisation of the mitochondrial
membrane, and ultimately decreased ATP synthesis. Understanding these dynamics is crucial for
predicting how neurons respond to oxygen fluctuations.

Our visualisation data on temporal changes during hypoxic adaptation demonstrates that
mitochondrial function undergoes distinct phases in response to oxygen constraints. The acute phase
(1 hour) is characterised by dramatically reduced ATP production, elevated ROS generation, and
membrane potential depolarisation. However, as adaptation progresses, ATP production gradually
recovers whilst ROS levels decline, suggesting the activation of compensatory mechanisms. This
biphasic response reflects the integration of immediate bioenergetic adjustments with longer-term
transcriptional changes mediated by HIF-1a signalling.

The thermodynamically-consistent model by Garcia et al. provides insights into how
mitochondrial ATP production is regulated under different conditions. The equation JATPsyn =
kATPsyn[exp((AGATPsyn + nH Ap_H)/RT)[ADP][Pi] - [ATP]] shows that ATP synthesis depends
not only on substrate availability ([ADP] and [Pi]) but also on the proton electrochemical gradient
(ApH) and the free energy of ATP synthesis (AGATPsyn). During oxygen constraints, maintaining
an adequate proton gradient becomes challenging, necessitating alternative strategies for ATP
generation.

The HIF-1a signalling network, visualised in our data, coordinates these adaptive responses by
regulating multiple aspects of mitochondrial function. The increased association of HIF-1a with
mitochondria under hypoxia (from <5% to 15-20%) suggests direct regulation of mitochondrial
proteins in addition to nuclear transcriptional effects. The shift in COXIV-1/COXIV-2 ratio represents
a specific adaptation to optimise the efficiency of complex IV under low oxygen conditions. These
molecular mechanisms illustrate how neurons have evolved sophisticated regulatory networks to
maintain energy homeostasis despite oxygen fluctuations.
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4.3. Implications for Neurodevelopmental and Neurodegenerative Disorders

The mathematical models and data presented here have significant implications for
understanding neurodevelopmental and neurodegenerative disorders. The relationship between
mitochondrial metabolism and neuronal development timing, as captured in the equation Tdevelopment = a -
MR, suggests that perturbations in mitochondrial function could disrupt normal neurodevelopmental
processes. Indeed, many neurodevelopmental disorders show evidence of mitochondrial dysfunction, including
autism spectrum disorders, intellectual disability, and schizophrenia.

The performance-efficiency trade-off model (Ftotal = wP - FP(ATP) + wE - FE(Oz)) provides
insights into why neurons are particularly vulnerable to mitochondrial dysfunction. As post-mitotic
cells with high energy demands and limited glycolytic capacity, neurons operate with minimal
bioenergetic reserve capacity. Even modest reductions in mitochondrial efficiency can push neurons
below the threshold required for normal function, leading to energy failure and potentially cell death.

Our visualisation data on mitochondrial morphology changes under hypoxia highlights the
importance of mitochondrial dynamics in neuronal adaptation. The dramatic increase in fragmented
mitochondria (from 15% to 65%) and reduction in average length (from 2.8 um to 1.2 um) represent
a coordinated response to changing bioenergetic conditions. Dysregulation of these dynamics is
increasingly recognised as a feature of neurodegenerative diseases, including Parkinson'’s disease, Alzheimer’s
disease, and amyotrophic lateral sclerosis.

The HIF-1a signalling network, which coordinates adaptive responses to oxygen constraints,
may also play a role in neuroprotection. The temporal changes in HIF-1a levels during hypoxic
adaptation suggest a window of maximal neuroprotection during the late adaptive phase (24 hours).
This insight could inform therapeutic strategies aimed at enhancing neuronal resilience to ischaemic
injury, such as occurs in stroke.

4.4. Future Directions and Therapeutic Implications

Several promising directions for future research emerge from the integration of evolutionary
biology and cellular bioenergetics perspectives on neuronal mitochondria. First, there is a need for
more detailed cell type-specific analyses of mitochondrial function across different neuronal
populations. Our current mathematical models treat neurons as a homogeneous population, but
evidence suggests significant variation in mitochondrial properties across different neuronal
subtypes. Developing models that capture this heterogeneity would provide more accurate
predictions of how neural circuits respond to oxygen constraints.

Second, the comparison of mitochondrial adaptations across species offers valuable insights into
human-specific vulnerabilities and resilience mechanisms. The finding that human neurons exhibit
"metabolic neoteny” compared to mouse neurons suggests that evolutionary changes in
mitochondrial metabolism may have contributed to human cognitive capabilities but potentially at
the cost of increased vulnerability to certain stressors. Further comparative studies using the
mathematical frameworks presented here could illuminate the evolutionary trade-offs that have
shaped human brain function.

Third, the mathematical models of evolutionary trade-offs provide a framework for
understanding how natural selection has optimised neuronal mitochondria for specific
environmental conditions. Applying these models to populations adapted to extreme environments,
such as high altitude or diving mammals, could reveal alternative solutions to the challenge of
maintaining neuronal function under oxygen constraints. These insights might inspire biomimetic
approaches to enhancing mitochondrial resilience in vulnerable neuronal populations.

From a therapeutic perspective, the detailed understanding of neuronal mitochondrial
adaptation presented here suggests several promising interventions. The biphasic response to hypoxia,
with initial dysfunction followed by adaptive recovery, suggests that supporting neurons through the acute
phase could enhance their natural resilience mechanisms. Pharmacological agents that temporarily shift
metabolism toward glycolysis, activate HIF-1a signalling, or support mitochondrial membrane potential might
provide neuroprotection during ischaemic events.
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The species-specific regulation of neuronal development by mitochondrial metabolism suggests
potential approaches for addressing neurodevelopmental disorders. If certain conditions involve
accelerated or delayed neuronal maturation due to altered mitochondrial function, interventions that
normalise metabolic rates might help restore proper developmental timing. This approach would
require careful calibration based on mathematical models that relate metabolic parameters to
developmental outcomes.

Finally, the non-uniform distribution of mitochondria within neurons highlights the importance
of proper mitochondrial trafficking and positioning for neuronal function. Therapeutic strategies aimed
at enhancing mitochondrial transport to regions of high enerqy demand could potentially address the energy
deficits observed in many neurodegenerative diseases. Mathematical models incorporating spatial
considerations and mitochondrial dynamics will be essential for predicting the efficacy of such
interventions.

5. Conclusion

The integration of evolutionary biology and cellular bioenergetics perspectives provides a
comprehensive framework for understanding mitochondrial adaptation in neurons under oxygen
constraints. The mathematical models presented here—from oxygen diffusion kinetics to
mitochondrial energy production and evolutionary trade-offs—capture the multifaceted nature of
these adaptations across different levels of biological organisation. The visualisation data illustrates
both quantitative aspects, such as mitochondrial distribution and respiratory rates, and qualitative
adaptations, including morphological changes and regulatory network responses.

Several key insights emerge from this integrated analysis. First, the obligate dependence of
neurons on oxidative phosphorylation represents an evolutionary adaptation that maximises energy
efficiency whilst minimising oxidative damage, reflecting the unique challenges faced by these post-
mitotic cells. Second, the spatial distribution of mitochondria within neurons reflects an evolutionary
optimisation problem, balancing local energy demands against the metabolic cost of maintaining
mitochondrial mass. Third, the temporal dynamics of hypoxic adaptation reveal sophisticated
regulatory mechanisms that allow neurons to maintain essential functions despite fluctuations in
oxygen availability.

The species-specific regulation of neuronal development by mitochondrial metabolism, as
demonstrated by the "metabolic neoteny” of human neurons, suggests that evolutionary changes in
mitochondrial function may have contributed to human cognitive capabilities. This finding
highlights how fundamental bioenergetic processes can influence complex neurological functions
across evolutionary timescales.

The mathematical frameworks developed here provide a foundation for future research on
neuronal mitochondria, with potential applications in understanding neurodevelopmental disorders,
neurodegenerative diseases, and responses to ischaemic injury. By combining quantitative
approaches with evolutionary thinking, we gain deeper insights into both the constraints shaping
neuronal mitochondria and their adaptive solutions. This integrated perspective promises to inform
therapeutic strategies aimed at enhancing mitochondrial resilience and neuronal function in various
pathological conditions.

As we continue to unravel the complex relationship between mitochondrial function and
neuronal adaptation, the mathematical models and visualisation approaches presented here will
provide valuable tools for quantifying and interpreting empirical findings. By maintaining this
dialogue between evolutionary biology and cellular bioenergetics, we advance our understanding of
the remarkable organelles that power the most complex computational system in nature —the human
brain (at least for now).

Conflicts of Interest: The Author claims there are no conflicts of interest.
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Appendix: Java Code for Visualizations

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from matplotlib.colors import LinearSegmented Colormap
from mpl_toolkits.mplot3d import Axes3D

import networkx as nx

from matplotlib.gridspec import GridSpec

# Visualization 1: Mitochondrial distribution and oxygen consumption across neuronal compartments
def plot_neuron_with_mitochondria():
# Create figure and axis

fig, ax = plt.subplots(figsize=(12, 8))

# Custom colormaps for density and oxygen consumption
density_cmap = LinearSegmentedColormap.from_list("Density",

['lightblue", "blue", "darkblue"])
02_cmap = LinearSegmentedColormap.from_list("O2_consumption",

['lightyellow", "orange", "red"])

# Define neuronal regions and their properties
# Format: [x, y, width, height, density, oxygen_consumption]

soma =[5, 4, 3,3, 0.9, 0.6] # High density, moderate consumption

# Format: [[start_x, start_y], [end_x, end_y], width, density, oxygen_consumption]
proximal_dendritel = [[8, 5.5], [12, 7], 0.8, 0.7, 0.8] # High density, high consumption
proximal_dendrite2 = [[8, 4], [12, 3], 0.8, 0.7, 0.8]

distal_dendritel =[[12, 7], [16, 8], 0.5, 0.4, 0.5] # Medium density, moderate consumption
distal_dendrite2 = [[12, 3], [16, 2], 0.5, 0.4, 0.5]

axon_initial = [[5, 2.5], [3, 2], 0.6, 0.2, 0.9] # Low density, very high consumption

axon_shaft = [[3, 2], [1, 1], 0.3, 0.1, 0.3] # Very low density, low consumption

terminals = [[0.5, 0.5, 0.7, 0.7, 0.6, 0.9], # Medium density, very high consumption
[0.8,1.2,0.6,0.6,0.6,0.9],
[1.2,0.8,0.5,0.5,0.6,0.9]]

# Draw soma

soma_circle = plt.Circle((soma[0], soma[1]), soma[2]/2, color=density_cmap(soma[4]))
ax.add_patch(soma_circle)

ax.text(soma[0], soma[1], "Soma\nHighest density \nModerate O,",

ha='center', va='center’, color='white', fontsize=9)
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# Draw dendrites
def draw_branch(start, end, width, density, 02):
# Calculate angle and length
dx = end[0] - start[0]
dy =end[1] - start[1]
angle = np.arctan2(dy, dx)
length = np.sqrt(dx**2 + dy**2)

# Draw the branch as a rectangle

x = start[0]

y = start[1]

rect = plt.Rectangle((x, y-width/2), length, width,
angle=angle*180/np.pi,
color=density_cmap(density),
alpha=0.8, origin='center')

ax.add_patch(rect)

# Add label

mid_x = (start[0] + end[0]) / 2
mid_y = (start[1] + end[1]) / 2
offset_x = -np.sin(angle) * width

offset_y =np.cos(angle) * width

return mid_x + offset_x, mid_y + offset_y

# Draw proximal dendrites

label_pos = draw_branch(proximal_dendrite1[0], proximal_dendrite1[1],
proximal_dendrite1[2], proximal_dendrite1[3], proximal_dendrite1[4])

ax.text(label_pos[0], label_pos[1], "Proximal dendrites \nHigh density \nHigh O,",

ha='center', va='center', color="white', fontsize=8, rotation=15)

draw_branch(proximal_dendrite2[0], proximal_dendrite2[1],

proximal_dendrite2[2], proximal_dendrite2[3], proximal_dendrite2[4])

# Draw distal dendrites
label_pos = draw_branch(distal_dendrite1[0], distal_dendrite1[1],

distal_dendritel[2], distal_dendritel[3], distal_dendrite1[4])
ax.text(label_pos[0], label_pos[1], "Distal dendrites\nMedium density \nModerate O,",

ha='center', va='center', color="white', fontsize=8, rotation=10)

draw_branch(distal_dendrite2[0], distal_dendrite2[1],
distal_dendrite2[2], distal_dendrite2[3], distal_dendrite2[4])

16
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# Draw axon initial segment
label_pos = draw_branch(axon_initial[0], axon_initial[1],
axon_initial[2], axon_initial[3], axon_initial[4])
ax.text(label_pos[0], label_pos[1]-0.5, "Axon initial segment\nLow density \nVery high O,",

=' ', va='center’, fontsize=8)

# Draw axon shaft
label_pos = draw_branch(axon_shaft[0], axon_shaft[1],

axon_shaft[2], axon_shaft[3], axon_shaft[4])
ax.text(label_pos[0]-0.5, label_pos[1]-0.3, "Axon shaft\nVery low density \nLow O,",

ha='center', va='center’, fontsize=8)

# Draw terminals
for term in terminals:
term_circle = plt.Circle((term[0], term[1]), term[2]/2, color=density_cmap(term[4]))

ax.add_patch(term_circle)

ax.text(terminals[0][0], terminals[0][1]-0.8, "Presynaptic terminals\nMedium density \nVery high O,",

=' ', va='center’, fontsize=8)

# Set limits and remove axes
ax.set_xlim(0, 17)
ax.set_ylim(0, 9)

ax.axis('off")

# Legend for mitochondrial density

sm_density = plt.cm.ScalarMappable(cmap=density_cmap)
sm_density.set_array([])

cbar_density = plt.colorbar(sm_density, ax=ax, location="right', shrink=0.6)
cbar_density.set_label('Mitochondrial Density")

cbar_density.set_ticks([0, 0.5, 1])

cbar_density.set_ticklabels(['Low', 'Medium', 'High'])

# Title
plt.title('Mitochondrial Distribution and Oxygen Consumption across Neuronal Compartments', fontsize=14)

plt.tight_layout()

return fig

# Create and display the neuron visualization

neuron_fig = plot_neuron_with_mitochondria()

plt.savefig('visualization1_mitochondrial_distribution.png’, dpi=300, bbox_inches="tight')


https://doi.org/10.20944/preprints202505.0191.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2025

18

plt.close()

# Visualization 2: 3D morphological changes in mitochondria under hypoxia
def plot_mitochondrial_morphology():
# Create sample data for mitochondrial morphology

np.random.seed(42) # For reproducibility

# Normal mitochondria - longer, larger, less fragmented

n_normal =40

normal_length = 2.8 + 0.5 * np.random.randn(n_normal)
normal_length[normal_length <1.5]=1.5 # Enforce minimum length
normal_width = 0.5 + 0.1 * np.random.randn(n_normal)
normal_width[normal_width <0.3]=0.3 # Enforce minimum width
normal_volume = 0.17 + 0.03 * np.random.randn(n_normal)

normal_volume[normal_volume <0.1]=0.1 # Enforce minimum volume

# Hypoxic mitochondria - shorter, smaller, more fragmented

n_hypoxic =40

hypoxic_length = 1.2 + 0.3 * np.random.randn(n_hypoxic)
hypoxic_length[hypoxic_length <0.7]=0.7 # Enforce minimum length
hypoxic_length[hypoxic_length >2.0]=2.0 # Enforce maximum length
hypoxic_width = 0.4 + 0.08 * np.random.randn(n_hypoxic)
hypoxic_width[hypoxic_width <0.2] =0.2 # Enforce minimum width
hypoxic_volume = 0.09 + 0.02 * np.random.randn(n_hypoxic)

hypoxic_volumelhypoxic_volume < 0.05] = 0.05 # Enforce minimum volume

# Create 3D scatter plot
fig = plt.figure(figsize=(12, 9))
ax = fig.add_subplot(111, projection='3d")

# Plot normal mitochondria
normal = ax.scatter(normal_length, normal_width, normal_volume,

color="blue', s=50, label="Normal Mitochondria')

# Plot hypoxic mitochondria
hypoxic = ax.scatter(hypoxic_length, hypoxic_width, hypoxic_volume,

color="red’, s=50, label="Hypoxic Mitochondria')

# Calculate and plot surface area/volume ratio

def calculate_surface_area(length, width):
# Approximate as cylinders with spherical caps
radius = width / 2

cylinder_length = length - 2*radius
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cylinder_surface =2 * np.pi * radius * cylinder_length
caps_surface =4 * np.pi * radius**2

return cylinder_surface + caps_surface

# Add centroids for each group

ax.scatter(np.mean(normal_length), np.mean(normal_width), np.mean(normal_volume),
color='darkblue’, s=200, marker="", label="Normal Centroid')

ax.scatter(np.mean(hypoxic_length), np.mean(hypoxic_width), np.mean(hypoxic_volume),

color='darkred', s=200, marker="", label="Hypoxic Centroid')

# Add connecting line between centroids to highlight the shift

ax.plot([np.mean(normal_length), np.mean(hypoxic_length)],
[np.mean(normal_width), np.mean(hypoxic_width)],
[np.mean(normal_volume), np.mean(hypoxic_volume)],

'k--', alpha=0.5)

# Add parameter labels and ranges
ax.text(3.2, 0.6, 0.2, 'Normal Length: 2.8 um’, color="blue’)

ax.text(3.2, 0.6, 0.19, 'Hypoxic Length: 1.2 um (-57%)', color="red")

ax.text(3.2, 0.6, 0.16, 'Normal Volume: 0.17 um?, color="blue')
ax.text(3.2, 0.6, 0.15, 'Hypoxic Volume: 0.09 um? (-47%)', color="red")

ax.text(3.2, 0.6, 0.12, 'Normal SA/V: 4.82 um™', color='blue")
ax.text(3.2, 0.6, 0.11, 'Hypoxic SA/V: 6.00 um-* (+24%)', color="red')

# Label axes
ax.set_xlabel('Length (um)', fontsize=12)
ax.set_ylabel('Width (um)', fontsize=12)

ax.set_zlabel('Volume (um?3)', fontsize=12)

# Set axis limits
ax.set_xlim(0.5, 4)
ax.set_ylim(0.2, 0.8)
ax.set_zlim(0.05, 0.25)

# Add legend and title
ax.legend(loc="upper left', fontsize=10)

plt.title('3D Morphological Changes in Neuronal Mitochondria under Hypoxia', fontsize=14)

# Adjust view angle

ax.view_init(elev=20, azim=45)
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plt.tight_layout()

return fig

# Create and display the mitochondrial morphology visualization
morphology_fig = plot_mitochondrial_morphology()
plt.savefig('visualization2_mitochondrial_morphology.png', dpi=300, bbox_inches='"tight')

plt.close()

# Visualization 3: Neuronal oxygen consumption rates during development
def plot_o2_consumption_development():
# Data for oxygen consumption rates over developmental stages
age_groups = ['E18-P2', 'P8-P12', 'P16-P20', '2P28']
basal_o02=1[6.1,7.5,9.0,10.2] # Values in nM/min/107 cells
glutamate_o2 =[14.0, 14.5, 14.8, 15.0] # Values in nM/min/107 cells
k_plus_o2=1[8.0,10.5, 12.0, 13.5] # Values in nM/min/107 cells

# Create multi-line plot

fig, ax = plt.subplots(figsize=(10, 6))

# Plot each dataset
ax.plot(age_groups, basal_o2, 'o-', linewidth=2, color="blue', label='Basal')
ax.plot(age_groups, glutamate_o2, 's-', linewidth=2, color="red’, label='Glutamate-stimulated')

ax.plot(age_groups, k_plus_o2, -, linewidth=2, color='green’, label='K*-stimulated')

# Add data points with values
for i, v in enumerate(basal_o2):

ax.text(i, v+0.2, f"{v}", color="blue’, fontweight="bold’, ha='center")

for i, v in enumerate(glutamate_o2):

ax.text(i, v+0.2, f"{v}", color="red’, fontweight="bold', ha='center")

for i, v in enumerate(k_plus_o2):

ax.text(i, v+0.2, f"{v}", color='green’, fontweight="bold', ha='center")

# Add shaded area showing the developmental increase

ax.fill_between(range(len(age_groups)), basal_o2, alpha=0.1, color="blue')
# Add annotation for key developmental transitions
ax.annotate('Synaptogenesis \ nincreases', xy=(1, 9), xytext=(1.2, 7),

arrowprops=dict(facecolor="black', shrink=0.05, width=1.5))

ax.annotate('Mature activity \npatterns emerge’, xy=(3, 13), xytext=(2.5, 11),

20
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arrowprops=dict(facecolor="black’, shrink=0.05, width=1.5))

# Customize the plot

ax.set_xlabel('Developmental Stage', fontsize=12)

ax.set_ylabel('Oxygen Consumption Rate (nM/min/107 cells)', fontsize=12)
ax.set_title('Neuronal Oxygen Consumption Rates During Development', fontsize=14)

ax.grid(True, alpha=0.3)

# Add maximum consumption capacity line
ax.axhline(y=15, color='gray’, linestyle="--, alpha=0.7)

ax.text(0.1, 15.2, 'Maximum Respiratory Capacity', color='gray’, fontsize=10)

# Add legend

ax.legend(loc="lower right')

plt.tight_layout()

return fig

# Create and display the oxygen consumption visualization
02_fig = plot_o2_consumption_development()
plt.savefig('visualization3_oxygen_consumption.png’, dpi=300, bbox_inches="tight')

plt.close()

# Visualization 4: HIF-1a regulation of mitochondrial adaptation under hypoxia
def plot_hifla_network():

# Create a directed graph

G =nx.DiGraph()

# Add nodes with their states under hypoxia
nodes = {
'Hypoxia': {'state": 'trigger’, ‘pos": (0, 0)},
'HIF-1a': {'state": 'increased’, 'pos": (0, -1)},
‘Mitochondrial \nHIF-1a': {'state": 'increased’, ‘pos": (-2, -2)},
‘Nuclear\nHIF-1a': {'state": 'increased’, 'pos’: (2, -2)},
'COXIV-1" {'state": 'decreased’, 'pos": (-3, -3)},
'COXIV-2" {'state": 'increased’, 'pos": (-1, -3)},
PDKT1'": {'state": 'increased’, 'pos": (1, -3)},
'LDHA": {'state": 'increased’, 'pos": (3, -3)},
‘Mitochondrial \nfusion': {'state": 'decreased’, pos": (-2, -4)},
'‘Mitochondrial \nfission': {'state": 'increased’, 'pos": (0, -4)},

'‘Mitochondrial \nbiogenesis': {'state": 'biphasic’, ‘pos": (2, -4)},
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# Add nodes to the graph
for node, attr in nodes.items():

G.add_node(node, state=attr['state'], pos=attr[pos'])

# Add edges representing relationships

edges =|
(Hypoxia', 'HIF-1«'),
(‘HIF-1a', 'Mitochondrial \nHIF-1a'"),
(‘HIF-1a', 'Nuclear \nHIF-1a'),
(‘Mitochondrial \nHIEF-1a', 'COXIV-1"),
(‘Mitochondrial \nHIF-1«', 'COXIV-2),
('Nuclear\nHIF-1a', 'PDK1"),
('Nuclear\nHIF-1a', 'LDHA'),
(‘Mitochondrial \nHIF-1«', 'Mitochondrial \ nfusion'),
(‘Mitochondrial \nHIF-1«', 'Mitochondrial \ nfission'),

('Nuclear\nHIF-1a', 'Mitochondrial \ nbiogenesis'),

# Add edges to the graph
G.add_edges_from(edges)

# Prepare node colors based on state
node_colors =[]
for node in G.nodes():
state = G.nodes[node]['state']
if state == 'increased':
node_colors.append('red’)
elif state == 'decreased":
node_colors.append('blue’)
elif state == "trigger":
node_colors.append('purple’)
else: # biphasic

node_colors.append('orange’)

# Prepare edge styles
edge_colors =[]
for u, v in G.edges():
source_state = G.nodes[u]['state']

target_state = G.nodes[v]['state']

if source_state == target_state:

edge_colors.append('green’) # Same direction effect
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else:

edge_colors.append('red’)  # Opposing effect

# Create figure
fig, ax = plt.subplots(figsize=(12, 10))

# Get positions from node attributes

pos = nx.get_node_attributes(G, "pos')

# Draw the graph

nx.draw_networkx_nodes(G, pos, node_size=2000, node_color=node_colors, alpha=0.7)
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold")
nx.draw_networkx_edges(G, pos, edge_color=edge_colors, width=2, arrowsize=20,

connectionstyle="arc3,rad=0.1")

# Add legend for node colors

legend_elements = [
plt.Line2D([0], [0], marker='0', color="w', markerfacecolor="red’, markersize=15, label="Increased’),
plt.Line2D([0], [0], marker='0', color='w', markerfacecolor="blue', markersize=15, label="Decreased'),
plt.Line2D([0], [0], marker='0", color='w', markerfacecolor="purple’, markersize=15, label="Trigger"),
plt.Line2D([0], [0], marker='0", color="w', markerfacecolor='orange', markersize=15, label='Biphasic'),

]

ax.legend(handles=legend_elements, loc="upper right')

# Add annotations
plt.annotate('Electron Transport\nChain Adaptation’, xy=(-2, -3), xytext=(-4, -2.5),

arrowprops=dict(facecolor="black'’, shrink=0.05, width=1), fontsize=10)

plt.annotate('Metabolic\nShift', xy=(2, -3), xytext=(4, -2.5),

arrowprops=dict(facecolor='black’, shrink=0.05, width=1), fontsize=10)

plt.annotate('Morphological \nAdaptation', xy=(0, -4), xytext=(0, -5),

arrowprops=dict(facecolor='black’, shrink=0.05, width=1), fontsize=10)

plt.title('HIF-1a Regulation of Mitochondrial Adaptation under Hypoxia', fontsize=14)

# Remove axes

plt.axis('off")

plt.tight_layout()

return fig

# Create and display the HIF-1a network visualization
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hif_fig = plot_hifla_network()
plt.savefig('visualization4_hifla_network.png', dpi=300, bbox_inches="tight')
plt.close()

# Visualization 5: Temporal changes in mitochondrial function during hypoxic adaptation
def plot_temporal_adaptation():

# Create data for the temporal changes

time_points = [0, 1, 6, 24, 72] # Hours

time_labels = [Normoxia', 'Acute\n(1h)', 'Early \n(6h)', 'Late\n(24h)', 'Chronic\n(72h+)']

# Data as percentages of baseline (normoxia)

atp_production = [100, 50, 60, 75, 85]

ros_production = [100, 350, 250, 175, 135]

membrane_potential = [139, 105, 115, 125, 132] # Absolute values in mV
hifla_levels =[10, 50, 80, 90, 70] # Arbitrary units

# Create multi-panel visualization
fig = plt.figure(figsize=(12, 10))
gs = GridSpec(4, 1, height_ratios=[1, 1, 1, 1])

# ATP Production Panel

ax1 = fig.add_subplot(gs[0])

ax1.plot(time_points, atp_production, 'o-', linewidth=2, color="blue', label='ATP Production')
axl.set_ylabel('% of Baseline')

axl.set_title(' ATP Production')

axl.set_ylim(0, 110)

ax1.grid(True, alpha=0.3)

# Add data point labels

for i, v in enumerate(atp_production):

ax1.text(time_points[i], v+5, f"{v}%", ha='center")

# ROS Production Panel

ax2 = fig.add_subplot(gs[1])

ax2.plot(time_points, ros_production, 'o-', linewidth=2, color="red’, label='ROS Production')
ax2.set_ylabel('% of Baseline')

ax2.set_title(ROS Production')

ax2.set_ylim(0, 400)

ax2.grid(True, alpha=0.3)

# Add data point labels

for i, v in enumerate(ros_production):

ax2.text(time_points[i], v+20, f"{v}%", ha='center')

# Membrane Potential Panel

24
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ax3 = fig.add_subplot(gs[2])

ax3.plot(time_points, membrane_potential, 'o-', linewidth=2, color='green’, label="Membrane Potential’)
ax3.set_ylabel('mV")

ax3.set_title('Mitochondrial Membrane Potential')

ax3.set_ylim(80, 150)

ax3.grid(True, alpha=0.3)

# Add data point labels

for i, v in enumerate(membrane_potential):

ax3.text(time_points[i], v+3, f"{v} mV", ha='center")

# HIF-1a Levels Panel

ax4 = fig.add_subplot(gs[3])

ax4.plot(time_points, hifla_levels, 'o-', linewidth=2, color='purple’, label="HIF-1x Levels')
ax4.set_ylabel('Arbitrary Units')

ax4.set_title('HIF-1a Levels')

ax4.set_ylim(0, 100)

ax4.grid(True, alpha=0.3)

# Add data point labels

for i, v in enumerate(hifla_levels):

ax4.text(time_points[i], v+5, f"{v}", ha='center")

# Set common x-axis labels
ax4.set_xlabel('Time")
ax4.set_xticks(time_points)

ax4.set_xticklabels(time_labels)

# Hide x labels for top plots
ax1.set_xticklabels([])
ax2.set_xticklabels([])

ax3.set_xticklabels([])

# Add adaptive phases

for ax in [ax1, ax2, ax3, ax4]:
ax.axvspan(0, 1, alpha=0.1, color="red’, label='Acute Phase")
ax.axvspan(1, 6, alpha=0.1, color='orange', label='"Early Adaptation')
ax.axvspan(6, 24, alpha=0.1, color="yellow', label="Late Adaptation')
ax.axvspan(24, 72, alpha=0.1, color='green’, label='"Chronic Adaptation')

# Add overall title

fig.suptitle('Temporal Changes in Mitochondrial Function During Hypoxic Adaptation', fontsize=16)

# Add legend for phases only on the top panel
handles, labels = ax1.get_legend_handles_labels()
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axl.legend(handles=handles[1:], labels=['Acute Phase', 'Early Adaptation', 'Late Adaptation', 'Chronic Adaptation'],

loc="lower right', fontsize=8)

plt.tight_layout()
plt.subplots_adjust(top=0.92, hspace=0.4)

return fig

# Create and display the temporal adaptation visualization
temporal_fig = plot_temporal_adaptation()
plt.savefig('visualization5_temporal_adaptation.png’, dpi=300, bbox_inches="tight")

plt.close()

# Display messages to confirm all visualizations have been created

print("All visualizations have been created successfully:")

print("1. Visualization1: Mitochondrial distribution and oxygen consumption across neuronal compartments")
print("2. Visualization2: 3D morphological changes in mitochondria under hypoxia")

print("3. Visualization3: Neuronal oxygen consumption rates during development")

print("4. Visualization4: HIF-1a regulation of mitochondrial adaptation under hypoxia")

print("5. Visualization5: Temporal changes in mitochondrial function during hypoxic adaptation")
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