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Abstract:  The  growth  of  photosynthetic  organisms  requires  specific  ranges  of  temperature  and 

photosynthetically active radiation that are technically difficult to achieve and control, especially in outdoors 

cultures.  In  such  cases,  a  typical meteorological  sequence  can  be  a  useful  tool  to  estimate  the  growth  of 

photosynthetic  organisms.  This  work  proposes  a  new  methodology  based  on  long‐term  meteorological 

sequences to simulate the growth of photosynthetic organisms. A case of study that addresses the simulation 

of the growth of microalgae (Chlorella vulgaris) in Riosequillo, north of the Madrid region (Spain), is shown for 

the  four  seasons  of  the  year,  and  these  estimates  are  then  compared  with  the  observed  results  of  an 

experimental microalgae  culture  in domestic wastewater. The  results  also  show great  agreement with  the 

probability distribution function of the biomass concentration per day, obtaining the best results for typical 

meteorological sequences of summer and spring. The methodology seems to confirm the representativeness of 

typical meteorological sequences and also allows the identification of the most likely production scenarios for 

the feasibility analysis of projects, which has potential application in decision‐making processes. 

Keywords: long‐term meteorological sequences; Simulation; Photosynthetic organisms; wastewater 

treatment; high‐rate algae pond 

1. Introduction

The use of algae for the removal, biotransformation, or mineralisation of several nutrients and 

heavy metals  from wastewater  is an environmentally  friendly process, as no secondary pollution 

occurs if the biomass produced is used as feedstock and the treated wastewater is reused. According 

to [1,2], research in this field is not new and has demonstrated the ability of microalgae to efficiently 

use nitrogen, phosphorus  and  other  impurities  of wastewater  to promote  their  growth  [3–5].  In 

addition to these nutrients that come with the wastewater, microalgae also depend on other external 

parameters, such as light that is absorbed and used in a photosynthesis process [6], and temperature 

that  has  an  effect  on  photosynthesis  and  cell  division  [7]. Moreover,  since  they  are  autotrophic 

microorganisms, they contribute to reducing the concentration of greenhouse gases by fixing CO2 

during their growth [8]. These efforts over the years have allowed an advanced level of mastery of 

this technology to be achieved until its implementation for a rural community of 300 people [9]. 

The  effects  of  temperature  and  solar  irradiance  on  the  growth  of many different  strains  of 

microalgae cultivated on open or closed systems are studied by considerable research organisations 

[10,11]. In [12], the study of the impact of temperature on microalgae shows a decrease in viable cells 

at high temperature and an increase from 20 ° C to 28 ° C, the optimum range. This range of optimal 

temperature changes with the microalgae strain [11]. Regarding incident light, three different levels 

of solar irradiance (6213, 2741 and 3799 Wh m–2 d–1) were investigated to understand the influence 

of solar irradiance on the microalgae bacteria consortium cultivated in 80 L domestic wastewater in 
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the outdoor High Rate Algae Pond (HRAP) [13]. In the same way, the effect of both parameters on 

the growth of microalgae has been also studied in [14] by modelling and validating the variation of 

the growth  rate as a  function of  temperature at different  light  intensity  levels.  In addition  to  the 

importance of light intensity, its quality and photoperiodicity also play a key role in the metabolism 

of microalgae. For example, the work presented in [15] shows a faster growth rate and a higher lipid 

content in algae biomass, when the medium receives white light instead of red light. 

Large‐scale outdoor microalgae cultivations were carried out effectively under natural daily or 

seasonally  solar  irradiance  and  temperature  and  eventually  produced  satisfactory  results  to 

understand the impact of both culture parameters [16–18]. However, it is important to know the long‐

term temporal variability of these parameters when planning the installation of an HRAP system at 

a  given  site.  To  consider  climatic  variability  in  outdoor  mass  culture,  Typical  Meteorological 

Sequences (TMS) were developed as a preliminary step to evaluate the effects of temperature and 

solar irradiance on the growth of microalgae growth in HRAP, for example [19]. This would make it 

possible  to  consider  the  extreme  conditions  of  these  parameters when  assessing  the  long‐term 

viability of a proposed project. 

On the other hand, the economic viability of an open pond cultivation system in a given location 

is  strictly  related  to  in  situ  climatic  conditions. When microalgae  are  grown  in  an  open  pond, 

meteorological parameters, among others, are beyond our control. The daily and seasonal fluctuation 

of the culture weather parameters significantly affect microalgae metabolism [18]. In some cases, this 

could have negative effects on the productivity of these microorganisms and therefore the quality of 

recycling water,  energy  and  fertilizer  nutrients.  In  an  open‐pond  system  for microalgae  culture, 

temperature, and solar  irradiance, photosynthetically active radiation  (PAR),  in particular, are the 

most  relevant  meteorological  parameters.  In  the  case  of  solar  radiation,  assuming  the 

representativeness of the period covered by the available meteorological database, the corresponding 

empirical  probability  distribution  function  [20]  allows  characterising  its  long‐term  temporal 

variability. Previous works in the field of solar thermal power generation [21,22] has presented  in 

detail the possibilities that, from the point of view of economic viability, the probabilistic analysis of 

different production scenarios provides. 

In  this  work,  the  average  daily  productivities  (in  terms  of  microalgae  concentration) 

corresponding  to n‐growth meteorogical sequences  (1204  in our case study) have been simulated 

from hourly PAR and  temperature measurements  recorded  in‐situ using a simplified production 

model.  This  series  of  ‘biomass  productivities’  for  a  given  season  has  been  compared with  the 

productivity corresponding  to  the  representative TMS  for  that  same period of  the year  [19]. This 

manuscript is structured as follows: Section 2 introduces the case of study, describes the measured 

data  set  used  and  the  growth model  proposed  in  the  work,  as  well  as  the  simulation model 

performed.  Section  3  shows  the  main  results  and  their  discussion.  Finally,  Section  4  presents 

conclusions and future works. 

2. Materials and Methods 

The growth of photosynthetic organisms (plants, protists, and bacteria) requires conditions that 

are  difficult  to  achieve,  especially  when  this  bioprocess  is  carried  out  in  a  device  exposed  to 

weathering. In this case, crop yield would be significantly affected by environmental  impacts that 

change throughout the year. However, optimal crop development depends on many factors, some of 

which directly influence growth characteristics. This is the case with respect to temperature and light 

or  photosynthetically  active  radiation  (PAR)  in massive  outdoor  cultivation.  In  this  situation,  a 

representative  of  the  long‐term  variability  of  these  two  parameters  at  a  given  site  may  be 

advantageous when  running growth  simulation  tools of photosynthetic organisms or conducting 

laboratory‐scale studies for application at that site. 

A Growth Meteorological Sequence (GMS) corresponds to a sequence of consecutive days of a 

given  site and  season;  the number of  consecutive days of  each GMS  can be adapted  taking  into 

account the growth period of the photosynthetic species under study. This adaptive tool has been 

designed as input data to simulate different types of crops that have a growing period from a few 
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days to a few weeks. Therefore, the cultivation of microalgae or other plant species could be a case 

study. 

On  the  other  hand,  it  provides  a  general  representation  of  the  long‐term  variability  solar 

irradiance and temperature over a period corresponding to the time it takes for the crop species to 

reach  harvest.  The  simulation  of  the  productivity  from  long‐term weather  data  series  offers  an 

opportunity to explore crop profitability under different scenarios before its implementation in‐situ. 

In this framework, the cultivation of microalgae, tomatoes, or other crops would be examples for a 

numerical simulation case study that includes PAR and temperature as input data. 

2.1. Case of Study 

A wastewater treatment model based on microalgae is the case study discussed below. Such a 

model, which  considers  the  long‐term  variability  of  air  temperature  and  PAR,  can  be  useful  to 

anticipate when making decisions on the implementation of such a system. In our case study, long‐

term climate variability will be taken into account from a set of n‐GMS consisting of 7 consecutive 

days generated according to the methodology proposed in [19]. Each of these sequences was used to 

obtain the algal biomass production and then to evaluate the variability of productivity in statistical 

terms. This section is described in more detail in Sections 2.3 and 2.4. Arbitrarily, 7 consecutive days 

have been considered according to the range proposed by [23] that indicated that more than 80% of 

total nitrogen and 70% of  total phosphorus are eliminated after 5 days, with an average biomass 

productivity of 0.64  𝑔 𝑙ିଵ𝑑ିଵ  for batch culture. Furthermore, Zou et al. obtained a significant result 

of  1.72  𝑔 𝑙ିଵ𝑑ିଵ   of microalgal  biomass  produced  during  batch  treatment  and  proposed  that  a 

hydraulic retention time of 7 to 9 days could be efficient for nutrient removal and microalgal biomass 

production during continuous treatment [24]. 

Additionally, a 7‐day PAR and temperature variation data set was obtained from 15‐year remote 

sensing data, with a spatial resolution of  0.125° ൈ 0.125°. PAR data have been obtained from Kato 
bands, provided by  the  spectral  resolved  irradiance  (SRI) of  the  Satellite Application Facility on 

Climate Monitoring (CMSAF), which belongs to the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT). The temperature values were sourced from the Copernicus 

Climate Change Service (2023): ERA5 hourly data. 

2.2. Microalgae Growth Model 

In this study, a high‐rate algae pond (reactor) model was just simplified to focus on microalgae 

growth as a function of air temperature (T), photosynthetically active radiation (PAR) and a reduced 

number of impurities present in the cultivation medium. Phosphorus (𝑃) and nitrogen (N) are two of 

the  impurities  in wastewater  (cultivation medium)  that microalgae  are  able  to  remove  for  their 

growth. There are several nitrogen compounds, such as ammonium, organic nitrogen, nitrate, and 

nitrite, present  in wastewater.  In  this study,  total nitrogen  is considered equal  to  the sum of  total 

Kjeldahl  nitrogen,  nitrite,  and  nitrate.  Likewise,  wastewater  is  relatively  rich  in  phosphorus 

compounds, including phosphate ion, inorganic form (ortho and polyphosphates), and organic form 

(organically bound phosphates). Therefore, total phosphorus is given here as a combination of these 

different phosphorus compounds. These parameters were taken as limiting substrates for the growth 

of these photosynthetic microorganisms. 

The  remaining  micropollutants,  heavy  metals,  other  nutrients,  and  organic  pollutants  are 

considered nonlimiting nutrients. The bacteria population and maintenance of microalgae were not 

considered in the model. Furthermore, in this work, the energy balance [25] and the exchange of gases 

[8,26] between  the system and  its environment were also ruled out. Finally, only the depth of the 

pond was included as the geometry of the system and was equal to 10 cm. This magnitude is used to 

calculate the average PAR value in the culture medium. 

The cell mass concentration of the microalgae in the culture medium was determined using the 

material balance approach. For a batch culture model, the influent and effluent of materials in the 

medium are null, i.e., it does not add nutrients in the culture medium, and the volume is considered 

constant. Furthermore, assuming that all cells have the same mass, the growth kinetics of microalgae 
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is proportional to its specific growth rate (𝜇) which depends on the availability of a limiting substrate. 

A  proportion  of  microalgae  that  die  during  the  cultivation  period  was  added  to  the  model 

formulation and represented by the specific mortality rate (𝜇஽). 

𝑑𝑋
𝑑𝑡

ൌ 𝜇ሺ𝑃,𝑁,𝑃𝐴𝑅,𝑇ሻ ∙ 𝑋 െ 𝜇஽ ∙ 𝑋  (1)

𝜇ሺ𝑃𝐴𝑅,𝑇,𝑃,𝑁ሻ ൌ 𝜇௠௔௫ ∙ 𝜇ሺ𝑃ሻ ∙ 𝜇ሺ𝑁ሻ ∙  𝜇ሺ𝑃𝐴𝑅ሻ ∙ 𝜇ሺ𝑇ሻ 

where  𝑋 ሺ𝑚𝑔 𝑙⁄ ሻ  is microalgae concentration,  𝜇௠௔௫, in  𝑑𝑎𝑦ିଵ, is the maximum specific growth rate 

of microalgae. To calculate  the specific growth  rate,  these  factors  𝜇ሺ𝑃ሻ  and  𝜇ሺ𝑁ሻ were estimated 

from the Monod model [27],  𝜇ሺ𝑃𝐴𝑅ሻ  from modified Monod model [28,29], and  𝜇ሺ𝑇ሻ  from so‐called 
cardinal temperature model [14,30]. The empirical Monod model, which is easy to calibrate and links 

growth  to  a  culture  parameter,  is  widely  used  to  simulate  wastewater  treatment  using 

microorganisms [31]. For PAR, Monodʹs modified model involved adding a term to the denominator 

to account  for  inhibition when  the substrate  (PAR)  is highly above  the optimum  limit. The same 

consideration was included in the cardinal temperature model. 

The  following  equation 2  shows  the  form  to determinate  the  factors  𝜇ሺ𝑃ሻ  and  𝜇ሺ𝑁ሻ with S 

which represents the concentration of phosphorus or nitrogen, in this case it can be either N or P. 𝐾ௌ 
is a constant, expressed in 𝑚𝑔 𝑙⁄ , which represents the half‐saturation concentration of the limiting 

nutrients (P and N). 

𝜇ሺ𝑆ሻ ൌ
𝑆

𝐾ௌ ൅ 𝑆
  (2)

For Equations 3 and 4, an intermediate calculation was performed to find the mean values for 

the  available  PAR  and  the  medium  temperature  of  cultivation,  respectively.  Regarding  the 

photosynthesis rate (Equation 3), the Lambert‐Beer law is applied to obtain the average value of PAR 

ሺ 𝜇𝐸 ∙ 𝑚ିଶ ∙ 𝑠ିଵሻ which  represents  the  light  intensity  to which  the cells are exposed  in  the culture 

medium and has been taken as proposed in [32,33]. 

𝜇ሺ𝑃𝐴𝑅ሻ ൌ
𝑃𝐴𝑅

𝐾ூ ൅ 𝑃𝐴𝑅 ൅ 𝑃𝐴𝑅ଶ
𝐾௜

 
(3)

𝜇ሺ𝑇ሻ ൌ
ሺ𝑇 െ 𝑇௠௔௫ሻሺ𝑇 െ 𝑇௠௜௡ሻଶ

ሺ𝑇௢௣௧ െ 𝑇௠௜௡ሻൣ൫𝑇௢௣௧ െ 𝑇௠௜௡൯൫𝑇 െ 𝑇௢௣௧൯ െ ሺ𝑇௢௣௧ െ 𝑇௠௔௫ሻሺ𝑇௢௣௧ ൅ 𝑇௠௜௡ െ 2𝑇ሻ൧
  (4)

Image  1  shows  the  laboratory  experience  to determine  the  attenuation  of  light  through  the 

culture medium during  the growth period by placing  two PAR sensors, one  inside and  the other 

outside. From these two measurements, the extinction coefficient found in the Lambert‐Beer equation 

was estimated by relating the absorbance to the transmittance of the light. The extinction coefficient 

was experimentally estimated for each season. A calibrated lamp was programmed with PAR values 

corresponding to the TMS of each season.  𝐾௜  and  𝐾ூ  (in  𝜇𝐸 ∙ 𝑚ିଶ ∙ 𝑠ିଵሻ  are inhibition constant and 
saturation  𝑃𝐴𝑅  intensity at which the specific growth rate is half the maximum, respectively. 

The productivity of microalgal is also affected by the external temperature. The remaining factor 

(Equation 4) models the growth kinetics of the microalgae as a function of the culture temperature 

(T).  Having  an  open  system,  this  temperature  is  influenced  by  the  recorded  surrounding  air 

temperature. Furthermore, the water that makes up the culture system is constantly in motion. The 

idea is to obtain the temperature of the culture medium from that of the air using the logistic function 

established in [34] that associates these two parameters. Equation 4 also includes minimum (𝑇௠௜௡), 

maximum (𝑇௠௔௫), and optimum (𝑇௢௣௧) temperature values that are specific to the selected microalgae. 
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Image 1. Experimental start‐up of microalgae cultivation in domestic wastewater. 

2.3. Simulation Process 

The computational implementation of the modelling described above was done using MATLAB 

and  Simulink  [35]. This  allowed us  to  combine  textual  and  graphical programming  in  the  same 

environment  to  perform  a multitude  of  parallel  simulations  (Figure  1).  Therefore,  for  a  given 

meteorological season (spring, summer, autumn, or winter) in the Madrid region, microalgae batch 

production was simulated for all GMS generated during this period. In our case, as previously we 

present, a GMS corresponds to a sequence of 7 consecutive days formed by the data pair  𝑃𝐴𝑅  and 
𝑇. While referring still with [19], there are 1204 GMS for the spring season, 1204 GMS for summer, 

1190 GMS for the autumn and 1184 GMS for the winter. Therefore, the average daily concentration 

of microalgae was determined  in each of  them. The average daily  𝑃𝐴𝑅  and  𝑇  data of  these GMS 

were  taken as  input parameters  for  the microalgae production simulation. These are  the external 

parameters involved in the growth of microalgae that characterize environmental conditions. With 

this 7‐day package workflow that involves the use of a lot of data, the simulations have been run in 

parallel considering the other input data as initialization parameters of the process. 

 

Figure  1.  Block  diagram  model  of  microalgae  growth  in  batch  culture  (single  inoculation  of 

microalgae cells, initial process) in a wastewater container without addition of other product. 
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The initialisation of the simulation process is based on the concentration of microalgae inoculum 

and nutrients initially present in the wastewater sample used for the cultivation experiment (Image 

1). To achieve this, we need the characteristics of the aqueous medium, a wastewater sample, and the 

microalgae species to be used. The type of wastewater selected for this study came from a wastewater 

treatment  plant  in  a municipality  in  the Madrid  region  and was  therefore  domestic.  Its  overall 

nitrogen and phosphorus compositions are given in Table 1. Chlorella vulgaris is the microalgal strain 

inoculated  in  the  culture medium,  and  its  concentration  is  also  shown  in  Table  1.  The  specific 

parameters of the latter were taken from the consulted references and shown in Table 1. In addition, 

𝑌ௌ,௔  that are constants for all seasons, was obtained after adjusting the proposed model. The results 

of  this model were  compared with  those obtained  in  the  study presented by Eze  et al.  [27]. The 

minimum temperature corresponds to the apparent threshold for any microalgae growth, which is 

about 8 ° C [36]. The optimum and maximum temperature have been taken from [37]. The mortality 

rate was chosen arbitrarily, so as to be low compared to the growth rate. The same value proposed 

by [27] has been adopted, although they work with a different type of microalgae. Finally, inhibition 

and half‐saturation coefficients were estimated to be constant throughout the simulation. 

Table 1. Parameter values to perform the simulation. 

Parameter  Value  References 

Initial total nitrogen (𝑁)  224 𝑚𝑔 𝑙⁄     This study 

Initial total phosphorus (𝑃)  16.1 𝑚𝑔 𝑙⁄     This study 

Microalgae inoculum  100 𝑚𝑔 𝑙⁄   This study 

Minimum temperature  8  ° 𝐶  [12,36] 

Optimal temperature  23.3  ° 𝐶 
Maximum temperature  35  ° 𝐶 
Maximum‐specific growth rate (𝜇௠௔௫ሻ  0.948  𝑑𝑎𝑦ିଵ  [5] 

Nitrogen removal coefficient  𝑌ே,௔  0.71  This study 

Phosphorus removal coefficient  𝑌௉,௔  0.035  This study 

mortality rate (𝜇஽)  0.004  𝑑𝑎𝑦ିଵ  [27] 

Inhibition constant (𝐾௜)  2400  𝜇𝐸 𝑚ିଶ𝑠ିଵ  [11] 

Half‐saturation constant for light (𝐾ூ)  124.115  𝜇𝐸 𝑚ିଶ𝑠ିଵ  [38] 

half‐saturation constant for Nitrogen (𝐾ே)  31.5 𝑚𝑔 𝑙⁄  
[39] 

half‐saturation constant for Phosphorus (𝐾௉)  10.5 𝑚𝑔 𝑙⁄  

2.4. Dataset for Statistical Analysis 

Having the biomass concentration for each day of the GMS that makes up a season, the next step 

was to concatenate the daily production per day. Building the data set per day enables a statistical 

analysis by calculating the probability distribution function (PDF) of the biomass concentration of 

each data grouping per day (D2, D3, D4, D5, D6, or D7).    In other words, for example, the biomass 

concentration for all days 2 (D2) of those GMSs is put together, the same for days 3 (D3), and so on. 

Day 1 (D1) has not been taken since it corresponds to initialization. The idea was then to calculate 

PDF of microalgae concentration  for each of  these datasets, grouped by day. The  final step  in the 

methodology consists of observing whether the biomass concentration on a given day (D2, D3, D4, 

D5, D6 or D7) of the TMS selected in [19] is, for the same day, in the bin with the largest PDF. 

For a given season, the determination of the average daily biomass concentration was carried 

out for all generated GMSs. The model outputs for identical days (D2, D3, D4, D5, D6 or D7) were 

used to calculate their daily PDFs. For example, Figure 4a shows the PDFs of biomass concentrations 

obtained from all D2 of the GMS for the representative summer TMS used as model input data. The 

same was applied to the other TMS days. Beyond showing the range of probable results for a given 

day  in  terms of  their  frequency of occurrence,  this graphical  representation  includes  the graphic 

concordance of the biomass concentration for the corresponding day of the same day in the TMS. 

Therefore, it was possible to compare whether this biomass concentration position belonged to the 

concentration  bin with  the  highest  PDF  value.  For  greater  accuracy,  the  length  of  the  biomass 

concentration bin is reduced to 2 mg/l. 
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3. Results and Discussion 

3.1. Seasonal Biomass Production 

Microalgae  growth  is  not  only  affected  by  solar  irradiance,  temperature,  phosphorus,  and 

nitrogen, but also depends on other parameters such as pH, dissolved carbon dioxide, bacteria, etc. 

These parameters not mentioned  in this work are each maintained at their optimum value, which 

corresponds to a specific growth rate equal to unity. In summary, the focus has been exclusively on 

the  influence of these physical parameters on the variation in microalgal growth. In addition, this 

overlooks  the  reality of  interactions between microorganisms and  the various components of  the 

culture system, which are essential for model fidelity. 

In addition, nitrogen and phosphorus initially available in the culture medium are adequate for 

the  growth  of microorganisms  and  are  consumed progressively. This means  that  only PAR  and 

temperature are beyond our control and can sometimes act as inhibitors. This simplification has made 

it possible to reduce the complexity of such a system and to study its biomass productivity using a 

GMS that considers climatic variability.. 

Notwithstanding  these  assumptions,  this  approach  produced  statistically  acceptable  results. 

When comparing the results with those obtained by [27], although the latter may have worked with 

a different species of algae, the order of magnitude of the final concentration of microalgae produced 

in the summer season is 400 mg/l. Furthermore, the study conducted in [40] on Chlorella vulgaris 

growth under four culture conditions with different physicochemical properties gives approximate 

results in the same range. However, these results were obtained over a period ranging from 8 to 14 

days. Figure 2 shows the growth curves for the four meteorological seasons of the year using selected 

TMS from a site in the north of the Madrid region (Riosequillo) [19]. 

 

Figure 2. Seasonal variation in algal biomass concentration as a function of meteorological parameters 

(typical meteorological  sequence,  TMS)  from  the  northern  region  of Madrid  (Riosequillo).  These 

curves were derived by applying, as input data to the model, the average daily temperature (𝑇௠௘) and 

𝑃𝐴𝑅  values of selected TMS, Figure 3 [2]. 
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Figure 3. Typical meteorological sequences (TMSs) data from a northern locality in the Madrid region, 

Riosequillo, to produce the biomass concentration curves shown in Figure 2.  𝑇௠௡  and  𝑇௠௫  represent 

the average daily minimum and maximum temperature. 

The  result  in  Figure  2  reveals  the  difference  in  algal  biomass  production  between  the  four 

seasons of the year, with a higher concentration in summer. This may be explained by the fact that 

the growth of these microorganisms is intrinsically dependent on the intensity of these two physical 

parameters. Figure 2 also shows that biomass production is higher in the autumn than in spring. This 

difference  in production between  these  two periods of  the year appears  to be mainly due  to  the 

temperature, which is higher in the autumn (Figure 3). Comparing the PAR during these two periods, 

it  is higher  in  spring.  In  spring  and winter,  the microalgae  concentration varies very  little,  even 

decreasing to 98.5 𝑚𝑔 𝑙⁄   on the seventh day in the lowest temperature period (winter). However, in 

Figure 2 it appears stationary for these two seasons, due to the relatively large variation obtained in 

summer. Furthermore, a general analysis of the curves in all seasonal figures (Figure 4 and A1‐A3) 

also shows the biomass concentrations that are the most likely to be obtained throughout the day of 

cultivation. 

3.2. Comparative Analysis of Algae Production 

In this section, the PDF of the microalgal productivity for each day that forms each GMS for the 

summer season are represented for the study location. The spring, autumn, and winter figures are in 

the Appendix. In Figure 4, the asterisk symbol represents the position of the biomass concentration 

obtained at one day TMS. It has been positioned so that it is in the centre of the biomass concentration 

bin. 

The biomass concentration values corresponding to the TMS during the summer were within 

the range corresponding to the most probable concentration values, Figure 4. The same observation 

was observed more closely with data from the spring season, with an exception for the case of days 

D2 and D7, Figure A1. The position of biomass concentration, for D5 of summer (Figure 4) and for 

D2 and D7 of spring TMS (Figure A1), is in the concentration bin with a relatively high probability 

and is directly preceded or followed by the bin with the highest PDF value. The methodology seems 

to  confirm  the  representativeness of  the TMS  for  the  summer  and  spring  seasons  at  the  studied 
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location. In fact, at these two seasons, almost all the days of TMS already selected in [19] are in one 

of the ranges of biomass concentration that have the highest PDFs. 

On the other hand, the PDF is much more dispersed for the autumn season (see Figure A2). In 

this case, the biomass concentration position of each of the TMS days is not within the bin with the 

highest PDFs or in the bins near the latter. In Figure A3, the exception is the case of day D2, otherwise 

the biomass concentration for each of the other days of TMS representing winter is far from being 

among those with the highest probability of distribution, despite the low dispersion of the results. 

Furthermore,  the  concentration  hardly  increases  during  this  period.  Consequently, most  of  the 

concentrations  with  the  highest  probability  of  distribution  are  below  the  initial  biomass 

concentration. The nongrowth of the biomass concentration can be explained by the fact that the PAR 

and temperature values are relatively low during these periods of the year and unfavourable to the 

proliferation  of  these  microorganisms.  For  example,  according  to  Figure  3,  average  daily 

temperatures are below the minimum required for chlorella vulgaris growth. 

The  best  results,  in  terms  of  productivity, were  obtained  for  the  summer  and  spring.  The 

explanation may lie in the fact that certain values of the model parameter were taken from references 

which worked  in conditions with a presence of  light and adequate  temperature almost similar  to 

those of these two periods of the year. As Figures 1, 2, and 3 show, the other two seasons, autumn 

and winter, offer unsuitable conditions for microalgae cultivation. 

   

(a)  (b) 

   
(c)  (d) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2024 doi:10.20944/preprints202409.0282.v1

https://doi.org/10.20944/preprints202409.0282.v1


  10 

 

   
(e)  (f) 

Figure 4. Probability distribution function (PDF) of the set of biomass concentrations on day D2, D3, 

D4, D5, D6 and D7 using PAR and temperature data from the GMS of the summer season in a locality 

north of Madrid (Riosequillo) as model input. 

Figure 5 shows  four box plots  for  the different seasons, grouping  the daily average biomass 

concentrations obtained from the simulation by day. This allows to evaluate the ranges within which 

daily biomass production is recorded. It can be observed that the results are almost similar in spring 

and autumn with more spread boxes between 25th and 75th percentiles for the latter. On the other 

hand,  daily  production  is  less  dispersed  during  summer  and  winter,  clearly  showing  optimal 

performance during summer and negligible production levels during winter. 

 

Figure  5. Box plots  for displaying  statistics  of  the  serie  of  average daily productions  of  biomass 

obtained for each season. 

4. Conclusions 

In this article we present a plant growth/productivity simulation and assessment methodology 

adaptable to all types of crops. 

The application of this methodology using long‐term meteorological data sets makes it possible 

to  identify  the most  probable  production  scenarios, which  is  of  great  help  in  decision‐making 

processes (project feasibility analysis, site selection, planning and management, etc.). 
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The results obtained for our case study confirm the representativeness of typical meteorological 

sequences, very close to the 50th percentile, for the use of more complex simulation programs. 
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