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Abstract: A review of different modelling techniques, specifically in the framework of carbon‐based 

nanomaterials (CNMs, including nanoparticles as graphene and carbon nanotubes—CNTs) and the 

composites  and devices  that  can be derived  from  them,  is presented. The  article highlights  the 

multiscale  nature  of  these  types  of materials  and  systems, which  require  different  approaches 

depending  on  the  type,  size,  internal  structure/configuration  of  the material  and  properties  of 

interest. Far from attempting to cover the entire spectrum of models, this review examines a wide 

range  of  analysis  and  simulation  techniques,  highlighting  their  potential  use,  some  of  their 

weaknesses and strengths, and presenting the latest developments and some application examples. 

Specifically, this paper shows how electronic, atomistic, mesoscopic, continuum and system models 

can be used to study and design CNMs, to predict different properties and responses of materials, 

or even to study devices such as sensors. This review has been performed within the framework of 

COST Action  EsSENce  (High‐performance Carbon‐based  composites with  Smart  properties  for 

Advanced Sensing Applications—CA19118). 

Keywords: carbon; carbon‐based materials; graphene; CNT; nanocomposites; electronic; molecular 

dynamics; continuum models; GFET. 

 

1. Introduction 

Recent  advances  in  analytical  and  computational  modelling  enable  the  prediction  and 

understanding of material properties and responses on scales ranging from the electronic/atomistic, 

through the microstructure or transitional, and up to the continuum (Figure 1). Multiscale material 

modelling is based on a systematic reduction of the degrees of freedom at different length scales in 

which  a material  can  be  described.  Connections  between  these  scales  are  established  either  by 

parametrization, by grouping (i.e., coarse graining) or homogenization procedures. These different 

scales in the description of materials have historically been associated with different disciplines, from 

physics  to  engineering,  including  chemistry  and materials  science  (Figure  1).  Each  scale  can  be 

studied by means of different  types of models  (electronic, atomistic, mesoscopic and continuum), 

which employ distinct basic entities and usually work in different ranges of timescales and number 

of entities (Figure 2). However, the scale and type of model do not have a one‐to‐one correspondence, 

since there are areas of overlapping regarding the models that can be employed for a specific analysis. 
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Figure 1. Multi‐scale materials modelling approach. Discipline vs. Length Scale. 

 

Figure 2. Material models, entity, length scale and time scale [1]. 

This report presents a review of different modelling strategies and methodologies used in the 

field of carbon‐based nanoparticles (graphene, carbon nanotubes—CNTs, nanofibers, etc.), carbon‐

based nanomaterials (CNMs) and devices (such as sensors) that can be obtained from these materials. 

Within  this  framework,  the variety of models, methods  and  applications  is  extremely wide,  and 

getting a full picture in a condensed report is hard‐to‐reach. This review, then, aims to cover some of 

the key modelling approaches usually employed at different length and time scales, ending with a 

discussion on a specific type of sensor, derived from these carbon‐based materials, as an example of 

device‐level modelling. This leads to the four main sections that constitute the present document. 

At the lower scale, the first type of models focuses on electronic calculations, theoretical studies 

of single‐particle and collective excitations. These models are relevant for photonics, plasmonic and 

nano‐electronics applications. At the next level, molecular dynamics (MD) models enable the study 

of  material  properties/responses  that  are  mainly  dominated  by  interactions  between  atoms  or 

molecules, defined through force fields. These models help in predicting mechanical, thermal, surface 

properties, and other physical properties such as density, viscosity, or glass transition temperature; 

they  are  used  transversally  in  the  design  of materials  and  nanocomposites  for  a wide  range  of 
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applications. At the continuum level, modelling is typically employed to predict the macroscopic‐

homogenized properties of materials by considering the constituents as a continuous medium rather 

than  as  discrete  particles.  Compared with  the  latter, MD models  provide  detailed  atomic‐level 

information but are limited to small systems due to computational constraints. Continuum models, 

on  the other hand, can handle much  larger systems but  lack the detailed description of atomic or 

molecular interactions. These models can also be used to predict different types of properties (again 

mechanical, thermal, electrical, acoustic, and other physical properties). Certain kinds of products 

and devices need to be modelled as systems instead, which might require a combination of different 

type  of  properties  and  physics.  Each  system  has  its  own  requirements, which  can  lead  to  the 

integration of different sub‐models. At this scale, as an application example relevant to sensors, this 

review focuses on the modelling and simulation of graphene field effect transistors (GFET) devices 

and circuits. 

This  review  has  been  performed  within  the  framework  of  COST  Action  EsSENce  (High‐

performance Carbon‐based composites with Smart properties for Advanced Sensing Applications—

CA19118), funded by the European Cooperation in Science and Technology (COST). The EsSENce 

COST Action aimed to construct an international scientific & technological innovation hub focusing 

on  advanced  composite materials  reinforced  with  CNMs  for  sensing  applications.  Particularly, 

working group WG5 deals with the modelling of materials and sensing mechanisms, identified as a 

key area to support the development of CNMs, advanced high‐performance composites, and their 

implementation into products and devices. Thus, the objective is to exemplify and promote i) the use 

of  “standard”  or widely  shared modelling  protocols,  or  ii)  the  development/application  of  new 

modelling  approaches.  In  addition,  a  second  goal  is  to  identify  some  of  the  needs  in  this  field, 

considering  both  experimental  characterization  (needed  to  feed  or  validate  the models)  and  the 

modelling perspective. 

2. Theoretical Modelling of Interactions of Charged Particles with Graphene‐Based 

Nanomaterials and Their Composites 

Graphene  is  the best known and  the most explored  two‐dimensional  (2D) material.  It  is  the 

world’s thinnest and strongest material, with the highest electrical and thermal conductivity known. 

Due  to  its outstanding physical, chemical, electrical and optical properties, graphene shows great 

potential in many fields, including sensors. 

In nanoscale devices graphene typically appears in stacks separated by insulating layers of finite 

thickness [2–4], which usually support strong Fuchs‐Kliewer or optical surface phonon modes [5]. 

Those phonon modes are active in the terahertz (THz) to mid‐infrared (mid‐IR) frequency range and 

can dampen the Dirac plasmon in doped graphene which operates in the same frequency range [6], 

or can hybridize with  it  [7]. As a prototype of  layered nanostructures  involving doped graphene 

sheets,  a  sandwich‐like  composite  which  consists  of  two  layers  of  graphene  separated  by  an 

insulating  layer was studied and  it was  found  that  the structure supports a variety of  interesting 

plasmon‐phonon hybrid modes  in  the THz  to mid‐IR  frequency  range  [8]. An  insulating  layer of 

sapphire  (aluminum  oxide, Al2O3) was  chosen  because  it  is  often  used  as  a  dielectric  spacer  in 

experiments  [9–14]. The  effective dielectric  function of  the  system was obtained by using a  local 

dielectric  function  for  the  bulk  Al2O3  and  by  using  two  approaches within  the  random  phase 

approximation for graphene’s electronic response: an ab initio method based on the time‐dependent 

density  functional  theory  calculations  and  a  method  based  on  the  massless  Dirac  fermion 

approximation for graphene π bands. 

The most efficient way to probe the plasmon‐phonon hybridization between graphene and the 

nearby insulator(s) is by means of an externally moving charged particle. Such hybridization has an 

effect on the energy  loss of an incident particle [15], as well as on the resulting wake effect in the 

induced electrostatic potential [16]. The wake potential (the total potential in the plane of the upper 

graphene  sheet)  induced by  an  external  charged particle moving parallel  to  the graphene‐Al2O3‐

graphene  composite  system  (Figure 3) was  investigated  in Ref.  [17]. The distance of  the  charged 

particle from the top graphene, the thickness of the Al2O3 layer, and the doping density (i.e., Fermi 
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energy) of graphene were fixed at their respective typical values. The effects of variations of all those 

parameters were studied in Ref. [18]. 

 

Figure 3. Material Diagram of  the graphene‐Al2O3‐graphene heterostructure with point charge Ze 

moving with constant speed v at a fixed distance above the top graphene. 

The plasmon‐phonon hybridization also has an  impact on  the stopping  force (the dissipative 

force  which  opposes  the  particle’s  motion)  and  the  image  force  (the  perpendicularly  oriented 

conservative  force which  bends  the  particle’s  trajectory  towards  the  upper  graphene  sheet).  A 

thorough analysis of  the  stopping and  image  forces on a charged particle moving parallel  to  the 

graphene‐Al2O3‐graphene  composite  was  performed  in  Ref.  [19],  covering  broad  ranges  of  the 

particle speeds and distances, as well as the doping densities of the two graphene sheets. It should 

be noted that the stopping force is the negative of the usual stopping power, whereas the image force 

is related to the familiar image potential. 

Note  that  the wake  effect  and  the  stopping  and  image  forces were  previously  investigated 

theoretically in free‐standing and supported graphene [15,16,20–39]. 

In the last few years van der Waals (vdW) heterostructures based on graphene and hexagonal 

boron nitride  (hBN)  layers with different  stacking modes  have  attracted  a  great deal  of  interest 

because of their potential applications [40–48]. Graphene/hBN vdW heterostructures were studied 

very recently in Refs. [49,50]. 

Electron  energy  loss  spectroscopy  (EELS)  is  a  commonly  used  experimental  technique  for 

investigating electronic and plasmonic properties of 2D materials and vdW heterostructures [51–53]. 

Theoretical modelling  of  the  experimental  EELS  data  for  free‐standing  (single  and multilayer) 

graphene sheets obtained by (scanning) transmission electron microscope is presented in Refs. [54–

57], whereas  the  theoretical modelling  of  the  experimental  EELS  data  for monolayer  graphene 

supported by different substrates is given in Refs. [58–61]. 

Acoustic plasmon (AP) in graphene or in graphene‐dielectric‐metal structure has been studied 

very intensively in the last few years [62,63]. In Ref. [64] the authors focused on the AP in graphene 

doped by alkali metals and demonstrated  that  two  isoelectronic  systems, KC8 and CsC8,  support 

substantially different plasmonic spectra: the KC8 supports a sharp Dirac plasmon (DP) and a well‐

defined AP, while the CsC8 supports a broad DP and does not support an AP at all. These findings 

could be very useful in the area of chemical or biological sensing [65,66]. 

3. Molecular Dynamics Applied to CNM Properties Prediction 

Molecular Dynamics  (MD)  is a computational method to simulate the behavior of atoms and 

molecules over time. In an MD simulation, the trajectories of atoms (considered as rigid spheres) and 

molecules are determined by numerically solving Newton’s equations of motion. Forces between 

particles are calculated by exploiting calibrated interaction potentials (force fields), and from these 

forces the accelerations, velocities, and subsequent positions of the atoms are determined [67]. For 

materials science, MD provides detailed insights into phenomena that would otherwise be difficult 
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to observe directly, such as diffusion, phase transitions, interfacial effects, and mechanical behavior 

at the nanoscale. 

One of the key aspects of MD simulations lies in the force fields, which are mathematical models 

used  to  calculate  interactions  between  atoms  due  to  the  presence  of  covalent  bonds  (bonded 

interactions) and electrostatic forces (Coulomb/Van der Waals, non‐bonded interactions) [68]. In MD 

simulations of CNMs, some specific force fields have gained prominence [69]: 

 The Adaptive  Intermolecular Reactive Bond Order  (AIREBO) potential  is  tailored  for carbon 

systems and describes long‐range van der Waals interactions and torsional effects. It is versatile 

for modelling both sp2 and sp3 hybridized carbon structures [70]. AIREBO might not perform 

well  for systems with  significant charge  transfer or  in  the case of  interactions with elements 

outside its parameterization. 

 Tersoff potential considers both the distance between atoms (bond  lengths) and their relative 

orientation (bond angles) to provide a detailed representation of the complex interactions that 

occur  in  carbon‐based materials  [71].  This  potential may  not  be  ideal  for modelling weak 

interactions,  and  it  might  require  recalibration  for  systems  different  from  its  original 

parameterization. 

 ReaxFF is a reactive force field capable of simulating bond formation and breaking during MD 

simulations.  This  dynamic  nature  is  achieved  by  not  predefining  specific  bond  types  but 

allowing the system to evolve based on atomic positions and interactions. Due to  its reactive 

nature,  ReaxFF  can  be  computationally  demanding.  It  also  requires  careful  system‐specific 

parameterization to ensure reliable results, e.g., in the case of condensed carbon phases [72]. 

 Machine  Learning  (ML)  interatomic  potentials  differ  from  traditional  ones,  as  they  do  not 

depend on  fixed mathematical  formulas.  Instead,  they  learn  representations of  the potential 

energy  surface  of  the  system  through  trainings  based  on  lower‐scale  simulations.  Several 

implementations for certain carbon forms with near DFT‐level accuracy have been reported in 

the  literature,  e.g.,  Gaussian  Approximation  Potential  (GAP)  [73],  hybrid  neural  network 

potential [74], GAP‐20 potential for various crystalline phase of carbon and amorphous carbon 

[75]. Furthermore, MACE—a  transferable  force  field  for organic molecules created using ML 

trained on  first‐principles  reference data—was  recently  implemented  [76]. Despite  the good 

accuracy  of  current ML‐based  force  fields  in predicting  the properties  of  carbon  allotropes, 

various challenges still exist, especially regarding the description of mechanical properties and 

the curation of reliable training datasets. 

MD is well‐suited for investigating various properties of CNMs and composites made thereof 

[77]. The mechanical properties of  these materials,  for  example,  can be determined  through MD 

simulations that allow the stresses and strains experienced by the system to be evaluated [78]. In these 

tests, a strain is systematically applied to the system, and the resulting stress responses of the material 

are  recorded,  thus  providing  information  on  its  elastic  constants,  tensile  strength,  and  potential 

fracture points [79]. For instance, simulations of cellulose nanocrystal‐graphene composites revealed 

enhanced mechanical  properties  due  to  covalent  bonding  and  van  der Waals  interactions  [80]. 

Similarly, MD analyses of single‐walled carbon nanotubes  (SWCNT) have demonstrated Young’s 

moduli  in agreement with experimental values, showcasing  their exceptional mechanical strength 

and stiffness  [81]. However,  these simulations  face some challenges, as  the simulated strain  rates 

should be much higher  than  those  typically  found  in experimental setups  to provide meaningful 

results in a feasible computational time. Another technique for analyzing the mechanical properties 

of a material is nanoindentation, which involves the simulation of a virtual indenter pressing on the 

surface  and  allows  the  hardness  and  localized  stress  response  to  be  derived  [82].  For  example, 

nanoindentation MD simulations on polymer nanocomposites highlighted the effect of nanoparticle 

interactions and temperature on mechanical reinforcement [83] The results, though, can be influenced 

by the chosen shape of the indenter and the interaction potentials utilized. Pull‐out tests simulations 

[84]  and density profile  analysis  [85], on  the  other hand,  are  valuable  aids  in  characterizing  the 

interface region between a CNM and the surrounding environment (e.g., the polymer in the case of 

composites),  which  is  a  key  interaction  region  that  strongly  determines  the  properties  of  the 
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composite material. These  analyses provide useful  insights  into  the mechanisms of  load  transfer 

through materials and interfacial adhesion behavior. 

The thermal properties of CNMs can be explored using various protocols [86,87]. In the Non‐

equilibrium  Molecular  Dynamics  (NEMD)  technique,  for  instance,  a  temperature  gradient  is 

established within the simulation domain, thus enabling the calculation of thermal conductivity [88]. 

NEMD was employed  to calculate  the  thermal  conductivity of multi‐walled CNTs with different 

geometrical features, such as diameter, length, chirality, and number of walls [89]. Still, this method 

entails  an  issue,  as  the  artificial  imposition  of  a  gradient might  not  realistically  replicate  actual 

experimental  scenarios.  The  Equilibrium  Molecular  Dynamics  (EMD)  method  offers  another 

approach,  relying on  the  analysis of heat  current  fluctuations within  a  system  at  equilibrium. A 

notable  example  involves  the use  of EMD  simulations  to determine  the  thermal  conductivity  of 

graphene nanoribbons [90]. By employing the Green‐Kubo method, researchers studied the effects of 

ribbon width,  edge  roughness,  and  hydrogen  termination  on  thermal  conductivity.  The  results 

showed that smooth edges yield the highest conductivity, while edge roughness significantly reduces 

it. However, EMD often requires extended simulation times. Another critical thermal property that 

can be computed by MD simulations is the thermal boundary resistance (TBR, also known as Kapitza 

resistance, originating from phonon scattering in the presence of defects or interfaces) [91]. As carbon 

nanomaterials  are  often  embedded  into  other  materials  (e.g.,  polymeric  matrices,  fluids), 

understanding the efficiency of heat transfer across these interfaces becomes vital [92]. Both NEMD 

and EMD protocols offer quantitative  insights  into this property. Furthermore,  theoretical models 

such as the Acoustic Mismatch Model and the Diffuse Mismatch Model, informed by inputs from 

MD simulations, provide complementary perspectives on TBR [93]. 

For thermodynamic properties, MD simulations lean on specialized techniques, like free energy 

calculations. Properties such as adhesion can be probed using advanced sampling methods, such as 

umbrella sampling and metadynamics [85], but these techniques often require care in choosing the 

force  field  and  can  be  computationally  burdensome.  The  wetting  properties  of  CNMs  are 

fundamental as well for optimizing their performance in suspensions and composites. Wettability, 

quantified by  contact  angle measurements,  can  indeed  affect  the dispersion of CNMs  in various 

solvents, along with  the ability of polymers  to  spread and adhere  to CNMs  thus  influencing  the 

mechanical and thermal properties of the composite [94]. At the atomistic level, two main approaches 

are  used  to  measure  the  contact  angle.  The  free  energy  perturbation  (FEP)  method  involves 

calculating the free energy changes to determine the interaction parameters between a liquid and a 

surface  [95].  This  approach  allows  the  interaction  parameters  to  be  calibrated  and  the work  of 

adhesion and friction coefficients to be evaluated. In the second method, called the droplet method, 

a liquid droplet is placed on the tested surface and allowed to relax until equilibrium is reached [96]. 

The  contact angle  is  then measured by analyzing  the  shape of  the droplet along  the  three‐phase 

contact  line [97]. The  latter approach  is widely used  to study  the effects of surface roughness and 

interfacial properties. For  instance, MD simulations revealed  that difunctional epoxy and cyanate 

ester resins exhibit high wettability on CNT surfaces, while polyether ether ketone resins show poor 

wetting properties [98]. Graphene oxide, due to its hydrophilic functional groups, generally offers 

better wettability than pristine graphene, improving dispersion and interfacial bonding in polymer 

matrices  [99].  Additionally,  carbon  nanoparticle  coatings  synthesized  through  controlled  flame 

deposition  can  be  tailored  from  hydrophilic  to  superhydrophobic  states  by  adjusting  synthesis 

conditions, which optimize surface interactions and enhances composite performance [100]. 

Other  type of properties  that can also be studied  through MD models are  the dielectric ones 

(dielectric constants, relaxion) using specific approaches as the dipole moment fluctuation method 

[101]. 

While offering mechanistic insights into the properties and behavior of CNMs, MD simulations 

do not lack challenges. For instance, MD approaches typically operate within specific temporal (fs to 

μs) and spatial (nm to μm) scales, and phenomena outside these scales might not be detected and 

analyzed effectively [102]. Moreover, the choice of the force field can significantly impact the results, 

as not all force fields describe the intricate interactions in nanomaterials with the same accuracy [103]. 
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Furthermore,  high‐resolution  simulations,  especially  those  involving  long  timescales  or  large 

systems,  can  be  computationally  demanding,  requiring  substantial  resources  and  time.  The 

imposition of periodic boundary conditions, instead, can lead to artifacts in the results, especially if 

the size of the simulated system is not large enough compared to the phenomena under observation 

[104]. Finally, the rates used in simulations (e.g., thermal or mechanical ones), due to computational 

constraints, often exceed experimental rates, potentially leading to discrepancies between numerical 

and experimental data [105]. 

Looking ahead, the MD research landscape on CNMs presents promising prospects [106]. One 

of the most significant improvements in recent years has been the development of enhanced force 

fields.  Ongoing  research  in  this  area  aims  to  refine  these  force  fields  specifically  for  carbon 

nanomaterials, with the goal of increasing the accuracy in predicting their properties. Moreover, the 

growing popularity of multiscale modeling as a robust approach offers significant opportunities: by 

linking/coupling MD with other simulation methodologies, such as electronic, mesoscopic and/or 

continuum models [107], researchers aim to bridge the spatiotemporal gaps between scales. Yet, one 

of the most transformative shifts  in the field of molecular dynamics  is probably the integration of 

data‐driven  approaches within MD  simulations.  The  support  of machine  learning  and  artificial 

intelligence is not merely augmenting computational efficiency, but it is reshaping the paradigms of 

simulations.  These  tools  offer  optimized  parameter  selections,  predictive  capabilities,  and  the 

prospect  of  devising  new  force  fields.  Lastly,  shared  efforts  between  experimentalists  and 

computational  researchers  are  fostering  iterative  refinements  in  simulation methodologies.  This 

synergy  is guiding MD studies closer  to experimental observations, ensuring a more harmonized 

understanding of CNMs. 

 

Figure  4.  Examples  of  atomistic models  used  to  study  carbon  structures.  (A)  Epoxy  resin  boxes 

reinforced  by  (a)  5  single‐walled  carbon  nanotubes  (SWCNTs)  and  (b)  one  SWCNT  [87].  (B) 

Dislocation formation during stretching simulation of a graphene oxide nanoribbon model [78]. (C) 

Investigation  of  the  thermal properties  of  (a)  SWCNTs,  and  (b) double‐walled  carbon nanotubes 

(DWCNTs) composed of two coax‐ial SWCNTs [88]. (D) Effect of surface wettability on heat and mass 

transfer at the interface between water and CNTs [93]. 
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4. Continuum Models 

At the next level within the multiscale materials modelling framework, continuum models are 

powerful  tools  for  predicting  the  properties  of  nanocomposites.  These  models  consider  the 

microstructure of the nanocomposite, including the size, shape, and distribution of the nanoparticles, 

to predict the macroscopic‐homogenized properties of the material. Continuum models can be used 

to predict different types of properties or responses: mechanical, thermal, electrical, acoustic, among 

other physical properties. 

There are basically three types of continuum models: analytical, semi‐analytical and numerical. 

The most common analytic models used for nanocomposites are based on the early work of Eshelby 

on ellipsoidal inclusions on an infinite elastic matrix, such as the relevant Mori‐Tanaka’s mean field 

approach, which introducing as a hypothesis that each particle sees as far field the average matrix 

strain,  allowed  the  application  to  non‐diluted  concentrations,  calculating  the  properties  of  the 

composite by a physical combination of the properties of the nanoparticles and the matrix, weighted 

by their respective volume fractions. Other type of analytical models are the self‐consistent models 

(SCM), where each nanoparticle  in the nanocomposite  is embedded  in a matrix  that has the same 

properties as the nanocomposite itself (this leads to a system of coupled equations that must be solved 

numerically);  In  general,  these  models  can  be  solved  relatively  quickly  compared  with  other 

approaches, making them useful for initial approximations and quick calculations. Despite this, as it 

is  reported  later, more  and more  advanced models  are  being  developed  attempting  to  capture 

complex geometric and material aspects. There are hundreds of works in the literature applying these 

models  to  determine  standard  fiber‐based  composites  properties  first,  and  later  applied  also  to 

nanocomposites,  for example considering  the matrix‐particle  interphase as a  third material phase 

constituent. In this sense, interesting references comparing/reviewing all these methods are the article 

of Y. Wang and Z. Huang [108], the chapter of Yehia A. Bahei‐El‐Din about Averaging Models of 

Fibrous Composites in [109], and the recent publication of A. Elmasry, W. Azoti, S. El‐Safty and A. 

Elmarakbi that presents a review comparing different models for effective properties calculation of 

nano‐  and  micro‐composites  [110].  Works  focused  on  mechanical  properties  include:  i) 

nanocomposites’ stiffness prediction (i.e., response in the elastic range), as the research done by M.M. 

Shokrieh, M.  Esmkhani,  Z.  Shokrieh  and  Z.  Zhao  for  an  epoxy  resin modified with  graphene 

nanoplatelets [111], the work presented by A. Chiminelli and M. Laspalas for an epoxy resin modified 

with  MWCNTs  [112],  the  work  of  A.  Singh  and  D.  Kumar  studying  the  influence  of  the 

functionalization of graphene nanoplatelets in the elastic properties of a modified polyethylene [113] 

or a more recent work of D. Shin, I. Jeon and S. Yang for graphene modified PET [114]; ii) non‐linear 

behavior and  strength predictions of CNMs, as  the approach proposed by  J. Nafar Dastgerdi, G. 

Marquis  and M.  Salimi  introducing  interfacial damage/debonding  processes  in CNTs  reinforced 

polymers [115] or the model developed by W. Azoti and A. Elmarakbi applied to a graphene platelets 

GPL‐reinforced polymer PA6 composite (Generalized Mori‐Tanaka) [116]. Other works/studies can 

be found about the utilization of this type of analytic approaches to develop more advanced models 

introducing viscoelasticity [117] or creep effects [118], among others. Overall, good correlations with 

experimental  results  are  obtained  for  the  elastics  properties  especially  at  low  nanoparticles 

concentrations, while at higher concentration more significant deviations are usually observed. This 

is generally explained due to interactions between the nanoparticles at high contents that produce 

non‐homogeneous dispersions and agglomerations. For predictions in the non‐linear regime and in 

terms of strength, it is generally seen that the results are strongly dependent on the particle/polymer 

interface representation and on the aspect ratios of the particles. This also observed in the modelling 

of other type of properties of nanocomposites (thermal, electrical, acoustic…). For example,  in the 

work published by J. Shao et al. [119] for predicting dielectric properties of polymers modified with 

nanoparticles, the Knott model was modified with the Tanaka formula for hybrid particles to take 

into consideration the interphase region. Obviously, the issues mentioned at high concentrations are 

also  present  in  these  cases.  Apart  from  this,  these  models  are  valuable  to  evaluate  different 

functionalization of carbon‐based nanoparticles. 
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In addition to the models mentioned above, some semi‐empirical analytical models are also well‐

known for composites, starting with the classical rule of mixture, evolving to Chamis’ model and the 

Halpin–Tsai’s model  (as a simplified version of  the SCM), and  leading  to more advanced models 

introducing (again) elastoplasticity (approaches to yield stress and linearization methods [108]). The 

Halpin–Tsai  approach  for  aligned  reinforcement  has  been  employed widely  for  the  analysis  of 

graphene‐based nanocomposites  [120].  In  this sense, works as  the ones developed by Weon et al. 

[121], Chong et al.  [122] and Zarasvand and Golestanian  [123] can be highlighted.  In  the  last,  the 

nonlinear tensile stress‐strain behavior of randomly‐distributed graphene nanocomposites have been 

obtained, presenting a good correlation with experimental results in the whole range of the stress‐

strain curves. In a work published by M. Yang et al. [124], the Halpin‐Tsai model was adapted to 

quantitatively characterize  the effect of  temperature on  the yield strength of nanofiller‐reinforced 

polymer‐matrix  nanocomposites.  Compared  with  the  classical  ones,  the  model  showed  better 

agreement with the available experimental data from sub‐zero temperature to the full glass transition 

region.  Progressing  with  elastoplasticity,  several  Non‐linear  Mean  Field  Methods  have  been 

developed from the elastic ones, the Tangent and Secant approaches being the most known. Some 

reference publications implementing these methods are the ones of Doghri [125,126]. An advantage 

of  these models  is  the  straightforward  implementation. They  also  allow  to  study more  complex 

loading cases than other models, including cyclic loads. 

Semi‐analytical methods are based on global constitutive equations that are evaluated from the 

local scale using analytic/explicit relations that link the microscopic and the macroscopic properties. 

Analytical  relations  are  usually  dependent  on  mean  field  procedures.  The  best  known  is  the 

Transformation  fields  analysis  (TFA).  It  connects  analytical  and  computational  approaches  by  a 

computational  evaluation of  the  localization operators. The main  concept  is  replacing  the plastic 

strain field with piecewise uniform fields to reduce the number of macroscopic  internal variables. 

Thereby, a set of reduced constitutive relations for  the heterogeneous material can be established, 

leading to a computational time reduction compared to full numerical models [110]. Reference works 

of this type of model are the ones published by Dvorak [127,128]. A more recent work published by 

I.Al. Khattab and M. Sinapius present an  interesting  implementation of  the TFA model as a user 

routine  integrated  into RVE‐micro  scale model  [129]. The  results  reveal  that  the TFA  is a proper 

method for solving inelastic deformation and other incremental problems in heterogeneous media 

with many interacting inhomogeneities on a nanoscale level. 

Finally, numerical continuum micromechanics models, such as the finite element method (FEM), 

are  considered  also  powerful  approaches  for  CNMs  modelling.  In  numerical  approaches,  an 

acknowledged  constitutive model  (elasticity,  viscoelasticity,  elastoplasticity,  viscoplasticity…)  is 

assumed in a Representative Volume Element (RVE) to induce an explicit macroscopic model. On 

one  hand,  these  models  allow  to  introduce  more  accurate  description  of  the  materials  nano‐

morphology  [130].  This  is  one  of  the  limitations  of  analytic  models,  that  usually  require  an 

idealization of the nanoreinforcements’ shape, representing them as discs, cylinders or spheres. On 

the other hand, these models allow to introduce complex nonlinear multi‐phase material behaviors. 

The main disadvantages of finite elements are computational costs, size dependency of the results 

and limitations in the development of RVEs with high inclusions volume concentrations and aspect 

ratios. 

RVE based models apply to statistically homogeneous materials. They can be used as repeating 

unit  cell  (RUC) when  the  (nano)composite  has  a  periodic microstructure.  Sufficient  number  of 

randomly  distributed  fibers  or  particles  to  be  contained  in  the  RVE  is  needed  so  that  the 

microstructure of a composite could be reflected precisely [108]. This is also linked with the size of 

the volume studied. Various works reflect the importance of defining a proper RVE size [131]. In this 

sense,  it  happens  that  a  larger  RVE  size  gave  better  prediction  accuracy  but  resulted  in  lower 

computational efficiency. Finally, the boundary conditions are a critical aspect in RUC models, and 

they have  to be defined  carefully  to  represent properly  the  effect of  the  reinforcements/particles 

distribution patterns and the loads applied. 
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Some first reference publications that can be found about RVE and FEM to estimate properties 

of polymer nanocomposites are the works of Liu and Chen [132,133]. Particularly, they studied the 

elastic properties of CNT‐reinforced polymers. Chwał and Muc [134,135] applied a similar approach 

with  various  boundary  conditions  to  calculate  the  mechanical  properties  of  SWCNT‐polymer 

nanocomposite. More recent works present a combination of this type of FE continuum models with 

MD,  in  similar way  to  the multi‐scale  framework presented  in  this  report. For example,  recently 

Barakat et al. published an article where the distribution of mechanical properties of graphene‐based 

polymer nanocomposites is computed using a micro‐meso up to macro hierarchical computational 

approach employing non‐equilibrium atomistic MD simulations and continuum FE models [136]. In 

the same  line,  the work published by Muhammad et al. can be highlighted  [137], where not only 

mechanical  but  thermal  properties  are  predicted  for  graphene‐reinforced  epoxies.  For  SWCNT‐

polymer  nanocomposites, Malague  et  al.  proposed  a  procedure  to  assess  size  effects  using  the 

atomistic simulations and equivalent continuum model with a large number of CNTs [138]. 

Elastic  RVE/RUC models  can  be  extended  to  nonlinear  cases,  providing  that  the  nonlinear 

constitutive laws for the constituents are available. For example, based on a three‐dimensional RVE 

model, Yuan  and Lu  [139]  conducted  a  numerical  investigation  on  the  elastoplastic  behavior  of 

carbon nanotubes (CNTs) reinforced polymer composites. A. Zarasvand et al. [140] also conducted 

experimental, numerical, and micromechanical studies to determine the nonlinear behavior of CNT‐

reinforced polymer. When non‐linear constitute behaviors are considered, FEM approaches become 

computationally consuming. To address  this  limitation, several numerical strategies with reduced 

computational effort have been developed. Examples are the Voronoi Cell Finite Element Method 

(VCFEM)  [141,142],  the Generalized Method of Cells  (GMC)  [143], and  the Finite Volume Direct 

Averaging Micromechanics (FVDAM) [144–146]. 

 

Figure 5. Examples of continuum models  to study CNMs. A) Mean  field homogenization scheme 

[112], B) Combined FE and analytic Mori‐Tanaka models  for CNT reinforced polymer  taking  into 

account  viscoelastic  properties  [117],  C)  Utilization  of  Halpin–Tsai  approach  for  Graphene 

Nanoplatelet reinforced epoxy [123] and D) REV/FEM models analyses considering elastoplasticity 

for wavy and random CNTs distribution in nanocomposites [139]. 

5. CNM Devices—Graphene Field Effect Transistors 

When we arrive to discuss carbon nanomaterial devices that can be considered mature enough 

to be used in sensing systems, one of the most used configurations is based upon graphene field effect 

transistors (G‐FET). High frequency applications have been in a first time a major goal for this class 

of  devices,  and  a  series  of  interesting  results  reporting  the  fabrication  of  research  level  devices 
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working in the GHz domain were published in the 2010’s years [147–150]. Anyway, the problems 

that were  initially addressed for the graphene transistors to replace silicon MOSFET as the choice 

alternative for commercial high‐performance logic and high frequency electronics [151], prevented 

until now their large‐scale adoption for this class of applications. 

As  a  follow up,  the  intense  research work  realized during  these  years  has produced many 

interesting results, experimental and theoretical as well, that have permitted a good insight into the 

physic mechanism  of  the  GFET  structures,  paving  the way  to  the  definition  of  an  application 

playground in the biosensing domain, avoiding the HF requirements of a G‐FET based ASIC project. 

A nice summary of the present state of this approach can be found in the recently published review 

paper  of  S.  Szunerits  [152].  According  to  the  authors  not  only  graphene  is  proposed  for  FET 

biosensing applications, but also other 2D materials  like metal dichalcogenides, hexagonal boron 

nitride  or  black  phosphorus  have  been  investigated  for  FET  gate‐channel  technology.  Indeed, 

graphene maintains  his  position  as  a  first‐choice material  commercial  applications  for  low  term 

potential. 

Although it  is not currently available on the market, it may be foreseen that the use of GFET 

circuitry will soon find commercial application in wearable flexible sensing systems [153], in Point‐

Of‐Care systems [154,155], and even in skin bioelectronics for health monitoring [156] exploiting its 

mechanical/electrical  properties  together  with  biocompatibility  characteristics.  Advanced 

experimental results in this field have been recently presented for applications of major interest, like, 

for example, cancer monitoring  [157], COVID19 screening  [158] or glucose monitoring  in diabetic 

patients [159]. 

While  no  clinical  validation  has  yet  been  performed,  the  proposed  technology  for  these 

important biomedical playgrounds has been fully demonstrated in laboratory environment. The next 

step still needed  for allowing the  fabrication of  large‐scale point‐of‐care biosensing systems  is the 

definition of a reproducible fabrication process, integrated with standard silicon CMOS technology. 

Once some variability can be expected from the fabrication condition, modelling and simulation will 

play a major role in the G‐FET circuitry design. Looking at the recent past, modelling and simulation 

of  GFET  device  and  circuits,  in  a  variety  of  configurations  has  certainly  given  an  important 

contribution to the actual advanced state of the art for design and fabrication. 

Regarding  the  electrical properties,  a model  to  calculate  the DC  characteristics of  large‐area 

graphene  field‐effect  transistors was presented  initially by Thiele and Schwierz  [160]. This paper 

opened the door to the heuristic approach of correlating the experimental results with the specific 

characteristics of the graphene material, like the sheet carrier density and transport properties. More 

specifically, the Thiele&Schwierz model suc‐cessfully describe the experimental DC behavior of the 

drain current (Id), as a func‐tion of the Drain‐Source Voltage (Vds), for different Gate Source voltage 

(Vgs), using a reduced set of parameters about the device geometry like the gate length (L) and width 

(W), the insulator thickness (tox), drain and source contact resistances (Rs, Rd), together with material 

properties  like charge mobilities  in  the graphene channel, sheet carrier density, carrier saturation 

velocity. 

As a general description, a G‐FET has a  structure  that  can be  thought  similar  to a  thin  film 

transistor (TFT), where the 2D graphene layer is used for channel forming. The traditional approach 

for  the  electrical  simulation of  semiconductor FET devices  is based on  the drift‐diffusion model, 

including  the  Poisson  equation  [161].  Following  an  approach  similar  to  the  one  proposed  by 

Thiele&Schwierz,  yet  including  the  standard  drift‐diffusion  approach,  a Verilog  compact model 

suitable for circuit level design model based of the drift and diffusion scheme has been presented and 

made freely available by Landauer [162]. The main problem for the direct application of this model 

to  the G‐FET structure  is  the definition of  the charge mobility value,  that  in a 2D material can be 

largely affected by the presence of impurities, lattice defects and substrate quality. A nice approach 

to this problem was recently described by Nastasi [163]. They describe extensively the physical and 

numerical model,  including the model for the mobility and its dependence on the applied electric 

field, and the results obtained on a top gate configuration described by a 2D geometry. 
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The  approach directed  to modelling  the  behavior  of  the device when  embedded  in  a more 

general circuit is of major importance when the target application is related to the sensing of some 

specific  bio‐element.  From  this  point  of  view,  the  correlation  between material  properties  and 

electrical behavior and output extraction  is  the main objective of any modelling  task. The G‐FET 

structure better suited for targeting the sensing of biomolecules (such as proteins and nucleic acids) 

in biological  fluids,  is  the  co‐planar and  liquid‐immersed‐gate  configuration, which  is  effectively 

largely preferred in biological G‐FET design. This configuration overcomes the standard top‐gate or 

bottom‐gate  inherited by  the  flat panel semiconductor  industry and presents a new challenge  for 

modelling and simulation approach. The main results of this activity have the production of G‐FET 

models suitable to be used in a circuit simulator, to support the fabrication of complete G‐FET based 

circuit  for biosensing applications. A dual gate G‐FET model  for circuit simulation, suitable  to be 

used  for  biosensing  use, was  presented  by  Umoh.  The main  value  of  this model  is  the  direct 

application in a SPICE implementation, in a traditional configuration settling on standard FET SPICE 

model parameters, used  internally  to  calculate  junction  resistances  and  capacitances. Within  this 

context, Jmai [164] presented a model freely distributed in its MATLAB and Verilog implementation, 

allowing the user to select an appropriate topology for a system‐level design suitable to be used in 

real life applications. Once again, the charge mobilities are a main parameter that need to be assessed 

as a function of the fabrication condition. As already mentioned, considering the multiscale concept, 

these models at system  level can be  fed with results obtained  from models at  lower scales,  in the 

specific case of GFETs for example to determine the dielectric properties that are required. In this 

way, the nanocomposite properties can be investigated and designed with MD or continuum models 

and these results can be introduced in the transistor model for device optimization. 

As a matter of fact, from the biosensing point of view, it is possible to assume that the presence 

of the target bio‐element on the graphene surface would be the main driving cause for the mobility 

fluctuation, and the correspondent variation of the drain current of the transistor. This observation 

focusses the modelling attention on a differential current extraction, targeting the information about 

the presence of the biomarkers,  instead that  the mobility value  itself. The model for the dual gate 

configuration is directly extendible to the liquid gate configuration, and from a high‐er‐application‐

level approach, Fuente‐Zapico has adapted the Synopsys Sentaurus Commercial TCAD suite for the 

simulation of a liquid gate graphene field effect transistor, GFET, used as antibody‐based biosensor 

[165].  In  this  work  the  authors  have  successfully  included  the  liquid  electrolyte,  the  antibody 

functionalization of the graphene surface and the biomarkers trapping effects, reporting application 

driven parameters to the current‐voltage characteristics, calculated in a standard commercial device‐

circuit simulator. 

As a bottom line, it must be outlined that The Graphene Flagship’s 2D Experimental Pilot Line 

(2D‐EPL), has been offering, starting in 2022, prototyping services to academics, SMEs and companies 

which can benefit from the progresses of graphene related materials integration with silicon [166]. 

The 2D‐EPL provide in a multi‐project wafer run (MPW) for G‐FET circuit including a top/bottom 

contact with an optional local or global back and liquid gate. Directed to Bio/Gas/Chemical sensors 

this MPW include a stand‐alone G‐FET circuit as well as a fully CMOS integration. 

 
(A) 

 
(B) 

Figure  5. G‐FET  in  a  typical dual gate  configuration  (A) and  for biosensing  application with  the 

analyte  in  contact with  the graphene  layer  (B). The  application of  a voltage  at  the  liquid  analyte 

permits a state‐of‐the‐art dual liquid gate configuration. 
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6. Conclusions 

A review of different modelling strategies and methodologies used within  the  framework of 

carbon‐based nanoparticles (graphene, carbon nanotubes—CNTs, nanofibers, etc.), and carbon‐based 

nanomaterials (CNMs) and devices (as sensors) that can be obtained from these materials has been 

presented.  The  range  of modelling  and  simulation  techniques  generally  employed  covers  from 

electronic  to  continuum models,  passing  through  atomistic  and meso‐scale.  For  each  case,  their 

typical uses, some of  their weaknesses and strengths, and  the  latest developments are presented, 

including application examples and key references. Sometimes, multi‐scale workflows are required, 

where these different models and scales are sequentially linked as part of a single analysis. Modelling 

devices  require  multi‐physics  models,  integrating  different  phenomena  that  can  be  present 

simultaneously. Then, system type models are used. In this sense, the modelling of G‐FET for sensing 

applications is included in this review, as specific example of carbon‐based devices. 

As  regards  the  theoretical  study  of  interactions  of  charged  particles  with  graphene‐based 

nanomaterials,  a mathematical  framework  for  studying  such  interactions  uses  various  response 

functions of such materials as an input, which may be available from analytical phenomenological 

models, ab  initio calculations, or even experimental data  from optical spectroscopies. This allows 

various research groups  to quickly develop reliable models  for analyzing plasmonic properties of 

layered nanostructures  including graphene, which can be used to predict  the properties  for novel 

designs of such structures. 

Regarding molecular dynamics models, they are typically used to investigate various properties 

of CNMs at the atomistic scale, thus helping to predict their physico‐chemical behavior and optimize 

their performance for specific applications. MD simulations can provide valuable insights into the 

thermomechanical  properties  of  car‐bon‐based  structures  (e.g.,  thermal  conductivity  or  elastic 

constants) and  interface  interactions  in composite materials, yielding  increasingly accurate results 

due to ongoing research efforts and the integration of data‐driven approaches. 

Continuum  models  include  mainly  analytical,  semi‐analytical  and  numerical  approaches. 

Analytical models can be solved  relatively quickly and often provide a clear and straightforward 

understanding  of  the  underlying  physics  and  insights  into  the  relationships  between  different 

variables  and  parameters.  However,  sometimes  they  are  limited  in  terms  of  the  geometrical 

complexity  that  they can address. Numerical models can partially deal with  these  issues, but are 

constrained  by  their  computational  cost,  size  dependency  of  the  results  and  restrictions  in  the 

development of RVEs with high inclusions volume concentrations and aspect ratios. Overall, good 

reproducibility  of  the  properties  of  the  materials  are  obtained  especially  at  low  nanoparticles 

concentrations, even  for non‐linear and  time dependent  responses, while at higher  concentration 

more  significant deviations  are usually observed. This  is generally  explained due  to  interactions 

between  the  nanoparticles  at  high  contents  that  produce  non‐homogeneous  dispersions  and 

agglomerations.  For mechanical  properties  predictions  in  the  non‐linear  regime  or  in  terms  of 

strength, it is generally seen that the results are strongly dependent on the particle/polymer interface 

representation and on the aspect ratios of the particles. Similar influences are also observed for other 

types of properties, such as thermal ones. 

Finally, electrical behavior of G‐FET, their analysis and design can be supported through Spice 

and Verilog models made freely available by the authors. The theoretical formulation of such models 

is available in literature and the main simulation software houses are starting to include them in their 

commercial packages. We  can  expect,  for  the next  future,  the  introduction of  integrated models, 

describing mechanical,  thermal electrical and optical models, addressing  the sensing applications 

where this class of devices can offer breakthrough solutions. Modelling techniques are powerful tools 

to support materials research in the development of novel applications, particularly  in the case of 

carbon‐based materials and their derived composites and devices. It provides the key information 

for identifying new materials, tailoring materials and/or design materials for structures and systems. 
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