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Article

Mathematical Problems of Artificial Intelligence and
Fundamental Issues in Constructing Self-Consistent
Measures and Their Resolution Through the
Universality of the Zeta Function
Aset Durmagambetov

Technical Research Center, Astana, Kazakhstan; aset.durmagambetov@gmail.com

Abstract: Artificial Intelligence (AI) faces a range of mathematical challenges, such as optimization,
generalization, model interpretability, and phase transitions. These issues significantly limit the
application of AI in critical domains such as medicine, autonomous systems, and finance. This article
examines the primary mathematical problems of AI and proposes solutions based on the universality
of the Riemann zeta function. Furthermore, AI, as a major trend attracting hundreds of billions of
dollars, is now tasked with addressing humanity’s most complex challenges, including nuclear fusion,
turbulence, the functioning of consciousness, the creation of new materials and medicines, genetic
issues, and catastrophes such as earthquakes, volcanoes, tsunamis, as well as climatic and social
upheavals, ultimately aiming to elevate civilization to a galactic level. All these problems, both listed
and unlisted, are interconnected by the issue of prediction and the problem of "black swans" within
existing challenges. This work offers an analysis of AI’s problems and potential pathways to overcome
them, which, in our view, will strengthen existing trends established by our great predecessors, which
we believe will become foundational in mastering AI.

Keywords: artificial intelligence, Riemann zeta function, universality, optimization, interpretability,
energy and water problems, ecology, black swans, humanity’s challenges

1. Introduction
Artificial Intelligence (AI) faces a number of mathematical challenges, including optimization,

generalization, model interpretability, and phase transitions. These issues significantly restrict AI’s
applicability in critical fields such as medicine, autonomous systems, and finance. This article explores
the core mathematical problems of AI and proposes solutions based on the universality of the Riemann
zeta function. Moreover, AI, as a dominant trend into which hundreds of billions of dollars are
being invested, is now responsible for solving humanity’s most intricate problems, such as nuclear
fusion, turbulence, the functioning of consciousness, the development of new materials and medicines,
genetic challenges, and disasters like earthquakes, volcanoes, tsunamis, as well as climatic, ecological,
and social upheavals, with the ultimate goal of advancing civilization to a galactic scale. All these
challenges, whether explicitly mentioned or not, are tied together by the problem of prediction and the
issue of "black swans" within existing problems. This work provides an analysis of AI’s challenges and
some approaches to overcoming them, which, in our opinion, will reinforce certain existing trends laid
down by our great predecessors, which we assume will become central in mastering AI.

Currently, we are witnessing remarkable progress in the field of AI. The successes of AI are
paving the way for the emergence of a Global Intelligence (GI). However, concerns about electricity
consumption cast doubt on its imminent realization. We believe that the only hope lies in the uni-
versality of the Riemann zeta function and its constructive application. This hope was articulated by
the fathers of modern mathematics, who saw the Riemann Hypothesis as a kind of "Holy Grail" of
science, the discovery of which would yield immeasurable knowledge. As the great mathematician
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David Hilbert once said, when asked what would interest him 500 years from now: "Only the Riemann
Hypothesis." It is fitting here to admire all our predecessors who envisioned the development of
science and humanity across millennia.

The mathematical foundations of artificial intelligence encompass several key areas, including
probability theory, statistics, linear algebra, optimization, and information theory. These disciplines
provide the necessary tools to tackle the complex tasks associated with AI learning and development.
However, despite significant progress in this field, AI faces a growing number of mathematical
challenges that must be addressed for the further effective advancement of AI technologies.

2. Problem Statement
In recent years, there has been a significant increase in electricity consumption due to the de-

velopment of AI. For instance, statistical data indicate that AI’s electricity consumption rose from
0.1% of global usage in 2023 to 2% in 2024. Additionally, the catastrophic rise in water consumption
for cooling the processors that support AI must be noted. This growth implies either a slowdown
in AI development due to energy resource constraints, the creation of new energy sources, or the
development of more efficient computational algorithms capable of significantly reducing energy costs.
Therefore, we will focus here on the mathematical problems and algorithms that address them, while
simultaneously consuming vast amounts of energy and water in super data centers when implemented
in programs.

In this article, we will review the key mathematical disciplines currently known to play a vital
role in AI development, analyze the problems limiting its effective application due to colossal energy
demands, and propose our approaches based on global scientific achievements, systematizing them
for AI advancement and energy reduction. Below are the mathematical problems that lead to energy
consumption.

Here, it is appropriate to recall an analogy with young Gauss, who was tasked with summing
numbers from one to a million sequentially. Instead, he derived the formula for the sum of an
arithmetic progression, reducing the task to three operations instead of a million. Now, consider that
each addition cycle in a computer consumes energy, and using his three-step formula reduces energy
costs by tens of thousands of times in this case. Thus, methods for solving equations as a means of
conservation were developed by young Gauss. One could say he replaced endless abacus clicking
with three actions!

Another genius, Riemann, suggested that the zeta function is the "Grail of science," while Hilbert
decided to wait 500 years for its resolution, building on the work of G. Leibniz, one of the first to
study conditionally convergent series. Leibniz also introduced the concept of signs in series and
demonstrated that some series could converge. Banach and Tarski contributed to understanding
permutation properties, describing them in the context of more abstract mathematical structures and
showing that conditionally convergent series can change their sum under rearrangement. These
classics laid the foundation for the modern approach to the "Grail of science," anticipating that it would
open the gates to the future. These works enabled S. Voronin to arrive at the universality of the zeta
function. Our goal is to demonstrate that this "Grail of science" indeed leads us to the future through
the collective efforts of our contemporaries—toward Global Intelligence. Furthermore, this "Grail of
science" leads to solving fundamental problems of humanity, such as turbulence, and, consequently,
achieving the long-awaited control of nuclear fusion.

3. Mathematical Disciplines and Their Problems
Probability Theory and Statistics: Probability theory and statistics form the basis for modeling

uncertainty and training AI. These disciplines provide tools for building predictive models, such as
Bayesian methods and probabilistic graphical models.
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Problems: The main challenges relate to uncertainty estimation, handling incomplete and noisy
data. Probabilistic models require significant computational resources to account for all uncertainty
factors.

Linear Algebra: Linear algebra is used for data analysis, working with high-dimensional spaces,
and performing basic operations in neural networks. It is also crucial for dimensionality reduction
methods, such as Principal Component Analysis (PCA).

Problems: As data volumes grow, the computational complexity of operations in high-dimensional
spaces increases exponentially, leading to the so-called "curse of dimensionality."

Optimization Theory: Optimization underpins most machine learning algorithms. Gradient
descent and its variants are used to minimize loss functions and find optimal solutions.

Problems: Key challenges include the presence of local minima, slow convergence, and complexity
in multidimensional spaces, requiring substantial computational resources.

Differential Equations: Differential equations are employed to model dynamic systems, such
as recurrent neural networks and LSTMs. They are essential for describing changes over time and
forecasting based on data.

Problems: Nonlinear differential equations are difficult to solve in real time, making their applica-
tion computationally expensive.

Information Theory: Information theory plays a critical role in encoding and transmitting data
with minimal loss. It is also vital for minimizing entropy and enhancing the efficiency of model
training.

Problems: Balancing entropy and data volume, especially in the presence of noisy data, is a
complex task requiring significant computational resources.

Computability Theory: Computability theory helps determine which tasks can be solved algo-
rithmically and where the limits of AI applicability lie.

Problems: Identifying tasks that are fundamentally unsolvable by algorithmic methods, particu-
larly in the context of creating strong AI.

Stochastic Methods and Random Process Theory: These methods are used to handle uncertainty
and noise, including in algorithms like Monte Carlo methods and stochastic gradient descent.

Problems: Optimizing random processes under resource constraints remains a difficult challenge.
Neural Networks and Deep Learning: Deep neural networks are complex multilayer structures

involving linear transformations and nonlinear activation functions. These networks are widely
applied to AI tasks such as pattern recognition and natural language processing.

Problems: Key issues include the interpretability of neural network decisions, overfitting, and
generalization. Addressing these requires significant computational resources.

4. Problem Detailing
Probability Theory and Statistics - Probabilistic methods are central to machine learning and

AI, particularly in tasks like supervised and unsupervised learning. Bayesian methods, probabilistic
graphical models, and maximum likelihood techniques are employed. - Problems: A primary mathe-
matical challenge lies in uncertainty estimation and developing methods for probabilistic models in
the presence of incomplete or heavily noisy data.

Problems: These include uncertainty estimation, handling incomplete data, and noise. Probabilistic
models must be flexible enough to account for all these factors.

Linear Algebra: Used for data analysis and working with high-dimensional spaces, which is
critical for neural networks and dimensionality reduction methods like PCA. - Analysis of data and
operations in high-dimensional spaces are vital aspects of machine learning and AI tasks, especially
for neural networks. High data dimensionality increases computational and modeling complexity,
making efficient methods for processing such data essential. - Methods like PCA (Principal Com-
ponent Analysis) are used to reduce the number of features (variables) while preserving the most
significant information. PCA identifies the main directions of data variation, enabling: - Reduction of
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computational volume; - Decreased likelihood of overfitting; - Improved data visualization in 2D and
3D; - Faster model training. - This method extracts key components, which is particularly important in
tasks with thousands of features, such as image processing, text analysis, or genetic data, where the
original data is high-dimensional.

Problems: The curse of dimensionality, where working with large datasets becomes computation-
ally complex.

Optimization Theory: Forms the foundation of most learning algorithms. Gradient descent and
its modifications are applied to minimize loss functions.

Problems: Local minima and slow convergence in multidimensional spaces remain challenges.
Differential Equations: Used to model dynamic systems, such as recurrent neural networks and

LSTMs.
Problems: Solving nonlinear differential equations in real time poses a significant mathematical

difficulty.
Information Theory: Assesses how to encode and transmit information with minimal loss,

relating to entropy reduction and minimizing losses in model training.
Problems: Balancing entropy and data volume when training models with noise.
Computability Theory: Crucial for determining tasks solvable by algorithms and exploring AI’s

limits.
Problems: Tasks that are fundamentally unsolvable by algorithmic means, especially in the context

of strong AI.
Computability Theory: The primary task of this theory is to determine which problems can be

solved algorithmically and to study the boundaries of computation. It plays a key role in understand-
ing which tasks are computable and which are not, particularly relevant to developing efficient AI
algorithms.

Problems: In the context of strong AI, a major issue is intractable problems that cannot be solved
algorithmically, such as the halting problem. This imposes fundamental limits on creating a strong AI
capable of solving any task. Other problems, like computing all consequences of complex systems or
handling chaotic dynamics, may also be incomputable within existing algorithmic frameworks.

Stochastic Methods and Random Process Theory: These methods are applied in AI algorithms
to manage uncertainty and noise, such as in Monte Carlo methods and stochastic gradient descent.

Problems: Efficiently handling uncertainty and optimizing random processes under limited re-
sources.

Stochastic Methods and Random Process Theory: Stochastic methods are widely used in AI to
address uncertainty, noise, and probabilistic models. Examples include the Monte Carlo method, used
for numerical modeling of complex systems via random sampling, and stochastic gradient descent
(SGD), applied to optimize parameters in neural networks with large datasets. - Monte Carlo Method:
Employed for numerical simulation of complex systems by generating numerous random samples.
This method is particularly useful when analytical solutions are impossible or overly complex. In
AI, Monte Carlo is used in planning tasks, such as Monte Carlo Tree Search (MCTS) in games and
strategic modeling. - Stochastic Gradient Descent: Used for optimizing models with large datasets.
Unlike classical gradient descent, which updates parameters based on the entire dataset, SGD does so
using random subsets, speeding up training, especially in deep neural networks, and helping avoid
local minima traps. - Problems: - Efficient Uncertainty Handling: Stochastic methods often struggle to
accurately model complex systems, relying on large data volumes or numerous samples, which can
slow training and optimization. Uncertainty in data distribution and structure can lead to significant
prediction deviations and complicate training. - Optimization with Limited Resources: Real-world AI
systems often face computational and memory constraints. Monte Carlo methods demand substantial
computational power for accurate results, especially in high-parameter or complex dynamic tasks.
Meanwhile, SGD can suffer from high volatility, necessitating multiple runs with varying initial
conditions. - Accuracy vs. Speed Tradeoff: Stochastic methods face a dilemma: balancing prediction
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accuracy and computation speed. For instance, increasing Monte Carlo sample sizes improves accuracy
but extends computation time, critical in real-time applications with limited resources and a need for
rapid decisions.

Thus, optimizing stochastic processes under resource constraints remains a key challenge in
applying these methods to AI, especially in systems requiring large data processing or real-time
operation.

Neural Networks and Deep Learning: Deep neural networks are based on multilayer structures
involving linear transformations and nonlinear activation functions.

Problems: The primary issue is the explainability (interpretability) of neural network decisions,
alongside overfitting and generalization.

Neural Networks and Deep Learning: Deep Neural Networks (DNNs) consist of multiple layers,
each performing linear transformations on input data followed by nonlinear activation functions.
These layers enable the detection of complex, multidimensional relationships in data, making neural
networks highly effective for tasks like image recognition, speech processing, and text analysis.

Problems: 1. **Explainability (Interpretability)**: - A major challenge in deep learning is the
lack of transparency in model operation, rendering them "black boxes." With thousands or millions
of parameters, interpreting how deep neural networks arrive at specific decisions is difficult. This
raises trust issues in AI systems, especially in critical applications like medicine or finance, where
understanding the decision-making process is vital. - Methods to address this include: - **LIME** (Local
Interpretable Model-agnostic Explanations): Provides local interpretations for individual predictions. -
**SHAP** (SHapley Additive exPlanations): A game-theory-based algorithm evaluating each feature’s
contribution to a prediction. - **Neuron Activation Analysis**: Visualizing how specific layers and
neurons respond to input data to better understand what the network learns at each stage.

2. **Overfitting**: - Overfitting occurs when a model learns the training data too well, memorizing
its specifics rather than general patterns. This degrades performance on new, unseen data, impairing
generalization. - Strategies to combat overfitting: - **Regularization**: Techniques like L2 regularization
(weight decay) penalize overly large weights, limiting model complexity. - **Dropout**: Randomly
dropping neurons during training to prevent excessive adaptation to training data. - **Early Stopping**:
Halting training when performance peaks on validation data, before overfitting occurs.

3. **Generalization**: - Generalization is a model’s ability to perform well on new, unseen data,
directly tied to the overfitting problem. The goal is to develop models that capture core data patterns
rather than noise or random correlations. - Ways to improve generalization: - **Data Augmentation**:
Generating additional training data through random modifications (e.g., image rotation, noise addition)
to help models learn broader features. - **Simpler Models**: Models with fewer parameters often
generalize better than overly complex ones. - **Cross-Validation**: Techniques like k-fold cross-
validation provide insight into a model’s generalization across different data subsets.

5. The Main Result and Its Consequences
In this section, we present the main mathematical results that could serve as a unified foundation

for overcoming the mathematical problems of AI outlined above. We begin by presenting these results
with an image depicting this function in Figure 1.
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Figure 1. The Riemann zeta function

In [6], Voronin proved the following universality theorem for the Riemann zeta function. Let D
be any closed disc contained in the strip 1/2 < ℜ(z) < 1. Let f be any non-vanishing continuous
function on D which is analytic in the interior of D. Let ϵ > 0. Then there exist real numbers t such
that

sup
z∈D

|ζ(z + it)− f (z)| < ϵ. (1.1)

Voronin mentions in [6] that the analogue of this result for an arbitrary Dirichlet L-function is valid.
In [7], Theorem (Joint universality of Dirichlet L-function):
Let k > 1, and let Z1, . . . , Zn be distinct Dirichlet characters modulo k. For 1 ≤ j ≤ n, let Dj be a

simply connected compact subset of C, and let f j be a non-vanishing continuous function on Dj, which
is analytic in the interior (if any) of Dj. Then the set of all t ∈ R for which

sup
1≤j≤n

sup
z∈Dj

∣∣L(z + it, Zj)− f j(z)
∣∣ < ϵ (3.1)

has positive lower density for every ϵ > 0.
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Constructive Universality of the Riemann Zeta Function, developed in [12,13]: Theorem: Constructive
Universality of the Zeta Function:
Let

...s−n, s−n....s−n+1....s−1, s1, s2....sn.. be the zeros of the zeta function

Im(si) < Im(s) < Im(si+1)

Im(s) = const

Then

sup
s,Imsn<Ims<Imsn+1

| ln(|ζ(s)|)θ(Re(s)− 1/2 − δ)| <
CIm(s)

δ
(1)

and its zeros can be used for global approximation of loss functions and avoiding local minima.
The theorems formulated above open opportunities to consider zeta functions as key points for
analyzing high-dimensional loss function spaces [8]. This will accelerate the optimization process and
achieve better convergence. The critical line and zeros of the zeta function are depicted in Figure 2.

Figure 2. Critical line and zeros of the zeta function
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6. Universality of the Riemann Zeta Function as a Unified Mathematical
Foundation for AI Problems

Consider the first mathematical problem of AI—probability. Naturally, probability theory is a
vast field, but selecting an appropriate measure to describe current processes becomes problematic,
especially under turbulent conditions. We believe that results linking quantum statistics with the zeros
of the zeta function could serve as a foundation for resolving both the turbulence problem and the
task of constructing measures for AI. Such possibilities are provided by the theorems of Berry, Keating,
Montgomery, Odlyzko, and Durmagambetov [2,3,8,12,13].

Replacing random measures with quantum statistics based on zeta function zeros in the context of
AI and Global AI represents an intriguing and profound research direction. This offers a new approach
to modeling uncertainty, learning, and prediction in complex systems.

1. Quantum Statistics and Uncertainty in AI: In modern AI systems, uncertainty is often modeled
using probabilistic methods like Bayesian networks, stochastic processes, and distributions. Quantum
statistics could provide more precise methods for describing uncertainty. The zeros of the zeta function
could serve as generators of statistical measures for complex dynamic systems where uncertainty and
chaotic behavior are key.

The figure reflecting the connection between zeros and quantum statistics is shown in Figure 3,
obtained from [3].

Figure 3. Connection between zeta zeros and quantum statistics

2. Connection to Global AI: The task of building Global AI (AGI) involves creating an AI capable
of solving a wide range of problems at a level far surpassing human intelligence. This requires robust
methods for handling incomplete information and complex dependencies. The zeros of the zeta
function could enhance AGI’s ability to predict chaotic and complex dynamics in real time.

3. Prior Measure for Bayesian AI Systems: Choosing a prior measure in Bayesian AI systems is a
significant challenge. Replacing classical prior measures with a distribution based on zeta function
zeros could improve the determination of initial probabilities under uncertainty, as the measure of
chaos is the distribution of zeta function zeros, as shown in [2,3,8].

4. Quantum AI: Combining quantum computing and AI could significantly accelerate training
and data processing. The zeros of the zeta function could underpin the creation of probabilistic models
in quantum AI, where quantum superposition and entanglement enhance computational capabilities.
For the transition to quantum AI, we propose relying on the results of Berry, Keating, Montgomery,
Odlyzko, and Durmagambetov [2,3,8,12,13], which enable these results to form a robust theory.
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7. Linear Algebra
The primary problem in using linear algebra methods in AI is the growth of data dimensionality.

Within the framework of constructive universality theory, this problem reduces to replacing datasets
with a single point representing the entire dataset. Transformations such as the Hilbert transform or
Fourier transform can be reduced to analytic functions constructively encoded by a single point on the
complex plane, according to Voronin’s universality theorem and implemented in [12].

Differential Equations: Differential equations are used to model dynamic systems like recurrent
neural networks and LSTMs. To study differential equations via the zeta function, consider equations
of the form:

ẏ = Ay + f (y, t)

y
∣∣∣
t=0

= y0

For f ∈ W1
2 (R) = { f ∈ L2(R) : (1 + |ω|2)1/2 f̂ (ω) ∈ L2}, we introduce the operators T± and T as

follows:

T+ f =
1

2πi
lim

Imz↓0

∫ ∞

−∞

f (s)
s − z

ds, Im z > 0,

T− f =
1

2πi
lim

Imz↑0

∫ ∞

−∞

f (s)
s − z

ds, Im z < 0,

yielding:

ṙ± = Ar± + F(r±)

where r± = T±y, and F(r) = T± f (y, t). Using the analyticity of r± and the results of [12,13], we
can formulate:

r± = ζ(z) (2)

ṡ =
Aζ(s) + F(ζ(s))

ζ̇
(3)

s
∣∣∣∣
k=k0

= s0 (4)

We reduce the problem’s solution to constructing the trajectory of the parameter s. Since we
operate between the zeros of the Riemann zeta function, this simultaneously addresses the task of
determining turbulence onset—finding the point where parameter k hits a zeta function zero. This
allows tracking which zero we encounter and understanding the nature of the resulting instability.
This approach provides a significant leap in understanding the nature of phenomena and could serve
as a basis for describing phase transitions, thereby addressing the "black swan" problem.

This method resolves the issue of phase transitions for both AI and technologies for producing
new materials. Additionally, in the context of financial markets, it can describe the "black swan"
phenomenon. In medicine, this approach describes critical health states, while in nuclear fusion, it
helps avoid operational regime disruptions.

8. Information Theory
Information theory evaluates how to encode and transmit information with minimal loss, relating

to entropy reduction and minimizing losses in model training.
Problems: Balancing entropy and data volume when training noisy models is a complex task. The

universality of the zeta function offers a new approach to encoding and decoding data: signals are

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2025 doi:10.20944/preprints202409.2164.v6

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202409.2164.v6
http://creativecommons.org/licenses/by/4.0/


10 of 20

replaced by points on the critical line. This fundamentally changes training technology—instead of
training on large data volumes, the process focuses on key points along the critical line. In regions
near zeta function zeros, training will yield opposite results with minimal data changes.

9. Computability Theory
Computability theory is essential for identifying tasks solvable by algorithms and studying AI’s

limits. Tasks can now be classified for each input dataset located between two zeta function zeros. By
the universality theorem, all datasets transition to points on the critical line. We can observe cyclic
processes or transitions to critical points—zeta function zeros. Process termination may occur either by
approaching a zero or by near-periodicity, according to Poincaré’s theorem and the boundedness of
functions between two zeros. This also precisely describes the problem of phase transitions and the
shift from one stable regime to another via turbulence.

10. Optimization Problems
Local minima and slow convergence in multidimensional spaces pose significant challenges. The

universality of the zeta function and its tabulated values help eliminate these issues, reducing them to
simple computational tasks. Optimizing stochastic processes under limited resources remains a critical
challenge, especially in AI systems requiring large data processing or real-time operation.

11. Neural Networks and Deep Learning
Deep neural networks consist of multilayer structures with linear transformations and nonlinear

activation functions. Multilayer neural networks can be viewed as layered "boxes" constructed from
zeta function zeros. Considering all zeta function zeros yields an infinite-layer neural network capable
of performing Global Intelligence functions. Activation functions can be regarded as phases of zeta
function zeros.

11.1. Understanding Intelligence Through the Zeta Function

Processes described by zeta function values to the right of the line Re(s) = 1/2 in the critical
strip correspond to the observable world. Those described by values to the left are their reflections,
symbolizing fundamental processes influencing the physical world. This symmetry underscores the
zeta function’s importance in understanding AI. AI focuses on prediction, and zeta function values
can be seen as part of this prediction.

Suppose we observe a process occurring simultaneously in the brain (computer, sensor) and
externally. The universality of the zeta function lies in its ability to describe both processes. For
instance, signal registration by sensors and subsequent record decoding can be described via the zeta
function. Interpretation becomes a shift from one point to another on the critical line. Our task then is
to study correlation and attention to these correlations.

11.2. Interpretability and the Future of Global Intelligence

A Global Intelligence will be capable of analyzing and predicting processes based on both explicit
and hidden aspects. The nonlinear symmetry of the zeta function provides a new metaphor for solving
AI interpretability issues, making it more predictable and efficient, as outlined across all aspects of our
study. AI development is directly tied to understanding human intelligence, requiring deep insight
into brain functioning.

We propose that the remarkable symmetry inherent in living organisms may be linked to the zeta
function’s symmetry, representing a computational system that implements prediction mechanisms
through its zeros. Fully decoding the brain’s hemispheres and their connection to zeta function
symmetry seems a natural step toward creating Global Intelligence and understanding both AI and
brain operation.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2025 doi:10.20944/preprints202409.2164.v6

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202409.2164.v6
http://creativecommons.org/licenses/by/4.0/


11 of 20

An example of this process is the visual system’s functioning. Vision is inherently a two-
dimensional sensor system, yet through holographic processing in the brain, it transforms into
three-dimensional images. We suggest that retinal follicles could be interpreted as a natural real-
ization of zeta function zeros. This hypothesis elucidates how information received by the retina is
processed by the brain, synchronized with biorhythms like the heartbeat, which acts as the brain’s
"clock generator."

Thus, the right brain hemisphere processes data tied to the right side of the zeta function’s critical
line, while the left hemisphere handles the left side. This synchronous process forms the perception of
temporal and spatial coordinates, creating awareness of past and present.

Extending this idea about brain operation, we can hypothesize that similar principles govern the
Universe. For instance, black holes might be associated with zeta function zeros, leading to a deeper
understanding of microcosm and macrocosm principles, which humanity has contemplated since
ancient times.

Let us systematize the zeta function by its imaginary parameter and show that it can be interpreted
as temperature.

Abstract: We demonstrate that the energy distribution dependent on temperature matches the
shape of the zeta function’s modulus on the critical line. This observation opens the possibility of a
profound connection between microphysics, statistical mechanics, quantum theory, and analytic num-
ber theory. We substantiate the fundamental unity of temperature and the zeta function’s imaginary
parameter within the critical curve framework and propose a model where the zeta function’s critical
line serves as the boundary between macro- and micro-worlds.

Further reasoning leads us to conclude that the zeta function is the very matrix forming the world.
The Riemann Hypothesis and its connection to quantum mechanics are subjects of active theoretical
research. Specifically, the statistical properties of zeta function zero distributions on the critical line
exhibit behavior akin to energy levels in quantum chaotic systems.

We propose interpreting the imaginary part of the zeta function’s argument as analogous to
thermodynamic temperature.

Energy Distribution and the Zeta Function: In many thermodynamic systems, energy distri-
bution is described by a function where temperature T determines the probabilities of the system
occupying various energy states. Numerical experiments by Odlyzko showed that the distribution
of imaginary parts of Riemann zeta function zeros on the critical line Re(s) = 1/2 exhibits statistics
similar to energy level distributions in quantum chaotic systems, described by Gaussian Unitary
Ensembles (GUE) (Montgomery, Odlyzko, 1973–2000).

Quantum Statistics and Zero Distribution: According to the Hilbert–Pólya conjecture, there
exists a self-adjoint Hamiltonian whose spectrum matches the imaginary parts of zeta function zeros.
Thus, each zeta function zero can be interpreted as a quantum system’s energy state. This idea was
further developed by Michael Berry and Jonathan Keating, who proposed the Hamiltonian H = xp as
a potential model for generating the zeta function zero spectrum.

Critical Line as a Boundary Between Worlds: We propose interpreting the critical line Re(s) =
1/2 as a boundary between the macro- and micro-worlds. Along this line, temperature (the imaginary
part s) governs the transition from quantum states to classical structures. Thus, the zeta function’s
behavior near the critical line may reflect physical transitions and phase changes. Similar ideas are
traced in noncommutative geometry and statistical mechanics in the works of Alain Connes and
Matilde Marcolli (Connes & Marcolli, 2004).

Turbulence and Distribution Evolution: Turbulent systems in physics are described by complex
energy structures. If we accept the zeta function as a generator of energy states, the distribution of
its zeros becomes analogous to the energy density function in a turbulent flow. We hypothesize that
the evolution of the imaginary argument (temperature) determines fluctuations in these systems. The
problem of constructing consistent measures to describe the interaction of current and energy fluctua-
tions in a turbulent medium is a central challenge in turbulence theory. Our hypothesis—interpreting
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temperature as the imaginary part of the zeta function argument—offers a solution by linking quantum
statistics, temperature evolution, and bifurcations, previously considered one of the most complex
unresolved problems in turbulence description.

Information Structure of Physical Reality: As a practical application of this hypothesis, consider
describing plasma processes in the context of nuclear fusion. Plasma in controlled fusion setups
exhibits complex dynamics tied to turbulent fluctuations, energy spectra, and temperature gradient
distributions. We propose that the zeta function’s informational component, described by its imaginary
argument, can be used to build new models for controlling plasma states. The connection between
quantum statistics, temperature evolution, and zeta function zeros enables describing plasma behavior
via energy state distributions. This, in turn, creates a theoretical foundation for developing new
methods to stabilize and control fusion plasma based on analyzing the zeta function’s structure and its
relation to informational transfer and energy mode dynamics.

Continuing this line, we can assert that as temperature changes during nuclear fusion, the plasma
state undergoes a sequence of phase transitions. In this context, zeta function zeros reflect these
transitions and serve as quantitative characteristics of phase states. The primary challenge in plasma
control, in our view, lies in the fact that each phase transition radically alters the physical system’s
description, rendering control effective for one phase inapplicable to another. The need to account for
the structure of phase transitions, reflected in the zeta function zero distribution, constitutes the core
difficulty in managing fusion plasma. Our interpretation provides a tool for describing and predicting
such transitions based on a universal mathematical object—the Riemann zeta function.

Thus, the proposed concept can be applied to describe and potentially control macroscopic
nonlinear processes, particularly in achieving sustainable nuclear fusion.

The alignment between the zeta function and energy distribution suggests a deep informational
component in physical reality. Temperature, as a parameter determining movement along the critical
curve, becomes an indicator not only of energy state but also of the system’s informational content.

Extending our concept, we can assert that as a physical process’s temperature changes, the state
of matter undergoes an infinite number of phase transitions. Here, Riemann zeta function zeros can be
viewed as quantitative markers of these phase transitions. Thus, each phase transition corresponds to a
specific zero, and the set of such zeros describes the system’s full spectral dynamics during temperature
evolution. This assertion reinforces the fundamental link between the zeta function’s analytic structure
and physical reality, encompassing both macro- and microscopic description levels.

We propose interpreting temperature as the imaginary part of the Riemann zeta function argument.
This unifies quantum mechanics, thermodynamics, and number theory within a single conceptual
framework. The critical line becomes the transition boundary between different physical reality levels,
while the zeta function zero distribution serves as a universal model for describing energy, statistical,
and informational processes.

We introduce the function:

S = |ζ(Re + i · Im)| − ln |ζ(Re + i · Im)| − 1

which will explain our reasoning in greater detail based on its behavior and comparison with funda-
mental distributions.

Family of Distributions Generated by the Zeta Function
The function

S(Re, Im) = − ln |ζ(Re + i Im)|+ |ζ(Re + i Im)| − 1

represents a fundamental construct that, by varying the imaginary part Im, yields curves matching the
shapes of key distributions used in statistical physics and quantum theory.
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%
Figure 4. Graphs of S = |ζ(Re + i · Im)| − log |ζ(Re + i · Im)| − 1 at various Im values

Thus, varying the imaginary part of the zeta function argument yields a family of measures
reflecting fundamental physical states—from excited to equilibrium.

Measures Generating Thermodynamics

These distributions derived from the function S possess all the properties of probabilistic measures
used in statistical physics. Moreover, they naturally generate:

• equations of state;
• entropy (as the integral of S);
• energy distribution functions;
• derivatives analogous to heat capacity:

C(Im) =
∂S

∂Im

Thus, the concept of specific heat capacity requires no additional introduction—it naturally
emerges as the derivative of the function S derived from the zeta function.

Universality and Physical Connectivity

Since all these distributions stem from a single analytic object—the Riemann zeta function—they
not only describe known physical processes but also:

• are unified by a common mathematical structure;
• allow extension to new system classes;
• are described by unified equations akin to those in thermodynamics, quantum mechanics, and

field theory.

Formally, each distribution SIm(Re) can be regarded as a thermodynamic potential in the cor-
responding statistical ensemble. Thus, the zeta function acts as a universal generator of physical
measures, encompassing all fundamental distribution types and thermodynamic descriptions.

Let us also establish a comparison with Boltzmann entropy or Planck’s energy spectrum.
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Figure 5. Graph of |ζ(Re + i · 0.5)|. Jump-like features are visible.

Comparison with Boltzmann Entropy

Boltzmann entropy is defined by the classical expression:

SB = kB ln W,

where W is the number of microstates corresponding to a macrostate, and kB is the Boltzmann constant.
The function S based on the Riemann zeta function:

S = − ln |ζ(Re + i Im)|+ |ζ(Re + i Im)| − 1,

also includes a logarithmic term reflecting the entropic component. If we take |ζ(s)| as analogous to
the partition function Z, then:

ln |ζ(s)| ∼ ln Z ∼ entropy.

Thus, S can be interpreted as a generalized entropy, encompassing both an entropic contribution
(via ln |ζ|) and an energetic one (via |ζ| directly).

Comparison with Planck Distribution

The Planck distribution for electromagnetic radiation energy density is:

u(ν, T) =
8πhν3

c3 · 1

e
hν

kBT − 1
.

If we denote Re as analogous to frequency ν and Im as analogous to temperature T, the shape of
the function S(Re, Im) at fixed Im reproduces the Planck distribution’s form by ν: - A characteristic
peak emerges (maximum radiation); - A smooth decline on the right (high-frequency decay); - The
peak shifts with changing Im, akin to Wien’s displacement law.

Conclusion

The function S based on the zeta function:

• incorporates both logarithmic and exponential nature—like Boltzmann entropy and Planck
distribution;

• generates spectra identical to fundamental thermodynamic distributions;
• enables defining a generalized partition function via |ζ|, from which:

Energy U = −∂ ln Z
∂β

, Entropy S = ln Z + βU.

Thus, the zeta function becomes a unified source of thermodynamics, bridging energy distribu-
tions and informational characteristics of physical systems.
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Based on its universality, it naturally and self-consistently integrates with the equations of motion,
which we expressed in simplified form as:

r± = ζ(z) (5)

ṡ =
Aζ(s) + F(ζ(s))

ζ̇
(6)

s
∣∣∣∣
k=k0

= s0 (7)

Electromagnetic fields arise as a consequence of the self-consistency of four flows: positively
charged particles (ρ+, J⃗+), negatively charged particles (ρ−, J⃗−), neutral particles (ρn, J⃗n), and the total
mass flow (ρm, ρmv⃗).

Both of these classes are also self-consistent within the framework of the universality of the
zeta function, which ensures the integrity of the description of the medium’s dynamics. These
considerations about the zeta function and the emergence of self-consistent distributions can be
applied to the equations of electrodynamics. Now we will add another fundamental law — the law of
conservation of electric charge, which in differential form is expressed as follows:

Kinematics

• Positive particles:
∂ρ+
∂t

+∇ · J⃗+ = 0 (8)

• Negative particles:
∂ρ−
∂t

+∇ · J⃗− = 0 (9)

• Neutral particles:
∂ρn

∂t
+∇ · J⃗n = 0 (10)

• Total flow:

∂ρm

∂t
+∇ · (ρmv⃗) = 0, ρm = ρ+ + ρ− + ρn, ρmv⃗ = J⃗ ++ J⃗ −+ J⃗n (11)

Dynamics

• Positive:

ρ+

(
∂v⃗+

∂t
+ (⃗v + ·∇)⃗v+

)
= q + ρ+(E⃗ + v⃗+ × B⃗) (12)

• Negative:

ρ−

(
∂v⃗−

∂t
+ (⃗v − ·∇)⃗v−

)
= q − ρ−(E⃗ + v⃗− × B⃗) (13)

• Neutral:

ρn

(
∂v⃗n

∂t
+ (⃗vn · ∇)⃗vn

)
= 0 (14)

Explanation of Graphs Comparing Function S and Resonance Model

The graphs depict the behavior of the function:

S = − ln |ζ(Re + i Im)|+ |ζ(Re + i Im)| − 1
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at various imaginary part values Im, overlaid with a physical "background + resonance" model. This
allows observing analogies between the zeta function’s mathematical behavior and energy distribution
in turbulent or quantum systems.

Graph at Im = 0.7 (Left)

The graph of S shows a broad peak and smooth decline—corresponding to an excited system
state. The peak can be interpreted as a resonance region with maximum energy absorption or redistri-
bution. The right side of the curve represents a decay and stabilization phase, akin to thermodynamic
equilibrium.

Graph at Im = 0.5 (Center)

A more pronounced dual behavior is evident: an excitation zone with a local maximum and a
sharp decline. This corresponds to a quasi-stationary state where the system begins losing excitation
and entering equilibrium. The "background + resonance" model clearly fits the peak, reflecting local
energy excitation transitioning to equilibrium.

Graph at Im = 0.1 (Right)

The peak is sharp and high—resonance is sharply expressed, like a turbulent burst or phase
transition. This can be interpreted as a moment of critical excitation—turbulence, peak instability, or a
short-lived excited state. The rapid decline post-peak mirrors relaxation.

Graph at Im = 19.75 (Right)

Comparison between the normalized function S(Re, Im = 19.750) (solid line) and the normalized
Kolmogorov energy spectrum E(k) ∝ k−5/3 (dashed line). The close agreement, with RMSE on the
order of 0.01–0.02, reflects a level of precision comparable to empirical observations across physical
domains: (1) laboratory air and water flows, (2) atmospheric turbulence, (3) plasma diagnostics in
fusion devices, and (4) solar wind and interstellar medium measurements. This supports the hypothesis
that S encodes universal spectral behavior relevant for self-consistent measure construction.
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Interpretation

The imaginary part Im acts as a temperature or perturbation parameter: as it decreases, the system
shifts from an equilibrium regime to one of pronounced resonance, similar to quantum or turbulent systems.

The behavior of the S-function resembles energy profiles in quantum physics (e.g., Breit–Wigner
distributions, spectral functions) and energy bursts in turbulent flows.

Conclusion

The function S, based on the Riemann zeta function, naturally reproduces the structure of
resonance curves characteristic of transitional states in physics. This strengthens the hypothesis
of a connection between the zeta function’s analytic properties and universal energy distribution laws
in nature, including:

• quantum mechanics,
• turbulence,
• nuclear fusion processes,
• fluctuations in biological and informational systems.

Thus, we arrive at a unified concept in which solving the turbulence problems in nuclear fusion
and the mathematical challenges related to AI analysis lie on the same plane. The problems faced by
scientists and engineers in these fields intersect at a more fundamental level, where advancements in
one area can contribute to progress in the other. The conceptual unity of these tasks opens up new
prospects for the synthesis of knowledge and technology.

Turbulence in the plasma of nuclear fusion reactors, on one hand, represents one of the major
challenges faced by researchers striving to improve plasma confinement and increase the efficiency of
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nuclear fusion. In existing models based on the Boltzmann equation, this issue faces a serious obstacle:
the closure problem, which leads to a deadlock. The Boltzmann equation describes the evolution of the
particle distribution function, but for a complete description of the system, higher-order moments are
required, which leads to an infinite hierarchy. In the traditional approach, this hierarchy is artificially
truncated, raising concerns about the internal consistency of models and their ability to accurately
predict system behavior.

Figure 6. Graph of |ζ(Re + i · 0.5)|. Jump-like features are visible.

On the other hand, in the concept proposed by us, this closure problem is overcome through the
use of self-consistent measures derived from the zeta function. These measures do not require the
artificial truncation of the hierarchy because they naturally align with the equations of motion for
electron, positron, and neutral gas density, as well as with the equations of momentum conservation.
This avoids the deadlock that the traditional approach encounters and ensures internal consistency
across all levels — from kinetic to hydrodynamic.

The use of the zeta function as a tool for describing and controlling plasma dynamics parallels
approaches used in computational algorithms for artificial intelligence. The zeros of the zeta function,
interpreted as markers of phase transitions, can serve as the foundation for constructing mathematical
models that not only predict plasma dynamics but also guide the computation process in AI. This enables
the joint solution of both nuclear fusion and AI challenges using a common theoretical framework.

Thus, the solution to turbulence problems and the mathematical challenges in AI can be linked
through a common mathematical apparatus. We propose that solving these issues will eventually open
up the possibility of creating "mega-brains" — super-powerful computing systems that can integrate
data from various fields of knowledge and solve humanity’s grand challenges. These systems will
leverage vast resources, including those related to nuclear fusion, enabling the development of AI
capable of addressing tasks that require immense computational power.

These ideas provide the foundation for further research in nuclear fusion, turbulence theory,
and artificial intelligence, and could serve as a starting point for the creation of a new generation of
computing systems focused on solving the most complex problems of modern science and technology.

Previously, analyzing stock market dynamics, biophysical systems, or complex technological
processes lacked consistent measures and tools for quantitatively assessing phase discontinuities.
However, with advancements in our understanding of phase analysis and the emergence of consistent
metrics, it is now possible not only to track but also to potentially manage critical transitions. This
paves the way for more robust models—toward a state conditionally termed a "white swan society,"
characterized by reduced systemic uncertainty.
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11.3. Conclusion

All the results and hypotheses outlined are built upon the fundamental theorems of Voronin’s
universality, the Riemann Hypothesis, Durmagambetov’s constructive universality, and its reduction
of differential equation studies to the zeta function. Additionally, they rely on Montgomery’s key
results, confirmed by Odlyzko, and the potential use of quantum statistics tied to zeta function zeros.
I hope the above forms a cohesive perception of AI developments for readers and provides a new
impetus for advancing efficient AI.

One question remains: how does the initial motion—filling of the zeta function—arise, from
which everything described follows? Naturally, the most significant point emerges: the heartbeat
governs the brain, a crucial fact of launching universality and animating the zeta function, which then
takes over as the most powerful quantum computer, recalculating everything. From where does the
predetermination of all existence arise? As we see, it is encoded in prime numbers, through which the
zeta function is defined, and through the zeta function, everything else is described. Hence, we might
hypothesize that prime numbers are the angels of the Almighty, unchanging and strictly adhering to
divine commandments, while humans are the processes described by these numbers, with original sin
as the initiation of the zeta function into life.

Appendix: Implementation on Python
For reproducibility of the results, the Python code implementing the calculation of the S(T)

function, its derivatives and standard distributions is given below.

Importing libraries

import numpy as np
import m a t p l o t l i b . pyplot as p l t
from mpmath import zeta , ln , mp, d i f f
mp. dps = 50

Function S(T) and its derivatives

def S ( T ) :
s = 0 . 5 + 1 j * T
z = zeta ( s )
abs_z = abs ( z )
return abs_z − ln ( abs_z ) − 1

def dS_dt ( T ) :
return d i f f ( lambda t : abs ( ze ta ( 0 . 5 + 1 j * t ) )
− ln ( abs ( ze ta ( 0 . 5 + 1 j * t ) ) ) − 1 , T )

def d2S_dt2 ( T ) :
return d i f f ( lambda t : abs ( ze ta ( 0 . 5 + 1 j * t ) )
− ln ( abs ( ze ta ( 0 . 5 + 1 j * t ) ) ) − 1 , T , 2 )

Standard distributions

def boltzmann ( E , T ) :
return np . exp( −E / T )

def planck ( nu , T ) :
return ( nu * * 3 ) / ( np . exp ( nu / T ) − 1)
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def kolmogorov ( k , eps ) :
return eps * * (2/3) * k * * ( −5/3)

def obukhov ( k , chi , eps ) :
return chi * eps * * ( −1/3) * k * * ( −11/3)

def lh_model ( k ) :
return np . exp( −k ) * np . s i n (5 * k ) * * 2

Plotting graphs

T_vals = np . l i n s p a c e ( 1 , 50 , 200)
S_vals = [ f l o a t ( S ( T ) ) for T in T_vals ]
S1_vals = [ f l o a t ( dS_dt ( T ) ) for T in T_vals ]
S2_vals = [ f l o a t ( d2S_dt2 ( T ) ) for T in T_vals ]

p l t . p l o t ( T_vals , S_vals )
p l t . t i t l e ( " S ( T ) " )
p l t . show ( )
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