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Article

The Muon g − 2 in a Regularized Electrodynamics

Miroslav Georgiev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., 1113 Sofia,
Bulgaria; m.georgiev@math.bas.bg

Abstract: The present paper reports exact results for the muon self-energy and anomalous g-factor. A
unique to the muon cut-off terms that remove the radial singularity in the system and regularize the
corresponding electrodynamics are presented. Equations of motion and a transcendental equation
satisfied by the muon anomalous g-factor are derived, with solution aµ = 0.0011659201231(18). The
obtained value matches the latest experimental one found in the literature to about 0.46 ppb ruling
out a possible tension between theory and experiment.
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1. Introduction

The study of the electron’s anomalous magnetic moment have played an essential role in the
development of quantum theory [1–4]. Its successful theoretical description led to the expectation
that the followed calculation of the anomalous component in the muon’s intrinsic magnetic moment
will strengthen and crystallize the established knowledge [5–10]. Over the decades, however, with
the improvement of the experimental setup and the consequent collection of more data from highly
precise measurements the gap between the measured and calculated values not only remained but
thickened [11–16]. The difference between the most recent experimental average [17,18] and the most
recent consensus on the average theoretical value [19] is about 2.49 ppb, which is significantly larger
than the relevant uncertainty. It is expected that the analysis of more experimental data will only result
in a negligible variation in the measured average value reaffirming the obtained gap. As a result, a
variety of theoretical approaches to the calculation of the corresponding anomalous component were
proposed, see Ref. [20] and the references therein.

In the light of the apparent discrepancy many efforts to revise and improve the hadronic vacuum
polarization corrections [21–25] and the hadronic light-by-light scattering one [24–28] have been
considered, see also the revision of Dyson-Schwinger approach [29]. Despite the increasing number
of fitting parameters and relevant ambiguity in the choice of observables needed to calculate these
contributions, it is believed that the used quantum field theory approaches have the prospect to reduce
the obtained tension.

On the other hand, the utility of refining the regularization technique is also considered. Any
progress in the regularization of electromagnetic self-interaction is expected to have a significant
contribution to the resolution of named tension. Over the years the application of regularization
method in electrodynamics and field theory in general has demonstrated great effectiveness [30–40].
The regularization of self-interaction implies minimal number of effective parameters and leads to
high precision results, with Yukawa cut-offs [41,42] being the most prominent tools for removing
radial singularities at a microscopic scale in both classical and quantum field approaches. Recently
a direct regularization scheme with Yukawa terms describing a massive off shell photons and no
free parameters was successfully applied to quantify the electron g − 2 value and the associated
self-interaction [40]. To the best of our knowledge calculations of the muon g − 2 value based on
the direct regularization of its electromagnetic self-interaction via Yukawa coupling have not been
undertaken yet.

The present paper introduce a study that implements the regularization technique proposed in
Ref. [40] with the aim to quantify the self-energy and anomalous component in the muon’s magnetic
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moment. The applied approach represents a regularized electrodynamics of non-composite particles
and conjugate to the quantum theory beyond the corresponding principle. Accordingly, exact results for
the muon’s self-energy, anomalous g-factor and all intrinsic characteristics underlying the dynamics
of its self-interaction are reported. Improved accuracy in the calculation of the muon anomalous
g-factor is obtained (0.46 ppb), overcoming the existing gap between the average value predicted by
the quantum theory [19] and the measured one [17,18]. An essential outcome of the obtained accuracy
is an exact bound on the sum of the muon and electron neutrinos rest masses.

The rest of the report is structured as follows. Section 2 briefly introduce the used method starting
with the notation and definition of all relevant physical quantities. Section 3 presents the obtained
results with all derived equations and their solutions. Section 4 discusses and summarizes the obtained
results.

2. Theoretical Framework

In this section we set-out the mathematical notation of all needful physical quantities and ab-initio
relations. We find it convenient to restrict all representations within the mathematical framework of
three-dimensional vector formalism.

2.1. Generalities

Consider a free muon with rest mass and electric charge denoted by mµ and ē = −e, respectively,
where e is the elementary charge. Let R be the muon’s rest frame of reference and rcµ = αλ̄cµ be its
electromagnetic radius in R, where α and λ̄cµ are the fine structure constant and associated reduced
Compton wavelength, respectively. Let rµ be the intrinsic field vector associated to the muon, with
magnitude rµ, and ũµ be the magnitude of the tangential velocity ũµ related to its rotation about the
origin of R in the plane perpendicular to the muon’s relative velocity uµ = uµκ defined with respect to
an observer with frame of reference O, where κ is the respective unit vector (see Figure 1). Since the
system is closed, we have the constraint uµ = ũµ. Furthermore, the oscillation of rµ is characterized
by an angular velocity ωµ, with magnitude ωµ = ũµr−1

µ representing the angular frequency of the
corresponding circularly polarized field. For comparison with the classical representation of the
electron’s intrinsic dynamics the reader may consult Ref. [40]. Within the applied approach the
quantities rµ and ũµ are conjugate and satisfy

rµũµ = λ̄cµc, (1)

where c is the light speed in vacuum.
The charge ρe and mass ρmµ densities satisfying ρeρ−1

mµ
= em−1

µ are defined within the spherically
symmetric spatial domain Ωcµ ∈ R3, with radius rcµ, boundary ∂Ωcµ and volume Vcµ. Moreover, ρMµ

is the muon’s effective mass density and Mµ = mµ(1 + aµ) is the corresponding effective rest mass
defined in Ωcµ, where aµ is the muon’s anomalous g-factor. Here, ρMµ = ρMµ(r) is a smooth function
of the radial parameter r, with r ∈ (0,+∞) and ρMµ > ρmµ for all r. Note that if ∄ e, then ρMµ = ρmµ .

The inherent dynamics of rµ underpin the occurrence of intrinsic magnetic moment µµ =

− 1
2 gµµµκ, where gµ = 2(1 + aµ) is the g-factor of the muon and µµ = eh̄(2mµ)−1 is the corresponding

magneton. We further have

gµ =
2

Vcµ

∫
Ωcµ

Gµdv, Gµ =
eρMµ

mµρe
. (2)

In the case shown in Figure 1 the field associated to the muon reads Φµ(x) = AµΦµ(x)nµ, where
the amplitude Aµ ≡ rµ, nµ ∈ C3 is the field’s unit vector and the phase factor Φµ(x) satisfies the
Klein-Gordon equation, with x ∈ R1,3 denoting the four-vector of the origin of R. In particular, we
have rµ =

√
2Re{Φµ(x = ct)}, where nµ = ( 1√

2
,± i√

2
, 0).
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ũµ

rµ
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2πrµ

Figure 1. Sketch of a left circularly polarized spatial wave representing a free self-interacting muon.
The corresponding field vector rµ (blue arrows) depicts a helix as the particle moves relative to an
observer with velocity uµ.

2.2. Electromagnetic Field Regularization

Within the considered approach the classical representation of the electromagnetic field coupled
to the muon is time independent. Accordingly, for an observer in O the electromagnetic field potentials
are not retarded and the Lorenz gauge is trivially satisfied. Moreover, the radial singularity in the
electromagnetic field is removed via a regularization defined by two cut-off Yukawa terms, with
screening constants defined in accordance to the most probable decay of the free muon.

In particular, with respect to an observer in O the electromagnetic field potentials inherent to the
muon read

φµ(r) = γµηµψµ(r), Aµ(r) = 2γµ
uµ

c2 ψµ(r), (3)

where γµ is the Lorentz factor, ηµ = 1 + u2
µc−2 and

ψµ(r) =
ē

4πεor
(
2 − e−χµr − e−χ̃µr) , (4)

εo is the electric constant. The screening constant χ̃µ is defined in accordance to the most probable
decay of a self-interacting muon µ− → e− + ν̄e + νµ. We have

χµ =
γµmµc

(1 + ae)h
, χ̃µ =

γµ(me + mν)c
(1 + aµ)h

, (5)

where me and ae denote the electron’s rest mass and anomalous g-factor, respectively. Here, h is
Planck’s constant, mν = mνµ + mν̄e , where mνµ is the muon neutrino rest mass and mν̄e is the electron
anti-neutrino rest mass. Therefore, we have mν > 0 for all r ∈ (0,+∞). The exact value of respective
neutrinos’ rest masses is unknown leaving the mass term mν as a model parameter. Nevertheless, the
value of mν is bound by the value of aµ and therefore it is unique within the used approach.

The classical field equation satisfied by the function in Equation (4) reads

∆rψµ(r)− χ2
µϕµ(r)− χ̃2

µϕ̃µ(r) = 0, (6)

where ∆r represents the radial Laplace operator in spherical symmetry, ϕµ and ϕ̃µ are the cut-off terms
implying the following boundary conditions

ψµ(r) =

{
0, r → ∞, uµ < c,

(χµ + χ̃µ)
ē

4πεo
, r → 0, uµ < c.
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We would like to point out, furthermore, that the two Yukawa terms in Equation (4) do not
represent an on shell massive photons [43]. For all r ∈ (0,+∞), both χµ and χ̃µ represent the
wave numbers of effectively massive off shell photons coupled to the muon, with total effective
mass mµ(1 + ae)−1 and (me + mν)(1 + aµ)−1, respectively. Both massless photon terms with Yukawa
potentials reduced to Coulomb ones (see eq. (4)) are implicitly accounted for in Equation (6).

2.3. Electromagnetic Field Energy Regularization

The energy of the electromagnetic field in the considered system, Wµ(r), is also regularized. In
general, integrating the corresponding energy density εo|∇φµ(r)|2 over R3, we obtain

Wµ(r) = Cµ
rcµ

2r

(
8
(
e2(χµ+χ̃µ)r − e(2χµ+χ̃µ)r − e(χµ+2χ̃µ)r

)
+ (2 + χµr)e2χ̃µr + (2 + χ̃µr)e2χµr

+ 4
(χµ + χ̃µ + χµχ̃µr)

χµ + χ̃µ

)
e−2(χµ+χ̃µ)r,

where Cµ = γ2
µη2

µmµc2. At the origin of R and for uµ < c the electromagnetic field energy in the
considered system is finite. Thus, we have

lim
r→0

Wµ(r) = Cµrcµ

χ2
µ + 6χµχ̃µ + χ̃2

µ

2(χµ + χ̃µ)
. (7)

In contrast to the non-regularized electrodynamics, here for r → 0 the discussed electromagnetic
field energy vanish when the particle’s rest mass is negligible. In other words, the charge screening
(Yukawa cloud) is nearly complete making the electrically charged particle to appear as electrically
neutral.

3. Results

3.1. Self-Energy

By analogy to the case of self-interacting electron (see Ref. [40]), the classical Hamiltonian
describing a self-interacting muon do not depend explicitly on time. We have

Hµ = γµmµc2 + Σµ, (8)

where Σµ is the self-energy term. The latter is not a potential energy of a gradient field and equals
the spatial average over the domain Ωcµ of the interaction energy ēφµ. In particular, with respect to
Equation (3), we have the representation

Σµ = γµc2
∫

Ωcµ

(ρMµ − ρmµ)dv, (9)

where the effective mass density reads

ρMµ = ρmµ

(
1 + ηµ

rcµ

r
(
2 − e−χµr − e−χ̃µr))

= ρmµ

(
1 +

ηµ ē
mµc2 ψµ

)
. (10)
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Table 1. Theoretical and experimental (EXP) data for the muon’s anomalous g-factor (second column).
The regularized electrodynamics (RED) and quantum field theory (QFT) results are given in the second
and third rows, respectively. Fourth row represents the most recent experimental average value. The
value of mass ratio ξµ follows from Equation (14). For additional details see Figure 2.

aµ ξµ Ref.
RED 0.0011659201231(18) 0.0048363318829445(30) Equation (13)
QFT 0.00116591810(43) − [19]
EXP 0.00116592059(22) − [17,18]

17.5 18 18.5 19 19.5 20 20.5 21

a
µ
 × 10

9
 - 1165900.00

Theory, eq. (13)

Theory, Ref. [19]

Experiment, Refs. [17,18]

-3 -2.5 -2 -1.5 -1 -0.5 0

ppb

Figure 2. Comparison between the most recent experimental result (black circle) for the muon’s
anomalous g-factor and its value obtained from Equation (13) (blue square). In addition the latest result
predicted by the quantum theory (red square) is also shown. The depicted data is further provided in
Table 1.

3.2. The Hamiltonian Density

The information about the muon’s intrinsic dynamics is embedded in the Hamiltonian density
Hµ associated to Equation (8). Taking into account Equation (1) for r ≡ rµ we get

Hµ = c2ρmµ

(
γµ +

α

mµc
Pµ

)
,

where
Pµ = γµηµmµũµ

(
2 − e−χµrµ − e−χ̃µrµ

)
is the corresponding generalized momentum. Accordingly, we have the equations of motion

ũµ =
∫

Ωcµ

∂Hµ

∂Pµ
dv, Ṗµ = 0

and subsequently the exact values

ũµ = αc, ηµ = 1 + α2, γ−1
µ =

√
1 − α2. (11)

In contrast to the relative velocity, from Equation (11) there follows that the magnitude of the tangential
velocity is scale invariant.
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3.3. Effective Mass-Energy Equivalence

Taking into account Equation (2), from Equations (9) and (10) we obtain Σµ = aµγµmµc2. As a
result, from Equation (8) we get the effective relativistic energy

Eµ = γµ Mµc2, with Mµ =
1
2

gµmµ. (12)

Therefore, as a result of the self-interaction the total energy of a free muon is γµ(1 + aµ) times higher
than its rest energy and the system’s total mass will be (1 + aµ) times higher than the muon’s rest
mass.

3.4. The Anomalous g-Factor

In addition to the Standard Model calculations [14,19], the implemented regularized
electrodynamics yields a single-parametric transcendental equation for the calculation of the muon’s
anomalous g-factor. Accounting for Equations (2), (10) and (11), we obtain

aµ = ae + 3ηµ

1
2
−

1 − e
− αγµξµ

2π(1+aµ)
(

1 + αγµξµ

2π(1+aµ)

)
(

αγµξµ

2π(1+aµ)

)2


 , (13)

where
ξµ =

me + mν

mµ
. (14)

The value of aµ calculated from Equation (13) is given in the second row of Table 1, where the
values of ae and α are taken from Ref. [40]. The obtained accuracy with respect to the most recent
experimental measurements [17] is about 0.46 ppb, see Figure 2. On the same figure, a comparison
with the most recent agreement on the value of aµ predicted by the Standard Model is also depicted.
The value of mass ratio in Equation (14) is given in the third column in Table 1. We have mν =

3.58686 × 10−38 kg, where the values of electron’s and muon’s rest masses are taken from NIST [44].
This result suggest that the sum of the muon neutrino and electron anti-neutrino rest energies is
approximately 0.02012 eV, which is consistent with the reported upper bound on the sum of the three
flavor neutrino rest energies of about 0.120 eV (see Ref. [45]). Moreover, it suggests that the electron
anti-neutrino mass satisfies the inequality mν̄e < 3.58686 × 10−38 kg. This bound is approximately 40
times lower than the one set by KATRIN collaboration [46], see also Ref. [47].

3.5. Electromagnetic Field Energy

The total energy of the muon given in Equation (12) is only a fraction of the considered system’s
energy that accounts for the electromagnetic field energy associated to the muon.

In the non-regularized electrodynamics the electromagnetic field energy associated to the three
flavors of charged leptons does not depend on their rest mass and is not defined at the origin of R.
Consequently the corresponding energy density is quantitatively indistinguishable with respect to the
flavor state of these particles.

Here, as a result of the applied regularization the electromagnetic field energy and its density
are flavor dependent. The larger the lepton’s rest mass the higher corresponding electromagnetic
field energy. In the considered case, substituting the obtained from Equation (13) values of mν and
aµ in Equation (7), we obtain Wµ(r → 0) = 4.673 × 1021 eV, which is 43.783 × 103 times the value
of electromagnetic field energy associated to the electron at the same limit (see Ref. [40]) and about
4.42274 × 1013 times the muon’s rest energy.
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4. Summary and Conclusions

The present paper reports on the most recent progress in the application of the regularization
technique in electrodynamics of electrically charged non-composite particles thus uncovering key
aspects from the elusive interrelationship between the classical and quantum theory on a microscopic
level. The effectiveness of regularization method is demonstrated by calculating exactly the self-energy
and anomalous g-factor of the muon. The used regularization implies two Yukawa cut-off terms with
unique to the muon decay screening constants (see Equation (5)) that remove the radial singularity in
the classical representation of the off shell electromagnetic field governing the muon’s self-interaction.
Accordingly, exact solutions to the system’s equations of motion are derived.

In particular, the muon’s self-energy is calculated exactly showing the genuine contribution
of the corresponding electromagnetic self-interaction into the muon’s total mass and energy, see
Equation (12). In addition, the muon’s anomalous g-factor is calculated with high accuracy, improving
the one obtained from the latest quantum theory calculations, see Figure 2 and Table 1. The obtained
accuracy implies that the electromagnetic field contribution into the muon anomalous magnetic
moment is significantly larger than previously evaluated. The main contribution results from massive
off shell photons with wave vectors given in Equation (5), propagators corresponding to both Yukawa
terms given in Equation (4) and interacting with the muon as given in Equation (9). The effective mass
of these photons further implies that the muon and electron neutrinos have a rest mass, with upper
bound on their sum equal to 3.58686 × 10−38 kg, see Equations (13) and (14). Moreover, it points out
that the contribution of both neutrinos’ rest masses into the electron-muon mass ratio should be taken
by the quantum theory approach in order to improve the relevant result.

The used regularization technique can be applied to quantify the intrinsic dynamics of the tau
lepton and to fix the range of values of the corresponding anomalous g-factor determined by the
multiplicity of branching fractions. It is, furthermore, applicable to non-composite particles with
constant electric charge. Equation (12) points out that the effective rest energy of a self-interacting
proton should be at least 2.79 times its rest energy. Essentially, it shows that the total rest energy of a
multi-particle system is always greater than the anticipated value obtained by accounting for only the
rest masses of constituent particles.
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