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Abstract: A review of different modelling techniques, specifically in the framework of carbon-based
nanomaterials (CNMs, including nanoparticles as graphene and carbon nanotubes —CNTs) and the
composites and devices that can be derived from them, is presented. The article highlights the
multiscale nature of these types of materials and systems, which require different approaches
depending on the type, size, internal structure/configuration of the material and properties of
interest. Far from attempting to cover the entire spectrum of models, this review examines a wide
range of analysis and simulation techniques, highlighting their potential use, some of their
weaknesses and strengths, and presenting the latest developments and some application examples.
Specifically, this paper shows how electronic, atomistic, mesoscopic, continuum and system models
can be used to study and design CNMs, to predict different properties and responses of materials,
or even to study devices such as sensors. This review has been performed within the framework of
COST Action EsSENce (High-performance Carbon-based composites with Smart properties for
Advanced Sensing Applications —CA19118).

Keywords: carbon; carbon-based materials; graphene; CNT; nanocomposites; electronic; molecular
dynamics; continuum models; GFET.

1. Introduction

Recent advances in analytical and computational modelling enable the prediction and
understanding of material properties and responses on scales ranging from the electronic/atomistic,
through the microstructure or transitional, and up to the continuum (Figure 1). Multiscale material
modelling is based on a systematic reduction of the degrees of freedom at different length scales in
which a material can be described. Connections between these scales are established either by
parametrization, by grouping (i.e., coarse graining) or homogenization procedures. These different
scales in the description of materials have historically been associated with different disciplines, from
physics to engineering, including chemistry and materials science (Figure 1). Each scale can be
studied by means of different types of models (electronic, atomistic, mesoscopic and continuum),
which employ distinct basic entities and usually work in different ranges of timescales and number
of entities (Figure 2). However, the scale and type of model do not have a one-to-one correspondence,
since there are areas of overlapping regarding the models that can be employed for a specific analysis.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202410.0750.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 d0i:10.20944/preprints202410.0750.v1

2
A
(]
£
=
@
[+1]
£
3
u g continuum
G
@ w
£ »
= e
o 2
0 1]
(=] g =
@
£
sk}
o
O
W
8
2
& electroni
L

Figure 1. Multi-scale materials modelling approach. Discipline vs. Length Scale.

Indicative Indicative
Entity whose length scale time scale
behaviour is | Number of entities | (depending on | (depending on
described current current
computers) computers)
Electronic lelectron 10-100 0.1-1
models nm
Atomistic latom 10%- 10° 0.1-100 nm fs - ps
models
Mesoscopic nanoparticle, 10%-unlimited 1 nm - 100 mm ms - s
models lgrain, molecule,
bead
Continuum lcontinuum Unlimited (the model | nm-m s - ks
models volume equations are written
up for finite volumes
or elements)

Figure 2. Material models, entity, length scale and time scale [1].

This report presents a review of different modelling strategies and methodologies used in the
field of carbon-based nanoparticles (graphene, carbon nanotubes—CNTs, nanofibers, etc.), carbon-
based nanomaterials (CNMs) and devices (such as sensors) that can be obtained from these materials.
Within this framework, the variety of models, methods and applications is extremely wide, and
getting a full picture in a condensed report is hard-to-reach. This review, then, aims to cover some of
the key modelling approaches usually employed at different length and time scales, ending with a
discussion on a specific type of sensor, derived from these carbon-based materials, as an example of
device-level modelling. This leads to the four main sections that constitute the present document.

At the lower scale, the first type of models focuses on electronic calculations, theoretical studies
of single-particle and collective excitations. These models are relevant for photonics, plasmonic and
nano-electronics applications. At the next level, molecular dynamics (MD) models enable the study
of material properties/responses that are mainly dominated by interactions between atoms or
molecules, defined through force fields. These models help in predicting mechanical, thermal, surface
properties, and other physical properties such as density, viscosity, or glass transition temperature;
they are used transversally in the design of materials and nanocomposites for a wide range of
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applications. At the continuum level, modelling is typically employed to predict the macroscopic-
homogenized properties of materials by considering the constituents as a continuous medium rather
than as discrete particles. Compared with the latter, MD models provide detailed atomic-level
information but are limited to small systems due to computational constraints. Continuum models,
on the other hand, can handle much larger systems but lack the detailed description of atomic or
molecular interactions. These models can also be used to predict different types of properties (again
mechanical, thermal, electrical, acoustic, and other physical properties). Certain kinds of products
and devices need to be modelled as systems instead, which might require a combination of different
type of properties and physics. Each system has its own requirements, which can lead to the
integration of different sub-models. At this scale, as an application example relevant to sensors, this
review focuses on the modelling and simulation of graphene field effect transistors (GFET) devices
and circuits.

This review has been performed within the framework of COST Action EsSENce (High-
performance Carbon-based composites with Smart properties for Advanced Sensing Applications—
CA19118), funded by the European Cooperation in Science and Technology (COST). The EsSENce
COST Action aimed to construct an international scientific & technological innovation hub focusing
on advanced composite materials reinforced with CNMs for sensing applications. Particularly,
working group WG5 deals with the modelling of materials and sensing mechanisms, identified as a
key area to support the development of CNMs, advanced high-performance composites, and their
implementation into products and devices. Thus, the objective is to exemplify and promote i) the use
of “standard” or widely shared modelling protocols, or ii) the development/application of new
modelling approaches. In addition, a second goal is to identify some of the needs in this field,
considering both experimental characterization (needed to feed or validate the models) and the
modelling perspective.

2. Theoretical Modelling of Interactions of Charged Particles with Graphene-Based
Nanomaterials and Their Composites

Graphene is the best known and the most explored two-dimensional (2D) material. It is the
world’s thinnest and strongest material, with the highest electrical and thermal conductivity known.
Due to its outstanding physical, chemical, electrical and optical properties, graphene shows great
potential in many fields, including sensors.

In nanoscale devices graphene typically appears in stacks separated by insulating layers of finite
thickness [2—4], which usually support strong Fuchs-Kliewer or optical surface phonon modes [5].
Those phonon modes are active in the terahertz (THz) to mid-infrared (mid-IR) frequency range and
can dampen the Dirac plasmon in doped graphene which operates in the same frequency range [6],
or can hybridize with it [7]. As a prototype of layered nanostructures involving doped graphene
sheets, a sandwich-like composite which consists of two layers of graphene separated by an
insulating layer was studied and it was found that the structure supports a variety of interesting
plasmon-phonon hybrid modes in the THz to mid-IR frequency range [8]. An insulating layer of
sapphire (aluminum oxide, Al2Os) was chosen because it is often used as a dielectric spacer in
experiments [9-14]. The effective dielectric function of the system was obtained by using a local
dielectric function for the bulk Al:Os and by using two approaches within the random phase
approximation for graphene’s electronic response: an ab initio method based on the time-dependent
density functional theory calculations and a method based on the massless Dirac fermion
approximation for graphene 7 bands.

The most efficient way to probe the plasmon-phonon hybridization between graphene and the
nearby insulator(s) is by means of an externally moving charged particle. Such hybridization has an
effect on the energy loss of an incident particle [15], as well as on the resulting wake effect in the
induced electrostatic potential [16]. The wake potential (the total potential in the plane of the upper
graphene sheet) induced by an external charged particle moving parallel to the graphene-Al:Os-
graphene composite system (Figure 3) was investigated in Ref. [17]. The distance of the charged
particle from the top graphene, the thickness of the Al:Os layer, and the doping density (i.e., Fermi
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energy) of graphene were fixed at their respective typical values. The effects of variations of all those
parameters were studied in Ref. [18].
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Figure 3. Material Diagram of the graphene-AlOs-graphene heterostructure with point charge Ze
moving with constant speed v at a fixed distance above the top graphene.

The plasmon-phonon hybridization also has an impact on the stopping force (the dissipative
force which opposes the particle’s motion) and the image force (the perpendicularly oriented
conservative force which bends the particle’s trajectory towards the upper graphene sheet). A
thorough analysis of the stopping and image forces on a charged particle moving parallel to the
graphene-AlOs-graphene composite was performed in Ref. [19], covering broad ranges of the
particle speeds and distances, as well as the doping densities of the two graphene sheets. It should
be noted that the stopping force is the negative of the usual stopping power, whereas the image force
is related to the familiar image potential.

Note that the wake effect and the stopping and image forces were previously investigated
theoretically in free-standing and supported graphene [15,16,20-39].

In the last few years van der Waals (vdW) heterostructures based on graphene and hexagonal
boron nitride (hBN) layers with different stacking modes have attracted a great deal of interest
because of their potential applications [40-48]. Graphene/hBN vdW heterostructures were studied
very recently in Refs. [49,50].

Electron energy loss spectroscopy (EELS) is a commonly used experimental technique for
investigating electronic and plasmonic properties of 2D materials and vdW heterostructures [51-53].
Theoretical modelling of the experimental EELS data for free-standing (single and multilayer)
graphene sheets obtained by (scanning) transmission electron microscope is presented in Refs. [54—
57], whereas the theoretical modelling of the experimental EELS data for monolayer graphene
supported by different substrates is given in Refs. [58-61].

Acoustic plasmon (AP) in graphene or in graphene-dielectric-metal structure has been studied
very intensively in the last few years [62,63]. In Ref. [64] the authors focused on the AP in graphene
doped by alkali metals and demonstrated that two isoelectronic systems, KCs and CsCs, support
substantially different plasmonic spectra: the KCs supports a sharp Dirac plasmon (DP) and a well-
defined AP, while the CsCs supports a broad DP and does not support an AP at all. These findings
could be very useful in the area of chemical or biological sensing [65,66].

3. Molecular Dynamics Applied to CNM Properties Prediction

Molecular Dynamics (MD) is a computational method to simulate the behavior of atoms and
molecules over time. In an MD simulation, the trajectories of atoms (considered as rigid spheres) and
molecules are determined by numerically solving Newton’s equations of motion. Forces between
particles are calculated by exploiting calibrated interaction potentials (force fields), and from these
forces the accelerations, velocities, and subsequent positions of the atoms are determined [67]. For
materials science, MD provides detailed insights into phenomena that would otherwise be difficult
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to observe directly, such as diffusion, phase transitions, interfacial effects, and mechanical behavior
at the nanoscale.

One of the key aspects of MD simulations lies in the force fields, which are mathematical models
used to calculate interactions between atoms due to the presence of covalent bonds (bonded
interactions) and electrostatic forces (Coulomb/Van der Waals, non-bonded interactions) [68]. In MD
simulations of CNMs, some specific force fields have gained prominence [69]:

¢  The Adaptive Intermolecular Reactive Bond Order (AIREBO) potential is tailored for carbon
systems and describes long-range van der Waals interactions and torsional effects. It is versatile
for modelling both sp? and sp? hybridized carbon structures [70]. AIREBO might not perform
well for systems with significant charge transfer or in the case of interactions with elements
outside its parameterization.

o  Tersoff potential considers both the distance between atoms (bond lengths) and their relative
orientation (bond angles) to provide a detailed representation of the complex interactions that
occur in carbon-based materials [71]. This potential may not be ideal for modelling weak
interactions, and it might require recalibration for systems different from its original
parameterization.

e  ReaxFF is a reactive force field capable of simulating bond formation and breaking during MD
simulations. This dynamic nature is achieved by not predefining specific bond types but
allowing the system to evolve based on atomic positions and interactions. Due to its reactive
nature, ReaxFF can be computationally demanding. It also requires careful system-specific
parameterization to ensure reliable results, e.g., in the case of condensed carbon phases [72].

e Machine Learning (ML) interatomic potentials differ from traditional ones, as they do not
depend on fixed mathematical formulas. Instead, they learn representations of the potential
energy surface of the system through trainings based on lower-scale simulations. Several
implementations for certain carbon forms with near DFT-level accuracy have been reported in
the literature, e.g., Gaussian Approximation Potential (GAP) [73], hybrid neural network
potential [74], GAP-20 potential for various crystalline phase of carbon and amorphous carbon
[75]. Furthermore, MACE—a transferable force field for organic molecules created using ML
trained on first-principles reference data—was recently implemented [76]. Despite the good
accuracy of current ML-based force fields in predicting the properties of carbon allotropes,
various challenges still exist, especially regarding the description of mechanical properties and
the curation of reliable training datasets.

MD is well-suited for investigating various properties of CNMs and composites made thereof
[77]. The mechanical properties of these materials, for example, can be determined through MD
simulations that allow the stresses and strains experienced by the system to be evaluated [78]. In these
tests, a strain is systematically applied to the system, and the resulting stress responses of the material
are recorded, thus providing information on its elastic constants, tensile strength, and potential
fracture points [79]. For instance, simulations of cellulose nanocrystal-graphene composites revealed
enhanced mechanical properties due to covalent bonding and van der Waals interactions [80].
Similarly, MD analyses of single-walled carbon nanotubes (SWCNT) have demonstrated Young's
moduli in agreement with experimental values, showcasing their exceptional mechanical strength
and stiffness [81]. However, these simulations face some challenges, as the simulated strain rates
should be much higher than those typically found in experimental setups to provide meaningful
results in a feasible computational time. Another technique for analyzing the mechanical properties
of a material is nanoindentation, which involves the simulation of a virtual indenter pressing on the
surface and allows the hardness and localized stress response to be derived [82]. For example,
nanoindentation MD simulations on polymer nanocomposites highlighted the effect of nanoparticle
interactions and temperature on mechanical reinforcement [83] The results, though, can be influenced
by the chosen shape of the indenter and the interaction potentials utilized. Pull-out tests simulations
[84] and density profile analysis [85], on the other hand, are valuable aids in characterizing the
interface region between a CNM and the surrounding environment (e.g., the polymer in the case of
composites), which is a key interaction region that strongly determines the properties of the
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composite material. These analyses provide useful insights into the mechanisms of load transfer
through materials and interfacial adhesion behavior.

The thermal properties of CNMs can be explored using various protocols [86,87]. In the Non-
equilibrium Molecular Dynamics (NEMD) technique, for instance, a temperature gradient is
established within the simulation domain, thus enabling the calculation of thermal conductivity [88].
NEMD was employed to calculate the thermal conductivity of multi-walled CNTs with different
geometrical features, such as diameter, length, chirality, and number of walls [89]. Still, this method
entails an issue, as the artificial imposition of a gradient might not realistically replicate actual
experimental scenarios. The Equilibrium Molecular Dynamics (EMD) method offers another
approach, relying on the analysis of heat current fluctuations within a system at equilibrium. A
notable example involves the use of EMD simulations to determine the thermal conductivity of
graphene nanoribbons [90]. By employing the Green-Kubo method, researchers studied the effects of
ribbon width, edge roughness, and hydrogen termination on thermal conductivity. The results
showed that smooth edges yield the highest conductivity, while edge roughness significantly reduces
it. However, EMD often requires extended simulation times. Another critical thermal property that
can be computed by MD simulations is the thermal boundary resistance (TBR, also known as Kapitza
resistance, originating from phonon scattering in the presence of defects or interfaces) [91]. As carbon
nanomaterials are often embedded into other materials (e.g., polymeric matrices, fluids),
understanding the efficiency of heat transfer across these interfaces becomes vital [92]. Both NEMD
and EMD protocols offer quantitative insights into this property. Furthermore, theoretical models
such as the Acoustic Mismatch Model and the Diffuse Mismatch Model, informed by inputs from
MD simulations, provide complementary perspectives on TBR [93].

For thermodynamic properties, MD simulations lean on specialized techniques, like free energy
calculations. Properties such as adhesion can be probed using advanced sampling methods, such as
umbrella sampling and metadynamics [85], but these techniques often require care in choosing the
force field and can be computationally burdensome. The wetting properties of CNMs are
fundamental as well for optimizing their performance in suspensions and composites. Wettability,
quantified by contact angle measurements, can indeed affect the dispersion of CNMs in various
solvents, along with the ability of polymers to spread and adhere to CNMs thus influencing the
mechanical and thermal properties of the composite [94]. At the atomistic level, two main approaches
are used to measure the contact angle. The free energy perturbation (FEP) method involves
calculating the free energy changes to determine the interaction parameters between a liquid and a
surface [95]. This approach allows the interaction parameters to be calibrated and the work of
adhesion and friction coefficients to be evaluated. In the second method, called the droplet method,
a liquid droplet is placed on the tested surface and allowed to relax until equilibrium is reached [96].
The contact angle is then measured by analyzing the shape of the droplet along the three-phase
contact line [97]. The latter approach is widely used to study the effects of surface roughness and
interfacial properties. For instance, MD simulations revealed that difunctional epoxy and cyanate
ester resins exhibit high wettability on CNT surfaces, while polyether ether ketone resins show poor
wetting properties [98]. Graphene oxide, due to its hydrophilic functional groups, generally offers
better wettability than pristine graphene, improving dispersion and interfacial bonding in polymer
matrices [99]. Additionally, carbon nanoparticle coatings synthesized through controlled flame
deposition can be tailored from hydrophilic to superhydrophobic states by adjusting synthesis
conditions, which optimize surface interactions and enhances composite performance [100].

Other type of properties that can also be studied through MD models are the dielectric ones
(dielectric constants, relaxion) using specific approaches as the dipole moment fluctuation method
[101].

While offering mechanistic insights into the properties and behavior of CNMs, MD simulations
do not lack challenges. For instance, MD approaches typically operate within specific temporal (fs to
ps) and spatial (nm to pum) scales, and phenomena outside these scales might not be detected and
analyzed effectively [102]. Moreover, the choice of the force field can significantly impact the results,
as not all force fields describe the intricate interactions in nanomaterials with the same accuracy [103].
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Furthermore, high-resolution simulations, especially those involving long timescales or large
systems, can be computationally demanding, requiring substantial resources and time. The
imposition of periodic boundary conditions, instead, can lead to artifacts in the results, especially if
the size of the simulated system is not large enough compared to the phenomena under observation
[104]. Finally, the rates used in simulations (e.g., thermal or mechanical ones), due to computational
constraints, often exceed experimental rates, potentially leading to discrepancies between numerical
and experimental data [105].

Looking ahead, the MD research landscape on CNMs presents promising prospects [106]. One
of the most significant improvements in recent years has been the development of enhanced force
fields. Ongoing research in this area aims to refine these force fields specifically for carbon
nanomaterials, with the goal of increasing the accuracy in predicting their properties. Moreover, the
growing popularity of multiscale modeling as a robust approach offers significant opportunities: by
linking/coupling MD with other simulation methodologies, such as electronic, mesoscopic and/or
continuum models [107], researchers aim to bridge the spatiotemporal gaps between scales. Yet, one
of the most transformative shifts in the field of molecular dynamics is probably the integration of
data-driven approaches within MD simulations. The support of machine learning and artificial
intelligence is not merely augmenting computational efficiency, but it is reshaping the paradigms of
simulations. These tools offer optimized parameter selections, predictive capabilities, and the
prospect of devising new force fields. Lastly, shared efforts between experimentalists and
computational researchers are fostering iterative refinements in simulation methodologies. This
synergy is guiding MD studies closer to experimental observations, ensuring a more harmonized
understanding of CNMs.

[7] mestraint I D)
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Figure 4. Examples of atomistic models used to study carbon structures. (A) Epoxy resin boxes
reinforced by (a) 5 single-walled carbon nanotubes (SWCNTs) and (b) one SWCNT [87]. (B)
Dislocation formation during stretching simulation of a graphene oxide nanoribbon model [78]. (C)
Investigation of the thermal properties of (a) SWCNTSs, and (b) double-walled carbon nanotubes
(DWCNTs) composed of two coax-ial SWCNTs [88]. (D) Effect of surface wettability on heat and mass
transfer at the interface between water and CNTs [93].
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4. Continuum Models

At the next level within the multiscale materials modelling framework, continuum models are
powerful tools for predicting the properties of nanocomposites. These models consider the
microstructure of the nanocomposite, including the size, shape, and distribution of the nanoparticles,
to predict the macroscopic-homogenized properties of the material. Continuum models can be used
to predict different types of properties or responses: mechanical, thermal, electrical, acoustic, among
other physical properties.

There are basically three types of continuum models: analytical, semi-analytical and numerical.
The most common analytic models used for nanocomposites are based on the early work of Eshelby
on ellipsoidal inclusions on an infinite elastic matrix, such as the relevant Mori-Tanaka’s mean field
approach, which introducing as a hypothesis that each particle sees as far field the average matrix
strain, allowed the application to non-diluted concentrations, calculating the properties of the
composite by a physical combination of the properties of the nanoparticles and the matrix, weighted
by their respective volume fractions. Other type of analytical models are the self-consistent models
(SCM), where each nanoparticle in the nanocomposite is embedded in a matrix that has the same
properties as the nanocomposite itself (this leads to a system of coupled equations that must be solved
numerically); In general, these models can be solved relatively quickly compared with other
approaches, making them useful for initial approximations and quick calculations. Despite this, as it
is reported later, more and more advanced models are being developed attempting to capture
complex geometric and material aspects. There are hundreds of works in the literature applying these
models to determine standard fiber-based composites properties first, and later applied also to
nanocomposites, for example considering the matrix-particle interphase as a third material phase
constituent. In this sense, interesting references comparing/reviewing all these methods are the article
of Y. Wang and Z. Huang [108], the chapter of Yehia A. Bahei-El-Din about Averaging Models of
Fibrous Composites in [109], and the recent publication of A. Elmasry, W. Azoti, S. El-Safty and A.
Elmarakbi that presents a review comparing different models for effective properties calculation of
nano- and micro-composites [110]. Works focused on mechanical properties include: i)
nanocomposites’ stiffness prediction (i.e., response in the elastic range), as the research done by M.M.
Shokrieh, M. Esmkhani, Z. Shokrieh and Z. Zhao for an epoxy resin modified with graphene
nanoplatelets [111], the work presented by A. Chiminelli and M. Laspalas for an epoxy resin modified
with MWCNTs [112], the work of A. Singh and D. Kumar studying the influence of the
functionalization of graphene nanoplatelets in the elastic properties of a modified polyethylene [113]
or a more recent work of D. Shin, L. Jeon and S. Yang for graphene modified PET [114]; ii) non-linear
behavior and strength predictions of CNMs, as the approach proposed by J. Nafar Dastgerdi, G.
Marquis and M. Salimi introducing interfacial damage/debonding processes in CNTs reinforced
polymers [115] or the model developed by W. Azoti and A. Elmarakbi applied to a graphene platelets
GPL-reinforced polymer PA6 composite (Generalized Mori-Tanaka) [116]. Other works/studies can
be found about the utilization of this type of analytic approaches to develop more advanced models
introducing viscoelasticity [117] or creep effects [118], among others. Overall, good correlations with
experimental results are obtained for the elastics properties especially at low nanoparticles
concentrations, while at higher concentration more significant deviations are usually observed. This
is generally explained due to interactions between the nanoparticles at high contents that produce
non-homogeneous dispersions and agglomerations. For predictions in the non-linear regime and in
terms of strength, it is generally seen that the results are strongly dependent on the particle/polymer
interface representation and on the aspect ratios of the particles. This also observed in the modelling
of other type of properties of nanocomposites (thermal, electrical, acoustic...). For example, in the
work published by J. Shao et al. [119] for predicting dielectric properties of polymers modified with
nanoparticles, the Knott model was modified with the Tanaka formula for hybrid particles to take
into consideration the interphase region. Obviously, the issues mentioned at high concentrations are
also present in these cases. Apart from this, these models are valuable to evaluate different
functionalization of carbon-based nanoparticles.
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In addition to the models mentioned above, some semi-empirical analytical models are also well-
known for composites, starting with the classical rule of mixture, evolving to Chamis’ model and the
Halpin-Tsai’s model (as a simplified version of the SCM), and leading to more advanced models
introducing (again) elastoplasticity (approaches to yield stress and linearization methods [108]). The
Halpin-Tsai approach for aligned reinforcement has been employed widely for the analysis of
graphene-based nanocomposites [120]. In this sense, works as the ones developed by Weon et al.
[121], Chong et al. [122] and Zarasvand and Golestanian [123] can be highlighted. In the last, the
nonlinear tensile stress-strain behavior of randomly-distributed graphene nanocomposites have been
obtained, presenting a good correlation with experimental results in the whole range of the stress-
strain curves. In a work published by M. Yang et al. [124], the Halpin-Tsai model was adapted to
quantitatively characterize the effect of temperature on the yield strength of nanofiller-reinforced
polymer-matrix nanocomposites. Compared with the classical ones, the model showed better
agreement with the available experimental data from sub-zero temperature to the full glass transition
region. Progressing with elastoplasticity, several Non-linear Mean Field Methods have been
developed from the elastic ones, the Tangent and Secant approaches being the most known. Some
reference publications implementing these methods are the ones of Doghri [125,126]. An advantage
of these models is the straightforward implementation. They also allow to study more complex
loading cases than other models, including cyclic loads.

Semi-analytical methods are based on global constitutive equations that are evaluated from the
local scale using analytic/explicit relations that link the microscopic and the macroscopic properties.
Analytical relations are usually dependent on mean field procedures. The best known is the
Transformation fields analysis (TFA). It connects analytical and computational approaches by a
computational evaluation of the localization operators. The main concept is replacing the plastic
strain field with piecewise uniform fields to reduce the number of macroscopic internal variables.
Thereby, a set of reduced constitutive relations for the heterogeneous material can be established,
leading to a computational time reduction compared to full numerical models [110]. Reference works
of this type of model are the ones published by Dvorak [127,128]. A more recent work published by
LAl Khattab and M. Sinapius present an interesting implementation of the TFA model as a user
routine integrated into RVE-micro scale model [129]. The results reveal that the TFA is a proper
method for solving inelastic deformation and other incremental problems in heterogeneous media
with many interacting inhomogeneities on a nanoscale level.

Finally, numerical continuum micromechanics models, such as the finite element method (FEM),
are considered also powerful approaches for CNMs modelling. In numerical approaches, an
acknowledged constitutive model (elasticity, viscoelasticity, elastoplasticity, viscoplasticity...) is
assumed in a Representative Volume Element (RVE) to induce an explicit macroscopic model. On
one hand, these models allow to introduce more accurate description of the materials nano-
morphology [130]. This is one of the limitations of analytic models, that usually require an
idealization of the nanoreinforcements’ shape, representing them as discs, cylinders or spheres. On
the other hand, these models allow to introduce complex nonlinear multi-phase material behaviors.
The main disadvantages of finite elements are computational costs, size dependency of the results
and limitations in the development of RVEs with high inclusions volume concentrations and aspect
ratios.

RVE based models apply to statistically homogeneous materials. They can be used as repeating
unit cell (RUC) when the (nano)composite has a periodic microstructure. Sufficient number of
randomly distributed fibers or particles to be contained in the RVE is needed so that the
microstructure of a composite could be reflected precisely [108]. This is also linked with the size of
the volume studied. Various works reflect the importance of defining a proper RVE size [131]. In this
sense, it happens that a larger RVE size gave better prediction accuracy but resulted in lower
computational efficiency. Finally, the boundary conditions are a critical aspect in RUC models, and
they have to be defined carefully to represent properly the effect of the reinforcements/particles
distribution patterns and the loads applied.
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Some first reference publications that can be found about RVE and FEM to estimate properties
of polymer nanocomposites are the works of Liu and Chen [132,133]. Particularly, they studied the
elastic properties of CNT-reinforced polymers. Chwat and Muc [134,135] applied a similar approach
with various boundary conditions to calculate the mechanical properties of SWCNT-polymer
nanocomposite. More recent works present a combination of this type of FE continuum models with
MD, in similar way to the multi-scale framework presented in this report. For example, recently
Barakat et al. published an article where the distribution of mechanical properties of graphene-based
polymer nanocomposites is computed using a micro-meso up to macro hierarchical computational
approach employing non-equilibrium atomistic MD simulations and continuum FE models [136]. In
the same line, the work published by Muhammad et al. can be highlighted [137], where not only
mechanical but thermal properties are predicted for graphene-reinforced epoxies. For SWCNT-
polymer nanocomposites, Malague et al. proposed a procedure to assess size effects using the
atomistic simulations and equivalent continuum model with a large number of CNTs [138].

Elastic RVE/RUC models can be extended to nonlinear cases, providing that the nonlinear
constitutive laws for the constituents are available. For example, based on a three-dimensional RVE
model, Yuan and Lu [139] conducted a numerical investigation on the elastoplastic behavior of
carbon nanotubes (CNTs) reinforced polymer composites. A. Zarasvand et al. [140] also conducted
experimental, numerical, and micromechanical studies to determine the nonlinear behavior of CNT-
reinforced polymer. When non-linear constitute behaviors are considered, FEM approaches become
computationally consuming. To address this limitation, several numerical strategies with reduced
computational effort have been developed. Examples are the Voronoi Cell Finite Element Method
(VCFEM) [141,142], the Generalized Method of Cells (GMC) [143], and the Finite Volume Direct
Averaging Micromechanics (FVDAM) [144-146].

Figure 5. Examples of continuum models to study CNMs. A) Mean field homogenization scheme
[112], B) Combined FE and analytic Mori-Tanaka models for CNT reinforced polymer taking into
account viscoelastic properties [117], C) Utilization of Halpin-Tsai approach for Graphene
Nanoplatelet reinforced epoxy [123] and D) REV/FEM models analyses considering elastoplasticity
for wavy and random CNTs distribution in nanocomposites [139].

5. CNM Devices— Graphene Field Effect Transistors

When we arrive to discuss carbon nanomaterial devices that can be considered mature enough
to be used in sensing systems, one of the most used configurations is based upon graphene field effect
transistors (G-FET). High frequency applications have been in a first time a major goal for this class
of devices, and a series of interesting results reporting the fabrication of research level devices
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working in the GHz domain were published in the 2010’s years [147-150]. Anyway, the problems
that were initially addressed for the graphene transistors to replace silicon MOSFET as the choice
alternative for commercial high-performance logic and high frequency electronics [151], prevented
until now their large-scale adoption for this class of applications.

As a follow up, the intense research work realized during these years has produced many
interesting results, experimental and theoretical as well, that have permitted a good insight into the
physic mechanism of the GFET structures, paving the way to the definition of an application
playground in the biosensing domain, avoiding the HF requirements of a G-FET based ASIC project.
A nice summary of the present state of this approach can be found in the recently published review
paper of S. Szunerits [152]. According to the authors not only graphene is proposed for FET
biosensing applications, but also other 2D materials like metal dichalcogenides, hexagonal boron
nitride or black phosphorus have been investigated for FET gate-channel technology. Indeed,
graphene maintains his position as a first-choice material commercial applications for low term
potential.

Although it is not currently available on the market, it may be foreseen that the use of GFET
circuitry will soon find commercial application in wearable flexible sensing systems [153], in Point-
Of-Care systems [154,155], and even in skin bioelectronics for health monitoring [156] exploiting its
mechanical/electrical properties together with biocompatibility characteristics. Advanced
experimental results in this field have been recently presented for applications of major interest, like,
for example, cancer monitoring [157], COVID19 screening [158] or glucose monitoring in diabetic
patients [159].

While no clinical validation has yet been performed, the proposed technology for these
important biomedical playgrounds has been fully demonstrated in laboratory environment. The next
step still needed for allowing the fabrication of large-scale point-of-care biosensing systems is the
definition of a reproducible fabrication process, integrated with standard silicon CMOS technology.
Once some variability can be expected from the fabrication condition, modelling and simulation will
play a major role in the G-FET circuitry design. Looking at the recent past, modelling and simulation
of GFET device and circuits, in a variety of configurations has certainly given an important
contribution to the actual advanced state of the art for design and fabrication.

Regarding the electrical properties, a model to calculate the DC characteristics of large-area
graphene field-effect transistors was presented initially by Thiele and Schwierz [160]. This paper
opened the door to the heuristic approach of correlating the experimental results with the specific
characteristics of the graphene material, like the sheet carrier density and transport properties. More
specifically, the Thiele&Schwierz model suc-cessfully describe the experimental DC behavior of the
drain current (Id), as a func-tion of the Drain-Source Voltage (Vds), for different Gate Source voltage
(Vgs), using a reduced set of parameters about the device geometry like the gate length (L) and width
(W), the insulator thickness (tox), drain and source contact resistances (Rs, Rd), together with material
properties like charge mobilities in the graphene channel, sheet carrier density, carrier saturation
velocity.

As a general description, a G-FET has a structure that can be thought similar to a thin film
transistor (TFT), where the 2D graphene layer is used for channel forming. The traditional approach
for the electrical simulation of semiconductor FET devices is based on the drift-diffusion model,
including the Poisson equation [161]. Following an approach similar to the one proposed by
Thiele&Schwierz, yet including the standard drift-diffusion approach, a Verilog compact model
suitable for circuit level design model based of the drift and diffusion scheme has been presented and
made freely available by Landauer [162]. The main problem for the direct application of this model
to the G-FET structure is the definition of the charge mobility value, that in a 2D material can be
largely affected by the presence of impurities, lattice defects and substrate quality. A nice approach
to this problem was recently described by Nastasi [163]. They describe extensively the physical and
numerical model, including the model for the mobility and its dependence on the applied electric
field, and the results obtained on a top gate configuration described by a 2D geometry.
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The approach directed to modelling the behavior of the device when embedded in a more
general circuit is of major importance when the target application is related to the sensing of some
specific bio-element. From this point of view, the correlation between material properties and
electrical behavior and output extraction is the main objective of any modelling task. The G-FET
structure better suited for targeting the sensing of biomolecules (such as proteins and nucleic acids)
in biological fluids, is the co-planar and liquid-immersed-gate configuration, which is effectively
largely preferred in biological G-FET design. This configuration overcomes the standard top-gate or
bottom-gate inherited by the flat panel semiconductor industry and presents a new challenge for
modelling and simulation approach. The main results of this activity have the production of G-FET
models suitable to be used in a circuit simulator, to support the fabrication of complete G-FET based
circuit for biosensing applications. A dual gate G-FET model for circuit simulation, suitable to be
used for biosensing use, was presented by Umoh. The main value of this model is the direct
application in a SPICE implementation, in a traditional configuration settling on standard FET SPICE
model parameters, used internally to calculate junction resistances and capacitances. Within this
context, Jmai [164] presented a model freely distributed in its MATLAB and Verilog implementation,
allowing the user to select an appropriate topology for a system-level design suitable to be used in
real life applications. Once again, the charge mobilities are a main parameter that need to be assessed
as a function of the fabrication condition. As already mentioned, considering the multiscale concept,
these models at system level can be fed with results obtained from models at lower scales, in the
specific case of GFETs for example to determine the dielectric properties that are required. In this
way, the nanocomposite properties can be investigated and designed with MD or continuum models
and these results can be introduced in the transistor model for device optimization.

As a matter of fact, from the biosensing point of view, it is possible to assume that the presence
of the target bio-element on the graphene surface would be the main driving cause for the mobility
fluctuation, and the correspondent variation of the drain current of the transistor. This observation
focusses the modelling attention on a differential current extraction, targeting the information about
the presence of the biomarkers, instead that the mobility value itself. The model for the dual gate
configuration is directly extendible to the liquid gate configuration, and from a high-er-application-
level approach, Fuente-Zapico has adapted the Synopsys Sentaurus Commercial TCAD suite for the
simulation of a liquid gate graphene field effect transistor, GFET, used as antibody-based biosensor
[165]. In this work the authors have successfully included the liquid electrolyte, the antibody
functionalization of the graphene surface and the biomarkers trapping effects, reporting application
driven parameters to the current-voltage characteristics, calculated in a standard commercial device-
circuit simulator.

As a bottom line, it must be outlined that The Graphene Flagship’s 2D Experimental Pilot Line
(2D-EPL), has been offering, starting in 2022, prototyping services to academics, SMEs and companies
which can benefit from the progresses of graphene related materials integration with silicon [166].
The 2D-EPL provide in a multi-project wafer run (MPW) for G-FET circuit including a top/bottom
contact with an optional local or global back and liquid gate. Directed to Bio/Gas/Chemical sensors
this MPW include a stand-alone G-FET circuit as well as a fully CMOS integration.

Top Gate s Anale N
Drain Dielectric | Source | Graphene Channel
Graphene Channel Dielectric

Bottom gate

Substrate

Bottom gate
(A) (B)

Figure 5. G-FET in a typical dual gate configuration (A) and for biosensing application with the

analyte in contact with the graphene layer (B). The application of a voltage at the liquid analyte
permits a state-of-the-art dual liquid gate configuration.
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6. Conclusions

A review of different modelling strategies and methodologies used within the framework of
carbon-based nanoparticles (graphene, carbon nanotubes —CNTs, nanofibers, etc.), and carbon-based
nanomaterials (CNMs) and devices (as sensors) that can be obtained from these materials has been
presented. The range of modelling and simulation techniques generally employed covers from
electronic to continuum models, passing through atomistic and meso-scale. For each case, their
typical uses, some of their weaknesses and strengths, and the latest developments are presented,
including application examples and key references. Sometimes, multi-scale workflows are required,
where these different models and scales are sequentially linked as part of a single analysis. Modelling
devices require multi-physics models, integrating different phenomena that can be present
simultaneously. Then, system type models are used. In this sense, the modelling of G-FET for sensing
applications is included in this review, as specific example of carbon-based devices.

As regards the theoretical study of interactions of charged particles with graphene-based
nanomaterials, a mathematical framework for studying such interactions uses various response
functions of such materials as an input, which may be available from analytical phenomenological
models, ab initio calculations, or even experimental data from optical spectroscopies. This allows
various research groups to quickly develop reliable models for analyzing plasmonic properties of
layered nanostructures including graphene, which can be used to predict the properties for novel
designs of such structures.

Regarding molecular dynamics models, they are typically used to investigate various properties
of CNMs at the atomistic scale, thus helping to predict their physico-chemical behavior and optimize
their performance for specific applications. MD simulations can provide valuable insights into the
thermomechanical properties of car-bon-based structures (e.g., thermal conductivity or elastic
constants) and interface interactions in composite materials, yielding increasingly accurate results
due to ongoing research efforts and the integration of data-driven approaches.

Continuum models include mainly analytical, semi-analytical and numerical approaches.
Analytical models can be solved relatively quickly and often provide a clear and straightforward
understanding of the underlying physics and insights into the relationships between different
variables and parameters. However, sometimes they are limited in terms of the geometrical
complexity that they can address. Numerical models can partially deal with these issues, but are
constrained by their computational cost, size dependency of the results and restrictions in the
development of RVEs with high inclusions volume concentrations and aspect ratios. Overall, good
reproducibility of the properties of the materials are obtained especially at low nanoparticles
concentrations, even for non-linear and time dependent responses, while at higher concentration
more significant deviations are usually observed. This is generally explained due to interactions
between the nanoparticles at high contents that produce non-homogeneous dispersions and
agglomerations. For mechanical properties predictions in the non-linear regime or in terms of
strength, it is generally seen that the results are strongly dependent on the particle/polymer interface
representation and on the aspect ratios of the particles. Similar influences are also observed for other
types of properties, such as thermal ones.

Finally, electrical behavior of G-FET, their analysis and design can be supported through Spice
and Verilog models made freely available by the authors. The theoretical formulation of such models
is available in literature and the main simulation software houses are starting to include them in their
commercial packages. We can expect, for the next future, the introduction of integrated models,
describing mechanical, thermal electrical and optical models, addressing the sensing applications
where this class of devices can offer breakthrough solutions. Modelling techniques are powerful tools
to support materials research in the development of novel applications, particularly in the case of
carbon-based materials and their derived composites and devices. It provides the key information
for identifying new materials, tailoring materials and/or design materials for structures and systems.
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