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Abstract: This study examines the concentrations of PM;y and PM, 5 in Santo Domingo by comparing
data collected in 2019 and 2022. The research aims to identify temporal and spatial variations in
particulate matter concentrations and to analyze the impact of meteorological and environmental
variables on these concentrations. Methods include the collection of PM data at various urban sites
and subsequent statistical analysis to assess the influence of factors like air temperature, wind speed,
and aerosol optical depth (AOD). Results indicate significant fluctuations in PM levels, correlated with
changes in meteorological conditions, seasonal variations, and urban activities. This study contributes
to the understanding of air quality trends in Santo Domingo and provides insights into the efficacy of
current environmental regulations and practices.
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1. Introduction

Air pollution remains one of the most pressing environmental and public health challenges in
urban areas worldwide [1-9]. Particulate matter (PM) consists of tiny solid particles and liquid aerosols
containing acids, organic compounds, metals, and dust [10-14]. PM originates from both natural
sources, such as volcanic eruptions, wildfires, dust storms, and Saharan air layer, and human activities
like fuel combustion, vehicle exhaust, and industrial emissions [11,14-21].

PM, particularly PM, (particles with a diameter less than 10 um) and PM, 5 (particles with a
diameter less than 2.5 um), is of special concern due to its adverse effects on human health and its
ability to penetrate the respiratory system [22-24]. Elevated concentrations of PM have been associated
with increased morbidity and mortality from cardiovascular and respiratory diseases, making it a
significant topic of study in environmental science [25-30].

Urban environments, especially in developing regions, are particularly susceptible to high levels
of PM due to a combination of vehicular emissions, industrial activities, construction, and the influence
of meteorological conditions [7,8,31-33]. In this context, identifying the spatial and temporal patterns
of particulate matter, as well as its key predictors, is essential to understanding the factors driving air
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quality in urban areas and to informing effective mitigation strategies [9,34-38]. Studies have shown
that variables such as wind speed, air pressure, temperature, rainfall, and aerosol optical depth (AOD)
can influence PM concentrations, but their relative importance often varies by location, season, and
particle size [37,39,40].

The city of Santo Domingo, located in the National District on the south-central coast of the
Dominican Republic, is an ideal setting for this study due to its diverse urban environments and
increasing exposure to air pollution [41-47]. However, comprehensive studies investigating the spatial
distribution of PM and its relationship with meteorological and environmental variables in this region
are still limited [42]. Previous work has highlighted the need for systematic monitoring and analysis
of PM concentrations, including the use of low-cost sensors, to better understand local air quality
dynamics [21,42,47-49].

In this study, we analyze PM;g and PMj, 5 concentrations collected during two distinct sampling
campaigns in 2019 and 2022 across various urban environments in Santo Domingo. The primary
objectives of this research are: (1) to assess the spatial distribution and temporal variability of PM;g
and PM; 5, (2) to investigate the relationship between PM concentrations and key meteorological,
environmental variables and satellite observations using linear regression models, and (3) to determine
the predictive power of these variables for explaining PM variations in both years. By identifying
significant predictors of PM concentrations, this study contributes to a better understanding of air
quality dynamics in Santo Domingo and provides a foundation for targeted environmental policies
and interventions aimed at improving urban air quality.

2. Materials and Methods

The study was conducted in Santo Domingo, National District, Dominican Republic (ca. 18.49°N,
69.96°W), focusing on various types of urban environments (Figure 1). The sampling sites comprised
public and private schools, a university, and an urban park, selected based on a previous study [42,47].
A total of 26 sampling sites were selected in 2019 for PMjq collection, with each site sampled at
least three times between July and December. The sampling design was systematic, aiming for a
2 km separation between points. The final locations, including the specific schools, university, or
recreational areas, were determined using the nearest neighbor method based on the ideal points
initially established through software. In 2022, a new sampling campaign was conducted, incorporating
additional measurements. A total of 30 sites were sampled between May and July, each sampled once.
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Figure 1. Sampling Sites for Particulate Matter 2.5 and 10 um. Years 2019 and 2022.. See Table A1 for English-
Spanish Name Equivalences

Due to logistical and budgetary constraints, both campaigns opted to conduct measurements
on a single day per site. Although this strategy limits the capture of daily variations, it allows for
a comparative assessment of PMjg levels at different locations within the study area, providing a
representative overview of the spatial distribution of pollution. To evaluate the limitation of single-day
sampling per site, statistical analyses were conducted, including linear regression, correlations with
meteorological variables, and spatial interpolation techniques.

Although efforts were made to maintain the same sampling sites in both campaigns, in some
cases, this was not possible due to access restrictions, lack of permits, or safety concerns for equipment
installation. To ensure the continuity of the study, alternative locations were selected in representative
areas within the same urban environment. As noted, the second campaign included more sites
to improve spatial coverage and capture variability in air pollution across different areas of Santo
Domingo. This adaptation allowed for a broader perspective on the distribution of PMy in the
city, complementing the data obtained in 2019. While some sampling sites varied between 2019 and
2022, the selection followed homogeneous location criteria (urban areas with similar characteristics).
Additionally, statistical analyses were applied to assess general trends in PM;g and PM; 5, ensuring
the comparability of results between both periods.

For both sampling campaigns, particulate matter was collected using MiniVol™ TAS Portable
Air Samplers (AirMetrics Co., Oregon, USA) [50,51]. This device operates by drawing air through size-
selective impactors, which separate PMg and PM, 5 fractions based on their aerodynamic diameter. In
2019, only PM;y was measured, as the campaign was initially designed to focus on coarse particles.
In 2022, both PM;g and PM, 5 were measured by using the appropriate impactor for each fraction,
providing a more comprehensive analysis of particulate matter.
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The MiniVol TAS samplers were deployed at each site for 24 hours to collect representative samples
of particulate matter. Both the 2019 and 2022 samples were single-day measurements, with no daily
replicates collected. The samplers were calibrated and maintained according to the manufacturer’s
specifications to ensure data accuracy and reliability.

2.1. Data Analysis

The collected data were analyzed using a variety of statistical methods to evaluate the concentra-
tion and distribution of particulate matter (PM;9 and PMj; 5) in Santo Domingo. The analysis included
descriptive statistics, correlation analyses, regression modeling, and geospatial analysis.

Descriptive statistics were calculated to summarize the data, including measures of central
tendency and dispersion. The analysis provided mean, median, standard deviation, and confidence
intervals for PMjp and PM; 5 concentrations across different sampling periods.

Correlation analyses were performed to examine the relationships between PM;g and PM; 5
concentrations [36,52]. Pearson and Spearman correlation coefficients were calculated to assess the
strength and direction of the associations. The Pearson correlation coefficient, r, is given by the

equation 1
_ X=X (yi—9)
"= )2 7)2 @)
VE@ — )22y —7)
and the Spearman correlation coefficient, p, is given by the equation 2
6y d?
P ?

where x; and y; are the individual sample points, X and j are the means of the sample points, d; is
the difference between the ranks of corresponding variables, and # is the number of observations.

Cross-correlation functions (CCF) were calculated to examine the temporal relationships between
aerosol optical depth (AOD) and PM;( concentrations, using daily data along with weekly and monthly
averages for temporal aggregation [20,53-59]. Time series visualizations were used to represent the
temporal trends in AOD and PM;( concentrations for 2019 and 2022. Daily, weekly, and monthly
averages were plotted, and smoothed trends were illustrated using Locally Estimated Scatterplot
Smoothing (LOESS) regression. Additionally, an animation of AOD data was created to depict temporal
variations over the study period.

Linear regression models were developed to investigate the relationship between PM, 5 and PM1g
concentrations. The models were evaluated for normality of residuals, homoscedasticity, and goodness
of fit using appropriate statistical tests such as Shapiro-Wilk, Anderson-Darling, and Breusch-Pagan
tests. To ensure the robustness of the regression results, three outliers were excluded from the analysis.
These outliers were identified using Cook’s distance, a measure used to detect influential data points.
Specifically, observations with Cook’s distance values exceeding a threshold, calculated as ﬁ
where 7 is the number of observations and k is the number of predictors in the model, were considered
as outliers and subsequently removed from the regression analysis.

Geospatial analyses were conducted to map the distribution of PM10 and PM2.5 concentrations
across the study area. Geographic coordinates of the sampling sites were used to create spatial plots.
Spatial autocorrelation analysis was performed using Moran’s I to assess the degree of clustering or
dispersion of particulate matter concentrations. Multiple approaches for defining spatial weights were
tested, including distance-based and k-nearest neighbor methods, selecting the 5-nearest neighbors
as the most appropriate spatial weighting scheme. This approach facilitated the identification of
significant hotspots, influential sites and spatial outliers. Local Indicators of Spatial Association (LISA)
were applied to visualize clusters of high and low values, while multiple custom functions were
developed to detect influential sites, evaluate the strength of spatial relationships, and quantify spatial
outliers based on Cook’s distance and Moran scatterplots [60-63].
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To identify the meteorological and environmental variables that predict particulate matter (PMjg
and PM, 5) concentrations, linear regression models were fitted. The predictor variables considered
in this analysis included air temperature, air pressure, wind speed, rainfall, and Aerosol Optical
Depth (AOD). All variables were obtained or derived from meteorological records and remote sensing
products. Meteorological data, including air temperature, air pressure, wind speed, and rainfall,
were sourced from the RDSD meteorological station, where daily averages were computed from high-
frequency measurements to ensure consistency with particulate matter sampling periods. Aerosol
Optical Depth (AOD) data were retrieved from the 'MCD19A2.061: Terra & Aqua MAIAC Land
Aerosol Optical Depth Daily 1km” product via Google Earth Engine [64], where 'MAIAC’ stands
for Multi-angle Implementation of Atmospheric Correction. The data were extracted for an Area of
Interest (AOI) encompassing the National District and an adjacent buffer zone. The resulting raster
datasets were processed to obtain spatially averaged values at different temporal scales (daily, weekly,
and monthly), ensuring comparability across sites. Before fitting the regression models, as mentioned
before, spatial independence of the observations was verified using Moran’s I statistic.

The linear models were fitted separately for each period and particulate matter type. For 2019,
models were evaluated during the July-August, September-October, and November-December periods.
For 2022, the analysis considered the entire year for both PM; 5 and PMjy concentrations. Each model
included the predictor variables as independent terms and the particulate matter concentrations as
the dependent variable. The explanatory power of each model was assessed using the coefficient of
determination (R?), while the statistical significance of each predictor variable was evaluated through
p-values. A tile plot was used to visually represent the relationships between predictor variables and
particulate matter concentrations

All analyses were conducted using R statistical software [65]. Packages such as tidyverse,
readxl, sf, sf, zoo, spatialreg, spdep, raster, terra, stars, forecast, caret, corrplot, GGally
and gganimate, were utilized for data manipulation, statistical analysis, and visualization [55,66-79].
Custom functions were developed for specific tasks, such as performing correlation tests and fitting
linear models.

3. Results

The basic statistics for particulate matter (PM) concentrations are shown in Table 1 and Figure 2.
The mean PM concentration in 2019 was 38.14 ug/ m3 (N = 26), while in 2022, the mean concentrations
were 30.37 ug/ m3 for PMy5 (N = 30) and 62.18 ug/ m3 for PMjy (N = 30). The Shapiro-Wilk test
indicated that the data for 2022 significantly deviated from normality (p < 0.01), whereas the 2019
PM;( data showed no significant deviation (p = 0.08).

Table 1. Average PM;y and PM; 5 concentrations (pg/ m3) for the years 2019 and 2022 in Santo Domingo.

Year, PM N Min. Mean * Error Median Max. Std. Dev. Confidence
Interval (95%)

2019, PM10 26 10.85  38.14 + 3.58 33.06 7727  18.24 (30.78, 45.51)

2022, PM2.5 30 1250  30.37 + 3.61 25.33 75.94 19.76 (22.99, 37.75)

2022, PM10 30 2551 6218 +4.81 57.04 113.05 26.33 (52.34,72.01)
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Figure 2. PM2.5 and PM10 particulate matter by months of 2019, 2019 average, and 2022 (means and error) in
Santo Domingo.

The paired t-test comparing PM;( concentrations between 2019 and 2022 indicated a significant
difference, with a mean difference of -18.38 pg/m3 (t = -2.38, p = 0.029), indicating that PM1, concen-
trations were higher in 2022 than in 2019, with a 95% confidence interval ranging from -34.66 to -2.10
g/ m?>. In contrast, the Wilcoxon signed-rank test showed no statistically significant difference in the
medians (V =41, p = 0.054), although the result was close to the threshold for significance.

Turning to the data for 2022, the normality tests indicated that both PM; 5 and PMj( concentrations
deviated significantly from normality (Table 2). Due to this deviation, Spearman’s rank correlation
coefficient (p) was used to assess the relationship between the two pollutants. A moderate, but
significant, positive correlation was observed between PM; 5 and PMj( concentrations, suggesting that
higher levels of one pollutant were generally associated with higher levels of the other during this

period.
Table 2. Normality testing and correlation of PMj, 5 and PM; concentrations, year 2022.
Test Result (p-value, significance)
Assumption of normality (S-W test) PM; 5 W = 0.83 (p<0.001 ***)
Assumption of normality (5-W test) PM;g W = 0.9 (0.001<p<0.01 **)

Correlation between PM; 5 and PMj concentrations e = 0.52 (0.001<p<0.01 **)

To further explore the relationship between PM; 5 and PM;( concentrations in 2022, a linear
regression model was fitted, excluding three outliers identified by Cook’s distance. The model
indicated a significant positive relationship between the two pollutants, with PM, 5 serving as a strong
predictor of PM; levels. The regression equation was y = 29 + 0.92 - x, where y represents PM; and
x represents PM; 5. The model explains approximately 65% of the variance in PMjy concentrations
(R? = 0.65, adjusted R? = 0.63, p < 0.001). The residual standard error was 13.99, and the fitted model
exhibited no significant violations of the assumptions of normality or homoscedasticity. This suggests
that, after excluding the identified outliers, there is a robust linear association between PM, 5 and PM1g
in 2022 (Figure 3).
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Figure 3. Scatter plot showing the relationship between PM;g and PM; 5 concentrations (pg/ m®) in Santo Domingo
for 2022, with a superimposed linear regression model (solid line) and a 95% confidence interval (shaded area).

Figure 5 shows the isopleths of the distribution around the region of PM;g and PM; 5 measured
in Santo Domingo during both campaigns, 2019 and 2022 and the air quality stations (red circles). For
the 2019 campaign, PM;( concentrations were generally lower, with values ranging mainly between
10 and 25 ppm in the study area. Higher concentrations, exceeding 70 ppm, were observed in the
westernmost part of the domain, as well as in some isolated spots in the north and center. Meanwhile,
for the 2022 campaign, it is observed that for PMy it reaches values higher than 50 ppm distributed
throughout almost the entire study domain with the exception of some isolated areas in the center,
south, and southwest with lower values. However, for PM; 5, the area with the highest values is
located to the south of the study area, reaching values higher than 25 ppm.

The temporal trends of the weekly mean aerosol optical depth (AOD) for 2019 and 2022 are shown
in Figure 4. Both years exhibit a clear seasonal pattern, with AOD values increasing steadily from
January to a peak around July-August and subsequently declining toward December. In 2022, AOD
values were consistently higher compared to 2019 throughout most of the year, particularly during
the first half. This difference is more pronounced during the March to August period, where 2022
shows sharper increases, reaching maximum AOD values of approximately 0.4. The smoothed trends,
visualized with LOESS regression, further emphasize these seasonal patterns, with confidence intervals
highlighting significant deviations between the two years. Notably, AOD variability, as indicated by
the error bars, is greater in 2019 during the middle of the year but becomes more stable in 2022. These
results suggest a distinct difference in aerosol optical depth behavior between the two years.
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Weekly Mean Aerosol Optical Depth, 2019 and 2022
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Figure 4. Weekly mean aerosol optical depth (AOD) for 2019 (blue) and 2022 (red) in Santo Domingo, with LOESS
smoothed trends and confidence intervals. AOD values exhibit a clear seasonal pattern, peaking during mid-year
months and showing higher values in 2022 compared to 2019, particularly from March to August.
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Figure 5. Isopleths showing the spatial distribution of PM;y and PM; 5 measured in Santo Domingo during both
campaigns, (A) 2019 and (B-C) 2022. Red circles indicate air quality monitoring stations
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Figure 6. Cross-Correlation Function (CCF) between weekly averaged PM;y and aerosol optical depth (AOD). The
strongest positive correlation is observed at lag 0, indicating a synchronous relationship between AOD and PM
concentrations in Santo Domingo for 2019 and 2022. The dashed blue lines represent the significance threshold,
with correlations outside this range being statistically significant.

The cross-correlation function (CCF) between weekly averaged AOD and PM;g concentrations
for 2019 and 2022 is presented in Figure 6. The analysis reveals a significant positive correlation
at lag 0, suggesting that changes in AOD are contemporaneously associated with changes in PM;j.
The correlation is strong at lag 0, with a coefficient close to 0.5, indicating a moderate association.
At lag -1, the correlation is negative and relatively strong, while at lag -2, it becomes positive and
strong. In contrast, the correlations at other lags, both positive and negative, are weak and not
statistically significant. These findings indicate that variations in AOD and PM;j( concentrations occur
synchronously on a weekly timescale, with minimal temporal displacement. This contemporaneous
relationship highlights the potential of AOD as a reliable predictor for PM;g concentrations when
analyzed at a weekly resolution.

The local spatial autocorrelation analysis identified several influential sites and spatial outliers,
along with a minimal number of hotspots, across different years and particulate matter (PM) sizes
(Table 3 and Figure 7). However, as shown further, these localized patterns were not reflected in the
global spatial autocorrelation analysis. For PMjg in 2019, sites 8 and 22 were negatively influential,
while site 23 was both positively influential and a positive spatial outlier, indicating higher PM;g
concentrations than expected. In 2022, site 10 for PM; 5 was negatively influential and a negative
spatial outlier, with sites 18 and 33 being positively influential; site 33 was also a positive spatial outlier
and LISA hotspot, indicating a cluster of high PM; 5 values. For PMjy in 2022, site 29 was a LISA
hotspot, and site 31 was negatively influential, revealing localized patterns of influence and clustering.
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Table 3. Spatial autocorrelation diagnostics of PMjg and PM, 5 concentrations in Santo Domingo for the years
2019 and 2022 (see Figure 1 and Table A1 for site reference).

Year Particulate  Site Influential - Influential +  Spatial Spatial LISA
matter (um) outlier- outlier+  hotspot
2019 10 8 X
2019 10 22 X
2019 10 23 X X
2022 2.5 10 X X
2022 2.5 18 X
2022 2.5 33 X X X
2022 10 29 X
2022 10 31 X
Year 2019 PM10 Year 2022 PM10 Year 2022 PM2.5
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Figure 7. Distribution of PM;y and PM, 5 concentration values (ug/ m3) in samples taken in the Distrito Nacional,
2019 and 2022 (see Figure 1 for site reference). Labels indicate spatial statistical results: “H” denotes a hotspot, “1”
an influential site, and “S” a spatial outlier. A positive sign (+) indicates higher-than-expected values (hotspot,
positive influence, or positive outlier), while a negative sign (-) represents lower-than-expected values (negative
influence or negative outlier). The panels correspond to PMjg concentrations in 2019 (left) and 2022 (middle), and
PM; 5 concentrations in 2022 (right).

The spatial autocorrelation analysis for particulate matter (PM) using the Global Moran’s I statistic
revealed non-significant results across all periods and particulate matter types assessed. Specifically,
after log-transforming the particulate matter variables to better meet the assumption of normality,
none of the Moran’s I tests yielded significant results. This indicates a lack of spatial dependence in
the observed PM concentrations.

These results indicate that the particulate matter measurements do not exhibit significant spatial
clustering or patterns, which aligns with the minimal number of LISA hotspots identified in previ-
ous analyses. This lack of spatial autocorrelation justifies the use of traditional statistical models
that assume independent observations. Consequently, subsequent analyses can explore the relation-
ships between PM levels and potential meteorological predictors without needing to account for any
underlying spatial structure, thereby avoiding violations of the independence assumption.

The analysis of meteorological variables and Aerosol Optical Depth (AOD) as predictors of
particulate matter concentrations revealed some interesting patterns. The results of the analysis
were summarized visually in a tile plot, which highlights the significant predictor variables and their
corresponding R? values (Figure 8). This figure enables a visual interpretation of the predictive strength
of each variable across the analyzed periods and particulate matter types.
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Notably, no significant predictors were identified for PM;g levels during the months of July-
August and November-December 2019 using linear models. However, the results indicated that for
PM;g concentrations during September-October 2019, wind speed emerged as a significant predictor,
albeit with a relatively low explanatory power (R?=0.181).

In contrast, for the year 2022, multiple variables showed predictive power for both PM; 5 and
PMjj levels. Specifically, air pressure was identified as a significant predictor for PM; 5, although
with moderate explanatory power (R?=0.361). For PM;g in 2022, both AOD and air pressure exhibited
strong predictive capabilities, with the model achieving a high R? of 0.752. Additionally, rainfall
was also a significant predictor for PM;o during this period, further indicating that meteorological
conditions played a more influential role in explaining variations in particulate matter concentrations

in 2022 compared to 2019.
Year 2022 PM2.5 O
2
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©
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Figure 8. Predictor variables of particulate matter in samples taken in the Distrito Nacional, 2019 and 2022.

4. Discussion

This study evaluated PM;g and PM; 5 concentrations in Santo Domingo, focusing on their spatial
distribution, temporal variability, and relationships with meteorological and environmental variables.
The findings reveal significant insights into particulate matter dynamics, particularly the role of aerosol
optical depth (AOD), meteorological predictors, and localized spatial patterns.

The observed differences in PM concentrations between 2019 and 2022 can be attributed to
seasonal variability and environmental factors. Notably, higher PM;( levels in 2022 coincided with
the mid-year months (May-July), characterized by increased Saharan dust activity [80,81]. This aligns
with the elevated AOD values during this period, as highlighted by the LOESS regression trends. In
contrast, the lower PM;( concentrations in 2019, sampled between July and December, may reflect
reduced dust transport and increased precipitation, which likely enhanced particle deposition.

Despite a substantial increase in the national vehicle fleet from 2019 to 2022 [82], the minimal
growth in the National District and Santo Domingo province suggests that vehicular emissions are
unlikely to explain the observed PM;, increase in 2022. Instead, meteorological conditions such
as air pressure and rainfall, alongside AOD values (likely correlated with higher Saharan air layer
concentrations), emerged as significant predictors, as demonstrated by the regression models. The
strong explanatory power of these variables, particularly for PM;q (R? = 0.752), underscores their
critical role in influencing particulate matter levels.
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The cross-correlation analysis revealed a synchronous relationship between AOD and PM;jq
at lag 0, indicating that real-time AOD data could serve as a reliable proxy for estimating PMjq
concentrations, consistent with findings from previous studies that demonstrated strong correlations
between AOD and surface particulate matter levels [59,83,84]. The temporal alignment suggests that
satellite-derived AOD products could enhance air quality monitoring in regions with limited ground-
based observations, as supported by studies showing that integrating AOD into air quality models
significantly improves PM;y and PM; 5 estimations, particularly in areas with sparse monitoring
networks [85-92].

Spatial autocorrelation analysis identified localized patterns, including influential sites, hotspots,
and spatial outliers. For instance, site 23 in 2019 exhibited high PM;, concentrations, serving as both a
positive spatial outlier and an influential site. In 2022, site 33 was a LISA hotspot for PM; 5, with signif-
icant clustering of high values. However, the absence of global spatial autocorrelation suggests that
PM concentrations are not driven by broader spatial patterns, allowing the use of traditional regression
models that assume independent observations. This lack of spatial autocorrelation is expected when
observations are taken on different dates, particularly for particulate matter concentrations, which
represent a highly dynamic phenomenon strongly influenced by atmospheric conditions [93,94]. This
further underscores the need to model its behavior using physical atmospheric models to complement
statistical approaches [95,96].

These findings emphasize the importance of integrating spatial and temporal analyses to uncover
localized phenomena and validate predictive models. While the study highlights key predictors and
spatial patterns, future research should explore the influence of land use, industrial activities, and local
emission sources to develop a more comprehensive understanding of air quality dynamics in Santo
Domingo.

Based on the findings of the study, which highlight the role of meteorological factors, urban
activities, and aerosol concentrations, the following policy recommendations and mitigation strategies
can help improve air quality in Santo Domingo: strengthening air quality monitoring and data integra-
tion, reducing vehicular emissions, controlling industrial and construction emissions, implementing
urban planning for better air quality, promoting public awareness and community engagement, and
enhancing policy coordination and enforcement.

5. Conclusions

This study provides a comparative assessment of PM;y and PM;5 concentrations in Santo
Domingo for 2019 and 2022, offering key insights into their temporal trends, meteorological pre-
dictors, and spatial variability. The significant differences in particulate matter levels between the two
years are closely linked to seasonal meteorological conditions and Saharan dust activity, rather than
local anthropogenic sources.

The regression models identified AOD, air pressure, and rainfall as robust predictors of PM
concentrations, highlighting the potential of integrating remote sensing data with ground-based
measurements to enhance air quality monitoring. The cross-correlation analysis further supports the
use of AOD as a real-time proxy for PM;, providing valuable tools for policymakers and researchers.

Spatial analyses revealed localized influences, with certain sites demonstrating significant cluster-
ing and outlier behavior. However, the lack of global spatial autocorrelation underscores the need for
targeted interventions rather than broad regional strategies. The study underscores the importance of
incorporating localized meteorological and environmental data into air quality management plans.

Future studies should aim to expand the temporal and spatial scope of sampling, incorporate
high-resolution emission inventories, and assess the health implications of observed PM concentrations.
These efforts will enhance the ability to design effective mitigation strategies and improve urban air
quality in Santo Domingo and similar urban environments.
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6. Recommendations

While this study provides a comparative assessment of PM;y and PM; 5 levels in different areas
of Santo Domingo, future research should incorporate continuous measurements or repeated sampling
to assess temporal variability with greater precision. To improve continuity in future studies, it is
recommended to establish a fixed monitoring network to analyze the evolution of pollutants at the
same sites over time.

The results of this study suggest that, in addition to meteorological factors, anthropogenic sources
such as traffic and industrial activity may play a significant role in PM levels in Santo Domingo. Future
research should include detailed emission inventories and impact analyses of traffic control policies
and industrial regulations to better understand their influence. Implementing mitigation strategies
will require a multi-sectoral approach involving government agencies, industries, academia, and local
communities. By integrating better monitoring, stricter regulations, sustainable transportation, and
urban greening, Santo Domingo can significantly reduce air pollution and improve public health.
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The following abbreviations are used in this manuscript:

AOD Aerosol Optical Depth

CCF Cross-correlation functions

LISA Local Indicators of Spatial Association

LOESS  Locally Estimated Scatterplot Smoothing

MAIAC Multi-angle Implementation of Atmospheric Correction
PM Particulate Matter

PM;g Particles with a diameter less than 10 um

PM, 5 Particles with a diameter less than 2.5 um
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Appendix A Identifier Code (ID) and English-Spanish Name Equivalences of
Sampling Sites

Table Al. Identifier Code (ID) and English-Spanish Name Equivalences of Sampling Sites.

ID Name in English Name in Spanish Latitude Longitude
1 Prof. Adolfo Gonzélez School Liceo Prof. Adolfo Gonzélez 18.5400 -69.9774
2 Salomé Urenia de Henriquez (Los Gira- Escuela Bésica Salomé Urefia de Hen- 18.5274 -69.9813
soles) School riquez (Los Girasoles)
3 Escuela Bésica Prof. Maria del Carmen  Escuela Bésica Prof. Maria del Carmen 18.5310 -69.9711
Pérez Méndez Pérez Méndez
4 Ciudad Real School Colegio Ciudad Real 18.5107 -69.9864
5 The Community For Learning The Community For Learning 18.5115 -69.9657
6 José Bordas Valdez School Escuela José Bordas Valdez 18.5016 -69.9942
7 Los Prados School Colegio Los Prados 18.4766 -69.9609
8 National Botanical Garden Jardin Botédnico Nacional 18.4949 -69.9529
9 Notre Dame School Colegio Notre Dame 18.4773 -69.9421
10  San Judas Tadeo School Colegio San Judas Tadeo 18.4765 -69.9253
11  Victor Estrella Liz School Instituto Politécnico Victor Estrella Liz 18.4901 -69.9258
12 Arroyo Hondo School Colegio Arroyo Hondo 18.4947 -69.9379
13 American School of Santo Domingo American School of Santo Domingo 18.5090 -69.9425
14  Padre Eulalio Antonio Arias Inoa Escuela Basica Padre Eulalio Antonio 18.5065 -69.9226
School Arias Inoa - PAX
15  Salomé Urenia School Escuela Basica Salomé Urefia (Capotillo) 18.5043 -69.9047
16  Santo Domingo School Colegio Santo Domingo 18.4633 -69.9240
17 Maria Auxiliadora School Escuela Primaria Maria Auxiliadora - 18.4980 -69.8880
Loma del Chivo
18  Reptublica Dominicana School Escuela Primaria Reptiblica Dominicana 18.4869 -69.9052
19  Republica de Argentina School Centro Educativo del Nivel Medio 18.4750 -69.8867
Reptblica de Argentina
20  Babeque Inicial y Primaria School Babeque Inicial y Primaria 18.4637 -69.9032
21  Padre Valentin Salinero School Escuela Padre Valentin Salinero 18.4582 -69.9399
22 Serafin de Asis School Colegio Serafin de Asis 18.4573 -69.9624
23 Movearte Professional School Movearte Escuela Técnico Profesional 18.4330 -69.9840
24  Francisco Xavier Billini School Escuela Primaria Francisco Xavier Billini 18.4381 -69.9642
25  Rosa Duarte School Hogar Escuela Rosa Duarte 18.4381 -69.9494
26  Reptblica de El Salvador Kindergarten  Jardin de Infancia Reptiblica de El Sal- 18.4588 -69.9216
vador
27  Iberoamericana University (UNIBE) Universidad Iberoamericana (UNIBE) 18.4747 -69.9099
28  UASD Faculty Club Club de Profesores de la UASD 18.4600 -69.9040
29  Faculty of Health Sciences, UASD Antiguo Marién, Facultad de Ciencias de 18.4610 -69.9134
la Salud, UASD
30  University Geographic Institute, Instituto Geografico Universitario (IGU), ~ 18.4742 -69.8825
UASD UASD
31  Association of Authorized Master Asociacion de Maestro Constructores de 18.4864 -69.8866
Builders Obras Autorizados (AMACOA)
32 Nuestra Sefiora del Carmen School Politécnico Nuestra Sefiora del Carmen 18.5098 -69.8980
33  APEC University Universidad APEC 18.4730 -69.9137
34  Capotillo School Centro Educativo Capotillo 18.5022 -69.9044
35  Aida Cartagena Portalatin School Escuela Basica Aida Cartagena Portalatin 18.5066 -69.9152
36  Governorship of Mirador Sur Park Gobernacién del Parque Mirador Sur 18.4422 -69.9589
(ADN)
37  Agrarian Institute of Dominican Re- Instituto Agrario Dominicano (IAD) 18.4503 -69.9722
public
38  Private residence Vivienda particular 18.4571 -69.9625
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