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Jianqiang Zhao
Department of Mathematics, The Bishop’s School, La Jolla, CA 92037, USA; zhaoj@ihes.fr

Abstract: Euler sums are alternating (or level two) extension of multiple zeta values (MZVs). Kaneko
and Tsumura initiated the study of multiple T-values (MTVs), another level two generalization, by
restricting the summation indices in the definition of MZVs to a fixed parity pattern. In this paper, we
shall study finite MTVs and their alternating versions which are level two and level four variations of
finite MZVs, respectively. We conjecture that all finite MZVs are in the Q-span of finite MTVs which
in turn apparently lie in the span of finite Euler sums, and the inclusions are both proper. We shall
first provide some structural results for Euler sums of small weights, guided by the author’s previous
conjecture that the finite Euler sum space of weight w is isomorphic to a quotient Euler sum space of
weight w. Then, by utilizing some well-known properties of the classical alternating MTVs, we shall
derive a few important Q-linear relations among the finite alternating MTVs, including the reversal,
linear shuffle and sum relations. We then compute the upper bound for the dimension of the Q-span
of weight w finite (alternating) MTVs for w < 9, both rigorously using the newly discovered relations
and numerically aided by computers.

Keywords: (finite) Euler sums; symmetric Euler sums; (finite) multiple T-values; symmetric multiple
T-values; alternating multiple T-values

MSC: 11M32; 11B68

1. Introduction

In [10] Kaneko and Tsumura proposed to study the multiple T-values (MTVs)

d
T(s) i= Y IIS s=(su..s0) €N, (1)

ny>->ng>0  j=1 71]']
nj=d—j+1 (mod 2)

as level two variations of multiple zeta values which in turn were first studied by Zagier [26] and
Hoffman [3] independently:

d
i(s)= Y ]‘[isj, s=(s1,...,55) € N%, )

1> >ny>0 j=1 71]-

where N is the set of positive integers. These series converge if and only if s; > 2 in which case we say
s is admissible. As usual, we call |s| := s + - - - + s, the weight and d the depth. The main motivation
to consider MTVs is that they have the following iterated integral expressions

Lrgi\ 1 gt dt\% 1 gt
T(s)_/o (t) 1—t2'”(t) 1—£2 ®)

which equips the MTVs with a Q-algebra structure because of the shuffle product property satisfied by
the iterated integral multiplication (see, e.g., [25, Lemma 2.1.2(iv)]).

Besides MTVs, many other variants of multiple zeta values have been studied due to their
important connections to a varieties of objects in both mathematics and theoretical physics (see, e.g.,

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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[2,6,10,22]). On the other hand, the congruence properties of the partial sums of MZVs were first
considered by Hoffman [5] and the author [24] independently. Contrary to the classical cases, only a
few variants of these sums exist (see, e.g., [9,16,23]). In this paper, we will concentrate on the finite
analog of MTVs defined by (1).

Let P be the set of primes and put

A:=T[1(z/vz) | @ (Z/pT). (4)

peP pGP
Then we can define the finite multiple zeta values (FMZVs) by the following:

d

= X Il medp) ca 5

p>ny>-->ny>0j=1 ”]- peP

Nowadays, the main motivation to study FMZVs is to understand a deep conjecture proposed by
Kaneko and Zagier around 2014 (see Conjecture 1.1 below for a generalization). Although this
conjecture is far from being proved many parallel results have been shown to hold for both MZVs and
FMZVs simultaneously (see, e.g., [12-14]). In particular, for each positive integer w > 2, the element

Bpfw

w )w<p€P €A (©)

o

is the finite analog of {(w), where B,’s are the Bernoulli numbers defined by

And the connection goes even further to their alternating versions — the Euler sums and finite
Euler sums. Forsy,...,s; € Nand 0y, ...,0; = 1, we define the Euler sums

d
é(sl,...,sd;al,...,ad) = Z Hf] (7)

S
np>->ng>0 j=1 nj

To save space, if 0; = —1 then 5; will be used and if a substring S repeats 1 times in the list then {S}"
will be used. For example, the finite analog of —{(1) = —(1; —1) = log2 is the Fermat quotient

wim (21

(mod p))BSpeP €A 8)

Putsgn(5) = —land |5] = sifs € N. Forsy,...,s; € D := NUN we can define the finite Euler sums by

d_son(s;)"
e L I

p>nyp>->ny>0 =1 n].

(mod p)) €A )
peP

In [25, Conjecture 8.6.9] we extended Kakeko-Zagier conjecture to the setting of the Euler sums.
Fors = (s1,..., sd) S Dd, define the symmetric version of the alternating Euler sums

d i
gf(s) = Z (H(_1)5j| sgn(sj)> (,ﬁ(si, e ,51)€ﬁ(5i+1, e ,Sd)
i=0 \j=1

where {y (f = * or W) are regularized values (see [25, Proposition 13.3.8]). They are called #-regularized
symmetric Euler sums. If s € N then they are called t-regularized symmetric multiple zeta values (SMZVs).
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Conjecture 1.1. (cf. [25, Conjecture 8.6.9]) For any w € N, let FES, (resp. ESy) be the Q-vector space
generated by all finite Euler sums (resp. Euler sums) of weight w. Then there is an isomorphism

ESw
§<2) ESw—Z,
Gals) — G5 (s),

fES :FESy —

where f = * or L.

We remark that {5, (s) — 5 (s) always lies in {(2)ES,,_», see [25, Exercise 8.7]. Thus it does not
matter which version of symmetric Euler sums is used in the conjecture.

Problem 1.2. What is the correct generalization of [25, Theorem 6.3.5] for symmetric Euler sums? Or
extension of [25, Theorem 8.5.10] to finite Euler sums?

Our primary motivation to study finite (alternating) MTVs is to better understand this mysterious
relation fgg. We now briefly describe the content of this paper. We will start the next section by defining
finite MTVs and symmetric MTVs, which can be shown to appear on the two sides of Conjecture 1.1,
respectively. The most useful property of MTVs is that they have the iterated integral expressions
(3) satisfying the shuffle multiplication. This leads us to the discovery of the linear shuffle relations
for the finite MTVs (and their alternating version) in section 3 and some interesting applications of
these relations. In the last section, we will consider both the finite MTVs and their alternating version
by computing the dimension of the weight w piece for w < 9 and then compare these data to their
Archimedean counterparts obtained by Xu and the author [19,20].

2. Symmetric and finite multiple T-values

It turns out that the finite MTVs are closely related to another variant called finite MSVs. For all
admissible s = (s, ...,s4) € N, we define the finite multiple T-values (FMTVs) and the finite multiple
S-values (FMSVs) by
41
Fy(s) := < Y H—] (mod p)) € A (10)

5
p>ny>->ny>0 j=1 71]- peP
nj=d—j+1 (mod 2) if F=T,
nj=d—j (mod 2) if F=§

It is clear that

Fu(s) = > Y < 11 Uj)gA(s;o).
0'1,...,0'd::|:1 1S]Sd
2d—jif F=T
U4d—jif F=S

Motivated by Conjecture 1.1, we provide the following definition.

Definition 2.1. Letd € Nand s = (sy,...,5;) € N?. Let F = S or T. We define the #-regularized MTVs
(# = * or W) and MSVs by

1
F(s):=> ), ( I (Tj)(fﬁ(s;(f) (F=TorS).
2 01, 05=%1 1<j<d
2d—jif F=T

2d—jif F=S$
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We define the §-symmetric multiple T-values (SMTVs) and t-symmetric multiple S-values (SMSVs) by

d i
Z (H(_:l)SZ)Fﬁ(Si’ Ce ,sl)Fﬂ(Si+l, e ,Sd), ifdis even,
FS(S) o i=0 (=1
i ’ d i ~
Z _1>sl>Fﬁ(Si/--‘lsl)Pﬁ(siJrlw'-/Sd)/ ifdis Odd,
i=0 (=1

where F = S + T — F and we set as usual ]_[2:1 =1.

Proposition 2.1. Suppose fgs is defined as in Conjecture 1.1. Let § = % or L. Then for all s = (s1,...,54) €
N we have fesT(s) = Tﬁs(s) and fgsS 4(s) = Sf(s) modulo {(2).

Proof. Suppose d is even and s € N¥. Then modulo {(2)

fEsTA(S):217 )y ( I1 ef>fES€A<:>

61,...,€d:i1 1S]Sd
j=d (mod 2)
1 S(S
“w, 2L (IL)E ()
81,...,€d::|:l lS]Sd
2Jj
1 Z ( 1—[ s)i(ﬁ( 1)3[8 é, <SZ‘,...,51>§ (Si+1,...,sd)
=i j - é) i\ . i\ .
2 i \aZiza SN Eiy--r81 Eitlr---r8d
2Jj

1 i(ﬁ( 1)5l) Z ( S)(ﬁg )5 (Si,...,S1>€ (Si+1/~-r5d)
Y - i 1
2 i=0 \¢=1 €1, 8q=+1 \1<j<d ! =1 ¥ €ireeer 1 : €itlr---/ 8

lj

zzldf(]i[(—l)sf)(s )3 H%’u(:zi))

1,...,€,‘:i1 1§]§1

2
S‘+1,...,Sd
(E ()
<£1,...,81-—:|:1 i<j<d T \€iv1,- - €a
2)j
1 d i
= — (—1)5[ Tﬁ<si/"-rsl)Tﬁ(si+11-"rsd)
zdi:o(ezl )
:Tf(s).

The MSVs and the odd d cases can all be computed similarly and are left to the interested reader. O

Hence, we expect that whenever certain relation hold on the finite side then the same relations
should hold for the symmetric version, at least modulo {(2), and vice versa. Sometimes, they are
valid for the symmetric version even without modulo {(2). For example, the following reversal
relations hold for both types of sums (see [23, Proposition 2.8 and 2.9]). For s = (sy,...,s;) we put
<? = (sd,...,sl).

Proposition 2.2. (Reversal Relations) For all s € N¢, if d is even then

I
~—~
|
—_
~—

X
n
b
—~
7))
N~—

TA('s) = (~1)FITu(s) and S4(s)
T3(S) = (~1)FITS(s) and S

(11)
(12)

o
N~—
I
—
|
—_
N—

)
0
*
iy
©»
SN—
N

and if d is odd then

TA('S) = (~1)FIsa(s) and S4(S) = (1)1 T4(s), (13)

d0i:10.20944/preprints202402.1143.v1
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T3(S) = (~1)FIsS(s) and ST(S) = (-1)FITS(s). (14)

3. Linear shuffle relations for finite multiple T-values (FMTVs)

One of the most important tools to study MZVs and Euler sums is to consider the double shuffle
relations which are produced by two ways to express these sums: one as series by definition, the other
by iterated integrals. This idea will play the key role in the following discovery of the linear shuffle
relations for FMTVs and their alternating version.

The linear shuffle relations for Euler sums are given by [25, Theorem 8.4.3]. First, we extend MTVs
and FMTVs to their alternating version. For all admissible (s, o) € N¥ x {+1}9 (i.e. (s, 01) # (1,1)),
we define the alternating multiple T-values by
Fmimd+i-1/2

T(s;0) := Y ]1[173 (15)

np>->ng>0  j=1 n]»]
nj=d—j+1 (mod 2)

This is basically the same definition we used in [20,21] except for a possible sign difference. If we
denote by T'(s; ) the version in loc. cit., then

T(s;0) =T'(s;0) I .

j (16)
d—j=0,1 (mod 4)

We changed to our new convention in this paper because of the significant simplification in this special
case. However, the old convention is still superior to treat the general alternating multiple mixed
values. Similar to the convention for Euler sums, we will save space by putting a bar on top of s; if
o = —1. For example,
TG1) = Y ()
T (2n —2)2(2m —1)°

n>m>0

In order to study the alternating MTVs, it is to our advantage to consider the alternating multiple
T-functions of one variable as follows. For any real number x, define

d (T(Tl]fdJr]*l)/z
J
5 .
]
i n.
=1 j

T(s;0;x) := ) xM
ny>--->ny>0 j
nj=d—j+1 (mod 2)

In the non-alternating case, this function is the A-function (up to a power of 2) used by Kaneko and
Tsumura in [10]. For all 3, ..., 74y = £1, it is then easy to evaluate the iterated integral

[y
o \t 1— 2 t 1 —n4t?

d 17].(j
— Z xZ(k1+"'+kd)+dH ]
- 5 -
> k>0 =1 (ij+2kj+1 + 42k +d—j+1)%
Let
_ ﬂ _dt _dt
Yo = P Y1_71_t2' Yfl-—71+t2-

By the change of indices n; = 2k; + 2kj 1 + - - - + 2kg +d — j + 1 we immediately get

T(sio5x) = | p(vo lyp - vy, )= [y ly, ooy 17)
Y Opyo Yoo =" Y0 Yoy )= o Yoo Yt Yo Y
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where 17; = 07 - -0 for all j > 1 and p, q represent the conversions between the series and the integral
expressions of alternating MTVs:

-1 si—1 -1

P(u) = Y(s)1 Yoy - -- Y()] y(71---(7]- <o yf)d Yoq--047 (18)
-1 si—1 -1

q(u) = ygl y(71 M YOj YU’]'/O’j71 tee Y(S)d yad/ad—l' (19)

Namely, p pushes a word used in the series definition to a word used in the integral expression while
q goes backwards. See [21] for more details.

To state the linear shuffle relations among FMTVs and their alternating version, we first quickly
review the algebra setup and the corresponding results for Euler sums. Let 2} (resp. 23) be the
Q-algebra of words on {xo,x1} (resp. {xo,%1,x_1}) with concatenation as the product. Let Ql]l
(7 = 1,2) be the subalgebra generated by the words not ending with x3. Then for each word

1 1 .
u=x) x,..%¢ x,, €A, we define

a(w) =051, 80500,...,04)

where 01 = # and 0; = 7;/7;_1 forall j > 2. Set 7(1) = 1 and
T(xél_lxl .. .Xé”lilxl) = (—1)51+"'+S'x8”’71x1 ... x(s)l_lxl.
Theorem 3.1. ([25, Theorem 8.4.3]) For all words w,u € Ql%, v e Al and s € N, we have

(D) Ca(uwv) = Ca(t(w)v),
(i) Cal(wu)wv) = Cauintiw)y),
(i) Ca((x5 xaw) Wv) = (—1)Ca(u e (55 51v)).

For alternating MTVs, we can similarly let T} (resp. ¥3) be the Q-algebra of words on {yg, y;}
(resp. {yo, y1,y_1}) with concatenation as the product. Let T} (f = 1,2) be the subalgebra generated by
the words not ending with y,. Then for each word u = yf)l*lyg1 . _1y0 € 2, letp, q: ) — 2l
be the two maps defined by (18) and (19). Then we can extend the definition of alternating MTVs and
their corresponding one-variable functions to the word level:

Fi(u) := F(s;0), Fy(u):=F.(q(u)), Fi(u)=Fy(p(u)),

where F(—) can be either T(—), or T4, or T(—; x) or even their partial sums such as

4 im0/

Tu(s;0) == Y Hjis]

n>ny>->ng>0  j=1 n;
nj=d—j+1 (mod 2)

For all words w € T} we set T4(w) := T4,,(w) = T4 .(q(w)). Further, set 7(1) = 1 and

—1 —1 —1 -1
T(yg yi---vy y1) = (1) Ty vy

Theorem 3.2. For all words w,u € S}, v € S% and s € N, we have

(i) Ta(uwv) = Ty(t(u)v) ifdep(u) + dep(v) is even,
(i) Tao((wu)wv) =Ty(uwt(w)v)ifdep(u)+ dep(v) + dep(w) is even,
(iii) Ta((y§ 'yiw) wv) = (=1)°Ta(uw (v§ 'y1v)) if dep(u) + dep(v) is odd.

Proof. Taking u = @ and then setting w = u we see that (ii) implies (i). Decomposing w into strings
of the type ygflyl we see that (iii) implies (ii). So we only need to prove (iii).
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For simplicity, write a = y; and b = y; for the rest of this proof. Observe that for any odd prime
p, the coefficient of x? of T(s; ¢; x) is nontrivial if and only if dep(s) is odd. Therefore, if the depth d of
the word w is even the coefficient of x” in T, (q(bw); x) is given by

Coeff,p [T* (q(bw);x)} = Coeff,» {T,_L. (ow; x)} = ;Tp,u_, (w)

since q(bw) = bq(w). Observe that

S*l . . .
b((as_lbu) WV — (—1)%u L (as_lbv)> = g(—l)l(as_l_zbu) W (a'bv).

Hence, if dep(u) + dep(v) is odd, then by first applying T,,,(—; x) to the above and then extracting
the coefficients of x” from both sides we get

(T (2" o) ) — (~1)° Ty (s (= ov) )

l . . .
(—1)"Coeffy [T (2" 1 bu; x) T (a'bv; x) |

S

i=0
s—1 p—1 ) )

=, 0(—1)1 Zi Coeff ; [T, (2 ' 'bu;t)] - Coeff ,—; [T (a'bv; t)]
i= j=

by the shuffle product property of iterated integrals. Now the last sum is p-integral since p —j < p
and j < p and therefore we get

Tpw (2 ou) wv) = (=1)°Tpw(uw (25 'bv))  (mod p)
which completes the proof of (iii). [

Remark 3.3. In [8], Jarossay showed that the corresponding results of Theorem 3.1 hold for SMZVs.
Theorem 3.2, Conjecture 1.1 and Proposition 2.1 clearly imply that similar statements also hold true for
SMTVs when the depth conditions are satisfied as in Theorem 3.2. However, it is possible to prove
this unconditionally using the generalized Drinfeld associator ¥, and consider the words of the form
x8171 (x1+x1) - ngq (x1 +x_1) in [25, Theorem 13.4.1]. The details of this work will appear in a
future paper.

We can now derive a sum formula for FMTVs.
Theorem 3.4. Suppose d € Nisodd. Forallsy,...,s; € N we have
d sitl
TA(l,s)+Ta(s, 1)+ Y. Y Tals1,...,55-1,8,5j+1—a,5;41,...,55) =0
j=1a=1
by taking so = 1 and u = 1 in Theorem 3.2(iii).
Proof. This follows immediately from the linear shuffle relation

1 -1 -1 -1
Talyywyy vi---v0 v1) = —Talyyey vi---v8 v1)-

O

The following conjecture is supported by all k < 9 numerically.

d0i:10.20944/preprints202402.1143.v1
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Conjecture 3.5. Forall k € N we have

—1)k _1)k
@ = Sk, S = SRSk,

Proposition 3.6. If k is odd then for all ¢ < k we have

_1\¢
T2, 09 = S (7 e . 20

If in addition we assume Conjecture 3.5 holds then

(-1)FF k41

TA({1}5,2,{1}’<—5):M€+1)( ) >TA(1,k+1). (1)

Proof. For all ¢ < k, by linear shuffle relations

A k—0 /+1 k—0
Ta(y; Wyiyoys ) ==y, yoyi -

Thus, setting a, = T4({1},2, {1}*~¢) we get
(f + 2){1“_1 + (k -+ 1)11@ =0.

Hence
k—0+1 (k—0+1)(k—0+2)
A1 = — ay = a =
i (2 C+2)(¢+1)
_ oyt k= £42) - (k+ 1)
T C+2)(l+1)---2 fo
_ ! A N |
:(_1)£ 1 (k+1) ( 1) < )aol

C+r)lk—01"~ 712 \r+1

which yields (20). Then (21) follows immediately if we assume Conjecture 3.5. O

3.1. Values at small depths/weights
First we observe that since { 4(s) = 0 for all s € N, by [25, Theorem 8.2.7],

— ifs=1;
sA<s>——TA<s>—§@A<s->—{ N ifen? 22)

where q, is the Fermat quotient (8) and f; is given by (6). Further, in depth two, by [23, Proposition 2.6]
we see that forall a,b € N, if w = a + b is odd then

S4(a,b) =Ty(a,b) = (_zl)u (1 —2—W) (Z’) Bu. (23)

The depth three case is already complicated and we do not have a general formula. This is
expected since such formula does not exist for FMZVs. In the rest of this section we will deal with
some special cases.

Next, we prove a proposition which improves a result Tauraso and the author obtained more than
a decade ago, by applying the newly discovered linear shuffle relations above.
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Proposition 3.7. We have
L) =0, LELD =28 Lain-nain=-2-Tp,
@D =0 L) =218 a1 = - g
Proof. It follows immediately from [18, Proposition 7.3 and Proposition 7.6] that
CALLT) = =S = gbs AL L) = =201~ 265, CalL1T) =0,
AT =011, CaLL1) = —Ca(LTT) = —a) = s,
By the linear shuffle relations for finite Euler sums we have
—Ga(bee) = (b cc) =Ca(bee) +La(cbe) + fa(cch)
which readily yields the identity
204(1,1,1) 4+ ¢4(1,1,1) +Ca(1,1,1) = 0. (24)

This quickly implies all the evaluations in the proposition. O
Corollary 3.8. We have
TA(1L1,1) = ~Sa(L,1,1) = - ps

Proof. The corollary is an immediate consequence by the definitions using Proposition 3.7. Or we can
prove it directly as follows. Since { 4(1,1,1) = —4(1,1,1) by reversal and { 4(1,1,1) = 0 we get

8TA(1,1,1) =C4(1,1,1) + Ca(L,1,1) +2a(1,1,1)=C4(1,1,T) = £4(1,1,1)
= —04(1,1,1) =204(1,1,7) (by (24))
=CA(2 1) +C4(1,2) = Ca(1)Ca(1,1) (by stuffle)

= Eﬁ?"
by [25, Theorem 8.6.4]. O

Proposition 3.9. We have
3

Proof. The weight three Euler sums are all expressible in terms of {(2,1), {(1,1,1) and {(1,2) by [25,
Proposition 14.2.7]. Hence one easily deduces that

(1r1r1) :gf_’(il 111) =0,
(irlrl) :gf_,(l, 111) = g(i/ 1/1) + g(i)éu_,(l,l) —Cw (1,i)§|_|_|(1) + CU_J(L 1/1)

=001, + 505~ (DT Z@MD)T+5(0) 5 ~ A DT +{A11)

4

S
L
S
L
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By [25, Proposition 14.2.7]

Thus, we get

0,11 = (LD + 201D - 61,11 - S(L11) = 2(21) = 76),
Sfu(l,l,l) = - %(g(i/ 111) +€(i, 111) - g(]'/]'/]') - g(i/ 1/1>> = _E (3)/
as desired. O

Turning to the finite Euler sums in general, we can use linear shuffles to derive many relations.
For examples,

bWacb:204(1,2,1) +{4(2,1,1) +274(2,1,1) =0,

blacc:2 A(lil)—l—CA(Zi1)—!—@,4(2,1,1)4—@4(2,1,1):0,
abllibc:304(2,1,1)+24(2,1,1)+24(1,2,1) +C4(1,2,1) +C4(1,1,2) =0,
abllicb:204(2,1,1)+204(2,1,1) +204(1,2,1) + 24(1,1,2) =0,

ablcc:204(2,1,1) 4+ 24(2,1,1) +C4(2,1,1) + C4(1,2,1) + £4(1,2,1) + £ 4(1,1,2) =0,

buwbac? :304(1,1,2,1) +4(1,2,1,1) +74(1,2,1,1) +74(1,2,1,1) =0,
buct:204(1,1,1%) +04(13,1,1) +C4(1,1,13,1) + ¢4(1,1%,12) + ¢4(1,1%,1) =0

We can also use reversal and stuffle relations to express all finite Euler sums of weight up to 6 by
explicitly given basis in each weight. Aided by Maple computation we arrive at the following main
theorem on the structure of finite Euler sums of lower weight.

Theorem 3.10. Let FES;, be the Q-vector space generated by finite Euler sums of weight w. Then we have the
following generating sets for w < 7:

FESi =({qp), FES;=(a3), FES;= (a3, ps), FESs= (a3, 9p3 {a(L3)),
FESS = <qg/ q%ﬁ& .35/ C.A(ile 2)/ g.A(irzr 2))/
FES¢ = <qg/ q%ﬁg,, ‘B%, qZABSI QA(L 112/2)r éA(i,Z, 2, 1)/ gA(irzr 1r2)r gA(ir {1}3r2)>'

Let { F }x>0 be the Fibonnacci sequence defined by Fy = F; = 1and F, = F,_1 + F,_, forall k > 2.
Then Theorem 3.10 provides strong support for the next conjecture.

Conjecture 3.11. For every positive integer w the Q-space FESy, has the following basis:
{gA(T,bz,...,bd) d>0b;=10r2,1+by+- +by= w}

Consequently, dimg FESy = F,,_1 forall w > 1.

One may compare to this to the conjecture on the ordinary Euler sums proposed by Zlobin [25,
Conjecture 14.2.3]

Conjecture 3.12. For every positive integer w the Q-space ESy, has the following basis:
{g@,bz,...,bd) :d>1,b;=10r2,by+by+ - +by = w}

Consequently, dimg ESy, = Fy for allw > 1.
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Theorem 3.10 implies that the set in Conjecture 3.11 is a generating set for all w < 7 since

(al1) = -2q, Ca(L1)=q3, Ca(1,2)=13Bs C(11L1) =34+ iBs
(i 1,2) = 3Bs — Ga(1,3), Ta(L{1}’) = £ + §Bs + 104(1,3),
A(T 2,1) =3C4(1,3) — ZappBs,
a(1,2,1,1) = ?32;%5* 204(1,2,2) = 204(1,1,1,2) — 3435,
ta({1 }4 1) = — 4B — 3953 — §24(1,2,2) — 304(1,1,1,2) — & Bs,
A(T 2,1) =3 5ps — 325 + 304(1,2,2) +204(1,1,1,2),
T4 (11211) —3A+2B+C+ D+ 353 + 3383 + 1R aPbs,
a({1342) = 3A+ $B+1C+D+ 3083+ B3 — 522qBs,
f;A(l 2,{1y%) = 193 —-3C-2D - %ﬁa — 3083 — $2 P,
Za(1{1¥°) = §C— 3D — t3Bs + Efahs — 8383 + 3095,

where A = (4(1,1,2,2),B=(4(1,2,1,2),C =(4(1,2,1,2),and D = {4(1,2,2,1).
Using the evaluations of finite Euler sums, we can find all FMTVs of weight less than 7. For
example, we have

1 2
Tyx(1,1,2) = — *CA(1/3) ~ 1g®Ps

1605 -
256 —fB5+ 2q2,33 + 3&4(1, 1,1,2).

Ta(1,2,2) =
We then have the following structural theorem for these FMTVs.

Theorem 3.13. Let FMTy, be the Q-vector space generated by FMTV's of weight w. Then we have the following
generating sets for w < 7:

FMT; =(qp), FMT2=(0), FMT3 = (B3), FMT4 = (qpB3,04(1,3)),
FMTs = (B5,04(1,2,2),54(1,1,1,2)), FMTg = (B3, aPs,5a(1,2,1,2)).

Moreover, by using numerical computation aided by Maple (see [25, Appendix D] for the pseudo
codes) we can find a generating set of FMTy, for every w < 13. We will list the corresponding
dimensions at the end of this paper.

3.2. Homogeneous cases

In this subsection, we will compute finite Euler sums {(s) when s is homogeneous, i.e., s = ({s}%)
for some s € D. Then we will consider the corresponding results for FMTVs.

Proposition 3.14. Let N,y be the set of odd positive integers. For any d,s € N, we have

) k
ga({sH) € » " Boky Py Q
koEN,kpuukéeNodd
ds1ko+ki+-+ko=d

where 55 1 is the Kronecker symbol. In particular, { 4({5}%) = 0 for all even s.

Proof. LetIT = (Py,...,P;) € [d] denote any partition of (1,...,d) into odd parts, i.e., all of |P;|’s are
odd numbers, where |P;| is the cardinality of the set P;. Put

C(IL) = (=) (|P1| = 1)t (|Pe] = D).
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Observe that { 4(1) = {4(n) = 0if n is even. Then it follows easily from [4, (18)] that

ca®)= X enia(shil) - ca(sIP)-

II=(Py,....P;)€ld]
The proposition follows from (22) immediately. [

Example 3.15. There are following ways to partition 6 elements, say {4y, ..., 4¢} into odd parts: one

way to get ({1}9), (g) ways to get (1,5) (e.g. {a2},{a1,4a3,...,a6}), (g)/Z ways to get (3,3), and (g)
ways to get (1,1,1,3). Hence,

CA({1}°) = a5 + 3auBs + §B5 + SPBs

by using the formula in (22). We would like to point out that the term 3q, B, _5/20 (corresponding to
the second term %qz B5 on the right-hand side above) was accidentally dropped from the right-hand
side of [18, (36)].

One may compare the next corollary to the well-known result that { 4({1}¢) = 0 foralld € N
(see, e.g., [25, Theorem 8.5.1]).

Proposition 3.16. For all d € N we have
T4({1}*) = 0.
Proof. Taking s = ({1}??~1) in Theorem 3.4 yields the proposition at once. [

We now derive the symmetric MTV version of Proposition 3.16.

Proposition 3.17. For all d € N we have
TS ({1)%) =o.

Proof. For any ¢ € N we have the relation for the regularized value (see, e.g., [7, section 2])

/E at \' 1 /8 dt \' 1 1/8 de , di !
o \1—-2) 0 \Jo1—-2) 0\2Jo \1—t 1+t '

This implies that
l
Tu({1) = 5 (2w(1) +10g2)
By the definition,
S i iy 1 & (Y o _
) = DD Tul (Tl = 00 5 g gy (w0 +10g2) =0

as desired. O
By extensive numerical experiments, we found the following relations must be valid.
Conjecture 3.18. For all odd w € N we have

w—1 _ w—1 _
TAIY) = ~Sa((1}) = 2o o TE(Y) = —SS(0F) = 2oy t(w)

The conjecture holds when w = 3 by Corollary 3.8 and Proposition 3.9. Aided by Maple, we can
also rigorously prove the conjecture for w = 5 and w = 7 by using tables of values of finite Euler
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sums produced by reversal, stuffle and linear shuffle relations, and the table of values for Euler sums
available online [1].

Moreover, Conjecture 3.18 still holds true for T4({1}¥) = T5,({1}*) = 0 when w is even because
of Propositions 3.16 and 3.17. But for S-values, we have another conjecture.

Conjecture 3.19. For all even w € N, there are rational numbers cj € Q 1< j<w/2, such that

w/2 w/2

A1) = ZC;SA(L w—j), SLULY) = ZCJ

Moreover, S4(j,w —j), 1 < j < w/2, are Q-linearly independent, and S‘E_l Gyw—7),1<j<w/2 are
Q-linearly independent.

Note that S 4(j,w — j) € A while S5, (j,w — j) are all real numbers.

4. Alternating multiple T-values

We now turn to the alternating version of MTVs and derive some relations among them. These
values are intimately related to the colored MZVs of level 4 (i.e., multiple polylogarithms evaluated at
4th roots of unity). We refer the interested reader to [19,20] for the fundamental results concerning
these values.

Recall that for any (s, o) € N¥ x {+1}¢, we have defined the finite alternating multiple T-values

by
d U‘(nj—d+j—1)/2

T(s;0) := ( Y H]s]) € A (25)

p>np>->ng>0  j=1 71]' peP
nj=d—j+1 (mod 2)
We have seen from Theorem 3.2 in section 3 that these values satisfy the linear shuffle relations. It is
also not hard to get the reversal relations when the depth is even, as shown below.

Proposition 4.1. (Reversal Relations of finite alternating MTVs) Let s € N for some even d € N. Then
TA(S, 7)) =(01,...,00) P D2 (1)l y (s, 0), (26)

where the element (—1)(P~174)/2 = ((=1)(P=1=4)/2 (mod p)) €A

3<eP

Proof. Let p be an odd prime. Then by change of indices n; — p —n; we get

d o.
Ty(s, ) := ) Hjis]

p>np>-->ng>0  j=1 n;
nj=d—j+1 (mod 2)

i Ugnjfp+d7j+1)/2
= (1)l Yy, [T-———— (modp).

p>ng>-->m>0  j=1 ”j
p—nj=d—j+1 (mod 2)

Lett; = 5441, € = 0441-j, and kj = ngyq ;. Then we get by the change of indices j = d+1—j
(since d is even)
i s§kj_p+j)/2
Ty(s, o) = (—1)k! I [

p>ni>e>ng> =1 k!
p—kj=j (mod 2) !
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Y <o—1-~~ad><d**’“>/2ﬁ’f

p>n1>>ng> j=1 k!
p—kj=j (mod 2) I
i E(k]-—d+jfl)/2
= P (d_p+1)/2 — ‘S‘ ]
= (o1 0q) (-1) ). I1 7
p>ki>>ky>  j=1 kj

ki=d—j+1 (mod 2)
=(oq - .Ud)(d—p+1)/2(_1)\S\Tp(t,g)

= (o1 o) VAT, (5, )
as desired. [

It should be clear to the attentive reader that T-values are always intimately related to the S-values
when the depth is odd because of the reversal relations. Even though we did not consider this in the
above, it plays the key role in the proof of the next result.

Proposition 4.2. Let g5(p) = (2P~1 — 1) /2 for all p > 2. Then we have

5AD = —0/2 T = (DT 0(p)/2 (modp) €A

Proof. Recall that

S0= ¥ 1 shH= Y

p>k>02|k p>k>0.2/k

By [17, Theorem 3.2] we see that

- 1 (=1)k2 2 3
p>k>0,2|k p>k>04|k

Since Sp(1) = p(1)/2 = —q,(2) we see immediately that S 4(1) = —q,/2. Taking reversal, we get

_ _1\(k=1)/2 _1\(p—k-1)/2
nm- y R (o
p>k>0,2¢k p>k>0,2|k p

—( 75,0 = (17 22 (mod ),

as desired. [

As we analyzed on [25, p. 239], there is an overwhelming evidence that g, # 0 in A. In [15,
Theorem 1], Silverman even showed that, if abc-conjecture holds then

{p<X:qm(p) #0 (mod p)}| = Oflog(x)) as X = oo

In fact we are sure the following conjecture is true.

Conjecture 4.3. For every pair of positive integers m > a > 0, gcd(m,a) = 1, there are infinitely many
primes p = a (mod m) such that q;(p) 0 (mod p).

Theorem 4.4. If Conjecture 4.3 holds for m = 4, then T 4(1) and T 4 (1) are Q-linearly independent.

Proof. If c1T4(1) + c2T4(1) = 0 in A for some c1,¢c; € Q, then by Proposition 4.2 we see that
(c1 +¢c2)qp(2) =0 (mod p) for infinitely many primes p =1 (mod 4). If Conjecture 4.3 holds form
m = 4 then ¢; + ¢ = 0 (mod p) for infinitely many primes p = 1 (mod 4). This would force

d0i:10.20944/preprints202402.1143.v1
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¢1 + ¢z = 0. Similar consideration for primes p = 3 (mod 4) implies that ¢c; — ¢ = 0. Hence, we must
have ¢; = ¢, = 0 which shows that T4(1) and T4(1) are Q-linearly independent. [

Define the finite Catalan’s constant by

E

Gy = (pT—fi € A

)3<pe7>

Proposition 4.5. Let FAT, be the vector space generated by finite alternating MTVs over Q. We have the
following generating sets of FAT, for w < 3:

FAT) = (q, (=1)"'qp), FAT, = (G, (=1)P'G4).

Proof. The w = 1 case is trivial. For w = 2, we already know T4(1,1) = T4(2) = 0 by Theorem 3.13.
Let a = yg, b = y; and ¢ = y_; in the rest of the proof. For alternating values, we first have the linear
shuffle relation

Ta(bwc) = —Ty(bc) = 2T 4(bc) + T4(cb) = 2T4(1,1) + T4(1,1) = 0.
By complicated computation (see [23, Proposition 4.4] and notice (16)) we have the additional relation
TA(2) =Gy = —2T4(1,1).

Then by the reversal relation (26) we see easily that T4 (1,1) = —(—1)P'T4(1,1). This completes the
proof of the proposition. [

5. Dimensions of FMT and AT

We first need to point out that it is possible to study the alternating MTVs by converting them to
colored MZVs of level 4 and then applying the setup in [16]. For example,

(121t

T(2,3) =
(2.3) ny om0 (2n1 —2)2(2ny — 1)3
M1+ (=Dh)i1(1 = (1))
k1>ky>0 k%kg

- i(Liz,a(i,z‘) + Lins(i, —i) — Lips(—i,i) — Lizs(—i, —i)).

The caveat is that we need to extend our scalars to Q[i] in general. At the end of [16] we observed that
dimg FCMZ4, < 2 for all w > 1, where FCMZ2 is the space spanned by all colored MVZ of level 4
and weight w over Q. By the following, we expect that the

dimg FAT,, < dimg FAM,, < 2%,

where FAM is the space spanned by all the finite multiple mixed values. Here, according to [19], the
multiple mixed values means we allow all possible even/odd combinations in the definition of such
series instead of a fixed pattern such as that has appeared in MTVs and MSVs).

Conjecture-Principle-Philosophy 5.1. Let S be a set of colored MZVs (including MZVs and Euler sums) or
(alternating) multiple mixed valuess (or their variations/analogs such as finite, symmetric, interpolated versions
etc.) Then the following statements should hold.

(1) Suppose all elements in S have the same weight. If they are linearly independent over Q, then they are
algebraically independent over Q.
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(2) If the weights of the values in S are all different then the values are linearly independent over Q (but of

course may not be algebraically independent over Q).
(3) If there is only one nonzero element in S, then it is transcendental over Q.

For example, we expect that {(1)’s are not only irrational but also transcendental for all n > 2. We
also expect that q, and By are transcendental for all odd k > 3, and are all algebraically independent
over Q

Recall that MTy, (resp. FMTy,) is the Q-vector space generated by MTVs (resp. finite MTVs) of
weight w. Similarly, we denote by AT (resp. FAT) the space generated by alternating MTVs (resp. finite
alternating MTVs) of weight w. From numerical computation, we conjecture the following upper
bounds for the dimensions of FM Ty, and FAT,. To compare to the classical case, we tabulate the results

together.
Table 1. Conjectural Dimensions of FMT, FAT, MT, AT, and FAM.

w 0 1 2 3 4 5 6 7 8 9 10 11 12 13
FMT, O 1 0 1 6 9 15 17 32 44 76
MT, 1 0 1 1 2 2 4 5 9 10 19 23 42 49
FAT, O 2 2 6 12 20 40 76
ATy 0 1 2 4 7 13 24 44 81
FAM, O 1 2 4 8 16

With strong numerical support, Xu and the author conjecture that {dimg ATy },>1 form the
tribonacci sequence (see [20, Conjecture 5.2]). For MTVs, Kaneko and Tsumura conjecture that, for all
k>1

dimg MTy = dimg MTy;_1 + dimg MTy;_,.

See [10, p. 216]. From numerical computation we can formulate its finite analog as follows.

Conjecture 5.2. Forallk > 1,

dimQ FMT2k+1 = dimQ FMTzk + dim(@ FMTzk_l.

Acknowledgments: The author is supported by the Jacobs Prize from The Bishop’s School.
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