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Abstract: The integration of renewable energy into residential microgrids presents significant 

challenges due to solar generation intermittency and variability in household electricity demand. 

Traditional forecasting methods, reliant on historical data, fail to adapt effectively in dynamic 

scenarios, leading to inefficient energy management. This paper introduces a novel adaptive energy 

management framework utilizing streaming machine learning (SML), to deliver precise real-time 

electricity demand forecasts for a residential community. Leveraging incremental learning 

capabilities, the proposed model continuously updates, achieving robust predictive performance 

with mean absolute errors (MAE) across individual households and the community of less than 10% 

of typical hourly consumption values. Three battery-sizing scenarios are analytically evaluated: 

centralized battery, uniformly distributed batteries, and a hybrid model of uniformly distributed 

batteries plus an optimized central battery. Predictive adaptive management significantly reduced 

cumulative grid usage compared to traditional methods, with a 20% reduction in energy deficit 

events, and optimized battery cycling frequency extending battery lifecycle. Furthermore, the 

adaptive framework conceptually aligns with digital twin methodologies, facilitating real-time 

operational adjustments. The findings provide critical insights into sustainable, decentralized 

microgrid management, emphasizing improved operational efficiency, enhanced battery longevity, 

reduced grid dependence, and robust renewable energy utilization. 

Keywords: streaming machine learning (SML); Hoeffding trees; renewable energy; microgrid; 

battery size optimization; adaptive energy management; battery lifecycle; digital twin; grid 

dependence; real-time forecasting 

 

1. Introduction 

Efficient energy management in modern power systems is crucial for maintaining grid stability, 

enhancing renewable energy utilization, and minimizing environmental impact. However, the 

increasing integration of renewable energy sources, particularly solar power, introduces significant 

challenges due to their inherent variability and intermittency. These fluctuations result in concept 

drift, a phenomenon in machine learning where the statistical properties of energy generation and 

consumption patterns evolve unpredictably over time [1]. Traditional static machine learning models 

struggle to maintain accuracy in such dynamic environments because they are trained on historical 

data and are not equipped to adapt to ongoing changes. To address these challenges, this research 

explores the application of streaming machine learning (SML) algorithms to optimize energy 

management in microgrids. Unlike conventional models, SML continuously updates its predictive 

models as new data becomes available, ensuring that forecasts remain accurate and relevant in 

rapidly changing scenarios [2, 3]. 
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The incremental learning capability of SML is particularly advantageous in energy systems 

characterized by fluctuating supply and demand. By updating models incrementally rather than 

retraining them from scratch, streaming algorithms adapt to changes efficiently, maintaining high 

predictive accuracy even as other external factors influence consumption and generation patterns. 

This adaptability is essential for ensuring appropriate real-time decision-making, enabling energy 

management systems to respond promptly to sudden shifts in demand and supply [4]. Additionally, 

streaming models are designed to be computationally lightweight, requiring less memory and 

processing power compared to traditional batch learning methods. This efficiency makes them ideal 

for deployment in decentralized environments such as microgrids, where computing resources may 

be limited but real-time decision-making is critical [5]. 

By integrating streaming analytics into existing energy management frameworks, this research 

introduces a novel approach to real-time optimization, enabling intelligent control of power 

generation, storage, and consumption. This integration allows for dynamic adjustments based on 

immediate energy availability and demand, enhancing the efficiency of battery storage management 

and reducing dependency on central grid power. Furthermore, the capability to process continuous 

data streams supports grid-edge trading, which involves dynamically redistributing or storing 

surplus solar power for later use. This not only maximizes renewable energy utilization but also 

minimizes the need for grid imports, thereby promoting energy independence and reduction of grid 

losses [6]. 

As suggested earlier, the dynamic nature of SML makes it particularly suitable for environments 

where energy consumption and generation are highly variable, such as residential microgrids 

dependent on solar power. These systems must continuously adapt to changes in weather conditions, 

user behaviour, and other external influences impacting energy availability and demand. By enabling 

real-time forecasting and adaptive control mechanisms, SML enhances the responsiveness of 

localized energy systems. In residential settings, where consumption typically comprises both base 

loads (essential demand) and discretionary loads (flexible or deferable demand such as heating, 

cooling, or electric vehicle charging), this adaptability provides significant opportunities for load 

shifting and demand-side management. Such capabilities significantly improve load balancing and 

grid reliability, ensuring a stable and efficient power supply even under fluctuating conditions. In 

this context, Hoeffding Trees [7] and ensemble methods are particularly effective, as they support 

fast, incremental learning and robust decision-making. These methods have demonstrated high 

accuracy in predicting short-term fluctuations in solar power generation and electricity usage, 

thereby minimizing reliance on external power sources for residential microgrids [8]. 

In addition to enhancing forecasting accuracy, SML also facilitates the automation of energy 

management processes. By continuously learning from new data, the models can automatically 

adjust control strategies to optimize energy flows in real time. This includes making intelligent 

decisions about when to store surplus energy in batteries, when to discharge stored energy to meet 

demand, and when to engage in grid-edge trading to maximize economic benefits. The ability to 

autonomously manage power generation, consumption, and storage supports the development of 

decentralized, self-sustaining energy networks. These networks operate independently of traditional 

grid infrastructures, making them ideal for isolated or remote communities that rely on renewable 

energy sources. By reducing dependency on centralized power grids, such systems contribute to 

greater energy security and resilience, especially in regions prone to grid outages or supply 

disruptions [4,8,9]. 

As energy systems become more complex and interconnected, the need for adaptive, real-time 

solutions becomes increasingly critical. This research provides a scalable and flexible framework that 

can be adapted to various energy management scenarios, demonstrating the transformative impact 

of machine learning on modern power systems. 

In Section 2 the key challenges related to temporal energy imbalances within microgrids are 

identified, traditional static energy management methodologies are critiqued, and SML as a viable 

real-time adaptive solution is introduced. Section 3 then describes the proposed fractal architecture 
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framework for intelligent energy management, detailing its hierarchical structure, the integration of 

SML for forecasting and adaptive control, and the implementation of three scenario-based battery 

sizing strategies: centralized, decentralized (distributed), and a hybrid approach. Following this, 

Section 4 provides a comprehensive comparative evaluation of energy management and forecasting 

strategies, highlighting the predictive accuracy of the SML model, the effectiveness of adaptive 

control mechanisms, the reduction in grid dependency, and improvements in battery lifecycle 

management. Section 5 summarizes the findings, emphasizing practical implications, contributions 

toward sustainable and resilient microgrid operations, and future research opportunities.  

2. Adaptive Energy Management in Smart Microgrids 

While the introduction highlighted the strategic value of SML for managing the dynamic nature 

of renewable-powered microgrids, this section explores the complexities of temporal energy 

imbalances, critiques the limitations of conventional energy management approaches, and proposes 

SML as a viable solution for real-time adaptive energy management in smart microgrids. 

Challenges of Temporal Energy Imbalances 

Microgrids, characterized by their decentralized nature and integration of renewable energy 

sources, face inherent fluctuations in both energy production and consumption. Renewable sources 

such as solar and wind are inherently variable, leading to periods of surplus and deficit within short 

time frames. Traditional Net-Zero Energy models, which focus on achieving an annual balance 

between energy production and consumption, fail to address these short-term discrepancies [10]. As 

a result, microgrids may experience frequent transitions between importing energy from the main 

grid and exporting excess energy back to it, leading to operational inefficiencies and increased 

dependency on the central grid. 

The main challenge lies in the temporal mismatch between energy generation and consumption. 

For instance, peak solar generation occurs during the day, which may not align with peak 

consumption periods in residential areas. This misalignment necessitates the need for effective 

energy storage solutions and real-time management strategies to ensure a continuous and reliable 

energy supply. Moreover, frequent charging and discharging cycles of battery storage systems, 

prompted by these imbalances, can lead to accelerated wear and reduced lifespan of the storage 

infrastructure [11]. 

Limitations of Conventional Energy Management 

Conventional energy management systems (EMS) in microgrids predominantly utilize static 

models that rely heavily on historical data to forecast energy demand and generation. These models 

are built on predefined rules and statistical patterns observed over extended periods, assuming that 

future energy behaviours will closely mirror past trends. While this approach provides a 

foundational understanding of consumption and generation patterns, it is fundamentally limited in 

its ability to respond to real-time fluctuations and unforeseen changes in energy dynamics. This 

limitation becomes particularly pronounced in fractal-structured microgrids, where decentralized 

nodes operate autonomously, and local variations in energy flow can significantly impact overall 

system stability [12]. 

In fractal microgrids, energy generation and consumption are highly localized and vary across 

different hierarchical nodes. This decentralized structure enables localized decision-making and 

promotes energy exchange between nodes. However, it also introduces significant variability in 

energy flows due to differences in solar exposure, local load demands, and storage capacities at each 

node. Static prediction models, which are generally built on aggregated historical data, fail to capture 

these localized variations, leading to inaccurate forecasts and suboptimal energy management 

decisions [13]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2025 doi:10.20944/preprints202504.1425.v1

https://doi.org/10.20944/preprints202504.1425.v1


 4 of 16 

 

Moreover, in a fractal architecture, energy flows between nodes are highly dynamic, with nodes 

exchanging surplus energy or drawing power based on real-time conditions. Static models lack the 

adaptability needed to account for these inter-node dependencies, resulting in inaccurate load 

balancing and inefficient resource allocation. For instance, if one node experiences excess solar 

generation while a neighbouring node faces a deficit, static models may fail to identify this imbalance 

in real time, leading to unnecessary grid imports or wasted renewable energy [14]. 

A critical challenge that further undermines the effectiveness of static models is concept drift, 

where the statistical properties of energy consumption and generation change over time [15]. In the 

context of fractal microgrids, concept drift can occur due to seasonal variations, changes in user 

behaviour, and the intermittent nature of renewable energy sources. These dynamic patterns 

introduce non-stationarity into energy flows, making it challenging for static models to maintain 

accurate predictions. In fractal microgrids, where local nodes experience unique patterns of 

generation and consumption, concept drift is even more pronounced. Static models, which rely on 

the assumption that patterns in the data remain constant over time, are ill-equipped to handle these 

changes, leading to degraded performance and reduced prediction accuracy over time [16]. 

Figure 1 summarizes the sequential limitations inherent to static energy management systems 

within fractal microgrids. Starting from suboptimal resource allocation, these deficiencies cascade 

into inaccurate load balancing and reliance on outdated historical data, ultimately resulting in 

significant prediction inaccuracies due to unaddressed local variations and concept drift. This cyclical 

illustration emphasizes the necessity of transitioning from static methodologies toward adaptive 

machine learning models for effective energy management. 

 

Figure 1. Limitations of Static Energy Management Systems in Fractal Microgrids. 

Given these challenges, there is a growing consensus on the need for adaptive energy 

management systems capable of learning from evolving data streams and adjusting to real-time 

changes. In fractal microgrids, where energy flows are decentralized and highly variable, SML 

emerges as a promising solution. These algorithms are designed to handle data in motion, 

continuously updating their parameters to reflect the most recent patterns.  

This capability is particularly beneficial for fractal architectures, where energy flows are 

asynchronous, and local nodes operate autonomously. SML offers several key advantages over static 

models such as updating models continuously as new data arrives and also maintaining accurate 

predictions even under dynamic conditions [17]. 

Streaming Machine Learning for Real-Time Adaptation 

Given the challenges of temporal energy imbalances and the limitations of traditional energy 

management systems discussed earlier, SML presents a viable adaptive solution, offering the 
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flexibility and scalability essential for managing dynamic conditions in decentralized renewable 

energy systems. Unlike batch learning models that rely heavily on historical datasets, SML algorithms 

incrementally process incoming data, continuously updating their models. This incremental learning 

capability allows them to maintain high predictive accuracy in rapidly changing environments 

typical of microgrids powered by renewable energy sources such as solar and wind. 

One of the core strengths of SML is its ability to handle concept drift—changes in the statistical 

properties of data over time—common in microgrids due to seasonal variations, changes in user 

behavior, weather conditions, and integration of new renewable sources [17, 18]. For instance, 

residential microgrid energy consumption patterns may shift due to household routines, appliance 

upgrades, or unforeseen events, reducing the effectiveness of static prediction models. Algorithms 

like Hoeffding Trees and Adaptive Random Forests, central to SML, are specifically designed to 

detect and respond to these dynamic shifts by updating predictions incrementally [18]. This ensures 

sustained accuracy even as energy generation and consumption patterns evolve [19]. 

By integrating SML into microgrids, operators can perform real-time decision-making to 

optimize adaptive energy management strategies. Accurate, real-time forecasting of energy 

production and consumption guides critical operational decisions, including timing for battery 

storage charging or discharging and engaging in grid-edge trading [20]. For example, microgrids 

utilizing solar power generation can predict short-term solar availability using SML, enabling 

proactive storage of surplus energy or intelligent interaction with the main grid. This approach 

optimizes both energy utilization and economic benefits, ensuring continuous power availability 

while minimizing reliance on external power sources. 

Moreover, real-time adaptability via streaming algorithms directly contributes to optimizing 

battery storage efficiency. Traditional battery management approaches often suffer inefficiencies due 

to temporal mismatches in energy generation and consumption cycles. SML-driven forecasts allow 

microgrids to better synchronize battery operations with actual real-time demands, significantly 

reducing battery wear and extending storage system lifespans [21]. Additionally, the lightweight and 

computationally efficient nature of streaming models supports effective deployment even in 

resource-constrained microgrid environments. 

Finally, integrating SML into microgrid systems enhances the capability for efficient grid-edge 

trading, facilitating dynamic interaction with the central grid. Microgrids can optimize trading 

decisions based on continuous real-time data streams, ensuring energy exchanges occur at the most 

beneficial times, thus improving economic returns and overall energy efficiency [22]. Ultimately, SML 

represents a transformative approach, significantly enhancing the resilience, sustainability, and 

autonomy of microgrids, promoting smarter and more adaptable energy infrastructures. 

3. Fractal Architecture for Intelligent Energy Management 

This research introduces a fractal architecture framework that employs SML to achieve dynamic 

and intelligent control, marking a significant evolution from traditional fractal modelling techniques. 

By integrating self-similar structures, this framework enables scalable and decentralized 

management across various operational levels, from individual households to extensive community 

networks. Each node within this hierarchical system can autonomously perform local energy 

exchanges and engage in grid-edge trading, enhancing distributed and adaptive control through 

localized decision-making. 

The integration of SML into the fractal architecture significantly enhances its capabilities by 

enabling real-time predictive analytics and adaptive control mechanisms across the energy 

management system. Local nodes use these capabilities for immediate responses to fluctuations in 

energy demand and supply, ensuring efficient operations at the micro-level. Concurrently, higher-

level nodes aggregate insights from the grassroots to orchestrate comprehensive energy management 

strategies across the grid. This establishes a robust multi-level learning hierarchy that enhances 

decision-making efficacy and system resilience. 
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The concept of temporal energy balance is central to maintaining stability within the fractal 

architecture. By utilizing SML, the system dynamically adjusts power generation, storage, and 

consumption to maintain a continuous balance, optimizing energy flows and minimizing grid 

dependency. These adaptive control mechanisms are crucial for enhancing the grid’s performance, 

enabling it to swiftly and effectively respond to changes, thus promoting sustainability and efficiency 

within the energy network. 

Multi-level Node Interconnection and Hierarchical Tree Structure 

Building on insights from Apperley et al. [23], this research employs a uniform node architecture 

interconnected through a local grid. Unlike traditional hierarchical architectures where each node 

often has distinctly different roles, this fractal framework uses identical structural nodes at every 

level—household, neighbourhood, and community. Each node independently functions as a 

microgrid, managing its own energy generation, consumption, and storage dynamically. The local 

grid connectivity ensures efficient and simplified interactions between nodes, facilitating seamless 

local energy exchanges and grid-edge trading. 

In this design, each node within the microgrid network autonomously manages its energy 

state—balancing local generation with consumption and storage. When surplus energy generation 

occurs at a household node, the surplus is efficiently distributed to neighbouring nodes experiencing 

a deficit via a local grid. This localized redistribution of energy substantially enhances the microgrid’s 

overall efficiency and reduces dependence on external central grid infrastructure, significantly 

improving local energy balance [24]. 

The local grid interconnection also simplifies communication between nodes, employing 

concise, standardized pricing signals. These signals facilitate effective local energy transactions and 

enable nodes to make rapid economic decisions regarding energy buying, selling, or storage actions 

based on real-time predictive data provided by SML algorithms. This streamlined communication 

approach aligns well with principles from smart communication protocols, which emphasize 

simplicity, minimal data overhead, and robust reliability [25].  

The hierarchical fractal architecture of the network, featuring uniform nodes interconnected via 

a local grid, is shown in Figure 2. The diagram emphasizes the uniformity and simplicity of each 

node, highlighting their capabilities for local energy generation, storage management, and 

consumption balancing. In the proposed framework, each node operates in one of three clearly 

defined states, as characterized by Apperley et al. [23]: 

• Deficit state: Local consumption exceeds local generation and available storage, necessitating 

energy import from adjacent nodes or higher-level grids. 

• Balanced state: The node can precisely match local generation and consumption, optimizing 

local energy use without surplus or deficit. 

• Surplus state: Local energy generation exceeds consumption and storage capacity, prompting 

the node to export excess energy to neighbouring nodes or higher hierarchical levels. 

Through real-time predictive analytics enabled by SML, each node continuously forecasts its 

future state based on real-time data streams such as weather forecasts, energy usage trends, and 

storage status. These predictions inform adaptive control decisions, enabling nodes to proactively 

transition between states. This dynamic state management enhances local energy utilization 

efficiency, reduces unnecessary reliance on external grids, and significantly improves grid stability 

and operational resilience. 

Thus, the hierarchical tree structure, interconnected by a local grid complemented by intelligent 

SML-driven forecasting, establishes a powerful, scalable solution for achieving optimal energy 

management across multiple levels of a fractal-structured microgrid. 
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Figure 2. Hierarchical fractal architecture with uniform nodes interconnected via a local grid. 

Integration of Streaming Machine Learning into Fractal Structures 

The integration of SML into fractal microgrid architectures significantly advances autonomous 

energy management, enabling real-time adaptive control and optimized decision-making at 

individual node levels. In this research, Hoeffding Trees, a prominent incremental learning 

algorithm, were employed due to their efficiency in processing continuous data streams and rapidly 

adapting to changes in consumption patterns [26]. Unlike traditional machine learning methods that 

require periodic retraining with historical data, Hoeffding Trees incrementally update their 

predictive models with each incoming data point. This incremental learning capability ensures 

sustained accuracy and responsiveness, crucial for handling the concept drift inherent in renewable 

energy generation and consumption dynamics [25]. 

The dataset used in this study consists of hourly energy consumption data recorded over a full 

calendar year from multiple residential households situated in an isolated community environment 

at a similar latitude to Great Barrier Island, New Zealand. Given that the selected community is not 

connected to a centralized grid, the data profiles were developed from carefully chosen households 

on the New Zealand mainland with similar characteristics, including occupancy patterns, seasonal 

variations, appliance utilization. The dataset captured significant variability among households, with 

additional stochastic elements included to represent localized events such as community gatherings 

(hui), thereby ensuring the models closely reflect realistic and diverse operational scenarios. 

Preprocessing of this high-resolution dataset included several critical steps to enhance predictive 

accuracy. Lag variables were incorporated to capture immediate temporal dependencies, providing 

the model with contextual information regarding recent energy consumption. Data normalization 

was applied to ensure consistency and comparability across diverse household profiles, which was 

essential for the SML model to accurately respond to the high variability present in the real-time data. 

A predictive model utilizing Hoeffding Trees was developed and validated, leveraging 

ensemble learning through Bagging Regressors [27] to enhance robustness and accuracy. The 

Hoeffding Tree Regressor used a default MSE loss function, with a grace period of 20 samples and 

maximum tree depth of 10, while the ensemble comprised 20 base models. The model continuously 

updated its predictions as new hourly data became available, implicitly managing concept drift 

through ongoing incremental learning. Predictive effectiveness was quantitatively assessed using 

Mean Absolute Error (MAE), demonstrating reliable forecasting performance across individual 

nodes. While adaptive variations such as Adaptive Hoeffding Trees and explicit drift detection 

methods (e.g., DDM, ADWIN) were not implemented in this study, future applications of these 

advanced techniques could further enhance real-time adaptability [28]. 

Accurate forecasting of energy demand directly enables efficient grid-edge trading by clearly 

identifying periods of surplus or deficit. Nodes within the fractal microgrid can proactively manage 

local energy exchanges, enhancing energy autonomy, economic efficiency, and resilience against 

centralized grid disruptions. This strategic, predictive-based energy management framework 
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significantly reduces dependency on external infrastructure, improving both local and system-wide 

stability. 

Moreover, contemporary studies underline the critical importance of reliable forecasting 

methods for effective microgrid management. Hosseini et al. [29] introduced the similar pattern 

algorithm for monthly electricity consumption prediction, emphasizing the value of historical pattern 

recognition in forecasting accuracy. Similarly, research on fractal smart grids highlights how adaptive 

ML algorithms effectively respond to real-time fluctuations in renewable energy sources, thereby 

improving overall grid performance and reliability [29]. These insights further validate the approach 

adopted in this study, reinforcing the suitability of Hoeffding Trees for addressing the inherent 

variability and concept drift encountered in decentralized renewable energy systems. 

Recent literature also supports the combined use of predictive analytics with emerging digital 

technologies, such as digital twins, to optimize energy consumption and storage strategies 

dynamically. Digital twins, as high-fidelity virtual models reflecting physical energy systems, 

leverage real-time predictive analytics to enhance operational efficiency and responsiveness, 

paralleling the SML methods applied here [30]. 

Adaptive Control Mechanisms and Dynamic Energy Flow Management 

Adaptive control mechanisms within the fractal microgrid structure play a pivotal role in 

optimizing energy utilization and balancing real-time electricity demand and renewable generation. 

The implemented decision-making logic dynamically controls battery charging and discharging by 

integrating real-time load predictions from SML and solar generation forecasts. This ensures effective 

energy management, significantly reducing dependence on external grid resources [30]. 

The energy management strategy continuously assesses forecasted household consumption 

relative to expected solar generation. When predicted solar generation exceeds demand, surplus 

energy is preferentially stored in batteries, considering maximum storage capacity constraints. 

Conversely, if forecasted consumption exceeds generation, the system evaluates the battery state-of-

charge, which should never fall below the critical threshold of 20% of total battery capacity and 

supplies the necessary power from battery storage accordingly. Only when battery storage drops 

below this threshold does the system draw electricity from the external grid, ensuring reliability 

without compromising battery health through excessive deep discharges. 

Reducing grid dependency through this adaptive policy also positively impacts the operational 

lifetime and efficiency of battery storage. Frequent charge-discharge cycles and deep discharging 

significantly accelerate battery degradation, leading to capacity loss over time. The developed control 

logic explicitly mitigates these risks by limiting unnecessary cycling and avoiding frequent deep 

discharges, thus extending battery lifespan and maintaining high operational efficiency. Such 

practices align well with recent recommendations on maximizing the operational efficiency and 

lifespan of lithium-ion battery systems, which exhibit high efficiency (85–95%) but require carefully 

controlled charging and discharging to minimize degradation [31]. 

Evaluations conducted with real-world consumption profiles and solar data validate the 

effectiveness of the adaptive management approach. The results demonstrated substantial reductions 

in grid energy consumption, fewer battery charge-discharge cycles, and enhanced temporal energy 

balance. This outcome not only improves energy efficiency but also optimizes long-term battery 

health and reduces maintenance and operational costs [32]. 

By leveraging predictive analytics and adaptive control mechanisms, the developed framework 

ensures optimal utilization of renewable energy resources, extends battery system lifespan, and 

significantly reduces grid reliance, providing a robust and efficient solution for decentralized energy 

management in modern microgrids. 

Scenario-Based Battery Size Optimization 

Battery sizing significantly influences the economic viability and operational efficiency of 

microgrid systems. To thoroughly evaluate battery size optimization, this research explores three 
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distinct scenarios employing detailed analytical methodologies and predictive insights derived from 

SML. Each scenario applies unique logic, providing a comparative view of the centralized, 

distributed, and hybrid approaches. 

• Scenario 1: Centralized Battery 

In the centralized scenario, a single large-scale battery system is optimized to serve the 

aggregated energy demands of the entire microgrid community. The optimization approach employs 

a constrained minimization method, explicitly defining the battery capacity required to meet the 

community's highest observed peak demand. This optimization uses a well-defined objective 

function that seeks the minimal battery capacity sufficient to handle the most extreme consumption 

scenario, ensuring uninterrupted power supply throughout varying load conditions. 

This centralized battery strategy has inherent advantages, primarily through the economy of 

scale, allowing for potentially lower unit costs and simplified centralized management. However, 

centralized systems inherently demand robust distribution infrastructures to manage energy flows 

across diverse households, which may also lead to increased transmission distances, greater cable 

losses, or the need for higher-specification cabling to reduce those losses. Additionally, reliability 

hinges on accurate prediction of peak loads, highlighting the importance of real-time analytics 

provided by SML methods [29]. The optimized central battery size thus represents a carefully 

balanced decision between capacity, cost, and reliability, acknowledging the critical importance of 

precise forecasting. 

• Scenario 2: Uniformly distributed Batteries 

Conversely, the second scenario examines a decentralized approach, allocating identical 

distributed batteries to each household. The sizing logic assesses individual peak demands across 

various households. It employs three distinct sizing metrics: the maximum peak, the 95th percentile 

of peak demands, and the average peak demand. Among these, the 95th percentile metric was 

selected due to its optimal balance between over- and under-capacity provisioning. Unlike the 

absolute maximum, the 95th percentile offers significant resilience without excessive investment, 

thereby balancing cost-effectiveness and reliability across the community [33]. 

Adopting a uniformly distributed battery size simplifies battery management and maintenance 

but may lead to underutilization in households with lower demands or occasional shortfalls in homes 

with notably higher peaks. Nonetheless, this uniform strategy significantly reduces operational 

complexity and provides households autonomy over energy usage, effectively enhancing localized 

resilience and empowering individual nodes within the fractal architecture [34]. 

• Scenario 3: Hybrid (Central and Distributed Batteries) 

Recognizing the distinct strengths and limitations of centralized and decentralized systems, the 

hybrid scenario integrates both a central community-level battery and distributed household 

batteries. Simulations underpinning this scenario reveal a complementary strategy where distributed 

batteries primarily manage regular household-level fluctuations, while the central battery provides 

additional backup capacity, strategically sized at a fraction of the combined distributed battery 

capacities. 

This dual-layer optimization logic dynamically assesses both solar generation and predicted 

consumption patterns. In periods of widespread generation surplus, the central battery absorbs 

excess energy, which distributed batteries may not individually accommodate. Conversely, during 

widespread deficits, particularly under adverse weather conditions or high-demand events, the 

central battery supplements distributed storage, preventing deep discharge cycles and extending the 

operational lifespan of the household batteries [35]. 

The simulations demonstrate reduced grid usage, optimized battery cycling, and improved 

energy allocation between the central and distributed batteries. Consequently, the central battery 

substantially enhances system robustness by managing broader community-wide fluctuations, while 

the distributed batteries efficiently address localized, daily energy variations. The combination 
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markedly enhances grid resilience, minimizes total battery cycle frequency [36], and reduces long-

term maintenance and operational costs [37]. 

These scenario-based analyses collectively offer critical insights into optimal battery sizing 

approaches within fractal-structured microgrids. By leveraging predictive analytics through SML, 

each scenario is precisely tailored to the microgrid’s consumption profiles, ensuring cost-effective, 

reliable, and efficient energy storage and management solutions. 

4. Comparative Evaluation of Energy Management and Forecasting Strategies 

Accurate forecasting and adaptive energy management strategies are central to enhancing the 

operational efficiency and reliability of renewable energy-based microgrids. In this context, the 

developed SML model, leveraging Hoeffding Trees, offers a robust solution to predict real-time 

electricity consumption for ten residential households and a marae with high precision. A marae is a 

traditional Māori gathering place typically consisting of a ceremonial area marae ātea, meeting house 

wharenui, and kitchen or dining area wharekai. It hosts smaller meetings hui as well as larger tribal iwi 

events lasting multiple days, with overnight stays usually in the wharenui [25]. The effectiveness of 

this predictive framework, characterized by notably low MSE, forms the foundation for evaluating 

subsequent energy management policies aimed at minimizing grid dependency and optimizing local 

energy utilization.  

To validate and illustrate the model’s predictive accuracy, Figure 3 presents a detailed 

comparison between actual electricity consumption and predicted values for representative 

households and the marae. Although there are minor discrepancies in magnitude between predicted 

and actual values, the model effectively captures the overall trends and fluctuations in electricity 

demand. Leveraging incremental learning capabilities, the proposed model continuously updates, 

achieving robust predictive performance with MAE ranging from 54.69 kWh to 320.71 kWh, 

representing less than 10% of typical hourly consumption values. The close alignment between actual 

and forecasted values demonstrates the model’s capability to consistently deliver reliable predictions, 

thus enabling proactive and informed decision-making within the energy management framework. 

Leveraging this predictive capability, adaptive management algorithms are implemented to 

dynamically regulate local energy resources, effectively minimizing the community’s dependence on 

an external electricity grid. Critical insights into the effectiveness of this strategy are presented 

through cumulative grid usage metrics, as depicted in Figure 4. Here, the performance of the 

predictive management approach (green line) is compared with traditional management relying 

solely on historical consumption data without predictive capabilities (red line). As demonstrated, 

predictive management substantially reduces cumulative grid usage over the evaluated period. This 

reduction not only underscores improved efficiency in energy allocation but also represents a 

meaningful step toward greater energy independence and sustainability within the microgrid 

community. 

Further assessment of system resilience is conducted by examining occurrences of energy deficit 

events, defined as periods when local generation and available battery storage fail to satisfy the 

community's immediate energy requirements. Figure 5 provides a comparative visualization of these 

deficit events, clearly indicating fewer occurrences under the predictive energy management 

strategy. The graph illustrates that deficit events predominantly occur during winter months (June–

August), aligning with decreased solar generation and increased energy demand. Notably, the 

predictive strategy significantly delays and reduces reliance on grid-supplied energy compared to 

the non-predictive scenario. By the year's end, the predictive approach results in approximately a 

24% reduction in cumulative grid energy use. This reduction in energy shortfalls directly translates 

into improved reliability and optimized utilization of available energy resources, reinforcing the 

practical benefits of integrating predictive analytics into real-time adaptive management processes. 

Complementary to reliability improvements, the evaluation includes a detailed analysis of the 

broader benefits derived from predictive energy management strategies, particularly regarding 

reduce grid dependence and optimized battery utilization. As depicted in Figure 6, predictive energy 
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management results in a 24% reduction in grid dependency and a 2.5% reduction in battery cycling. 

Lower battery cycling frequency directly enhances battery longevity, reducing maintenance 

requirements and operational expenditures over the microgrid's lifespan. 

 

Figure 3. Actual versus Predicted Electricity Consumption for each of the ten houses and marae. 

 

Figure 4. Cumulative Grid Usage Over Time (Forecast-based vs. Actual Management). 
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Figure 5. Comparison of Energy Deficit Events (Forecast-based vs. Actual Management). 

 

Figure 6. Energy Management Improvement, Grid Dependence and Battery Cycle Reduction. 

To provide deeper insights into battery usage dynamics, cumulative analyses of battery charging 

and discharging patterns are presented in Figure 7, further demonstrating improved battery 

management efficiency under predictive conditions. Although visually subtle, the cumulative curves 

exhibit a gradually increasing divergence over the year, particularly noticeable during high solar 

generation periods. This divergence indicates fewer unnecessary battery cycles under predictive 

conditions, resulting in approximately a 2–3% reduction in total charged and discharged energy, or 

roughly a dozen fewer full battery cycles annually. Such modest improvements substantially 

contribute to battery longevity by slowing capacity fade, reducing energy losses, and minimizing the 

frequency of battery replacements, thereby significantly enhancing operational sustainability. 
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(a) 

 
(b) 

Figure 7. Battery Performance Analysis: (a) Cumulative Battery Level; (b) Cumulative Battery Discharge. 

Additionally, Table 1 summarizes the comparative performance of three distinct battery-sizing 

scenarios: a centralized battery (Scenario 1), uniformly distributed batteries (Scenario 2), and a hybrid 

approach combining both centralized and distributed storage (Scenario 3). Scenario 1 employs a 

large, centralized battery (150,000 kWh), resulting in moderate total grid usage (~1,173,815.85 kWh) 

and relatively low battery cycling (315.43 cycles), indicating efficient centralized management but at 

the expense of significant infrastructure and distribution costs. 

Scenario 2, using uniformly distributed batteries sized according to individual household peak 

demands (6,649.09 kWh each), significantly reduces grid dependency (378,527.89 kWh), reflecting 

enhanced local resilience. However, this scenario experiences increased cumulative battery cycling 

(511.45 cycles), potentially accelerating battery degradation and increasing maintenance costs due to 

more frequent charge-discharge activities. 

Scenario 3 adopts the same uniformly distributed battery sizes as Scenario 2 but integrates an 

optimized central battery (666.17 kWh) to handle communal fluctuations. Although the total grid 

usage increases notably (2,101,719.61 kWh)—partially due to the smaller centralized backup—this 

hybrid scenario effectively manages community-level energy variability by providing enhanced 

flexibility and improved robustness against widespread deficits or surpluses. Nevertheless, it also 

records a substantial increase in battery cycling events (2,943.95 cycles), highlighting a clear trade-off 

between system flexibility and battery longevity. 

Table 1. Limitations of Static Energy Management Systems in Fractal Microgrids. 

Scenario # 
Distributed Battery 

Size (kWh) 

Central Battery 

Size (kWh) 

Total Grid Usage 

(kWh) 

Total Battery 

Cycles 

1 - 150,000 1,173,815.85 315.43 

2 6,649.09 - 378,527.89 511.45 

3 6,649.09 666.17 (optimized) 2,101,719.61 2,943.95 

Overall, the analysis emphasizes that each scenario offers distinct advantages and limitations, 

underscoring the importance of aligning battery sizing strategies with specific community priorities 

such as cost, reliability, resilience, and operational complexity. 

5. Conclusions and Perspectives 

This study presented an adaptive energy management strategy for fractal-structured residential 

microgrids, leveraging SML to address the complexities introduced by renewable energy integration 

and dynamic electricity demand. Employing Hoeffding Trees within a Bagging Regressor ensemble, 

the proposed method demonstrated robust predictive performance, maintaining real-time accuracy 

under continuously evolving load and generation conditions. Results highlighted significant 
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operational enhancements, notably reducing cumulative grid dependence by approximately 22.84%, 

decreasing energy deficit events by 20%, and optimizing battery cycling frequency to extend the 

lifecycle of storage systems. 

Three battery sizing scenarios—centralized storage, distributed batteries, and a hybrid 

approach—were evaluated, each illustrating distinct benefits and trade-offs. Centralized storage 

provided effective load management with fewer battery cycles but introduced challenges related to 

infrastructure requirements and resilience. Conversely, distributed battery storage improved local 

autonomy and reduced reliance on centralized systems but led to increased cycling events. The 

hybrid approach balanced these extremes, demonstrating flexibility and robustness by combining 

distributed storage for everyday demand fluctuations with a modestly sized central battery 

optimized for broader community-level variability. 

This research underscores the practicality of integrating advanced streaming analytics into 

existing microgrid management infrastructures, promoting sustainable energy utilization, resilience, 

and operational efficiency. The application of real-time forecasting facilitated intelligent decision-

making, enabling proactive grid-edge trading and adaptive battery management. Furthermore, the 

integration of SML aligns closely with digital twin methodologies, providing a scalable and replicable 

framework that can dynamically respond to evolving conditions within diverse microgrid 

configurations. 

Future studies should explore enhancements such as adaptive Hoeffding Trees and explicit drift 

detection mechanisms (e.g., ADWIN and DDM) to further improve adaptability and forecasting 

accuracy under non-stationary conditions. Additional research could also investigate economic 

optimization strategies, integrating pricing signals and market dynamics to enhance grid-edge 

trading. Expanding this framework to accommodate diverse renewable resources and various 

geographic contexts would further demonstrate the broader applicability and transformative 

potential of SML in decentralized energy systems. 
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