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Abstract: Lung cancer remains the leading cancer killer worldwide. Early diagnosis can 

effectively increase the patient cure rate but existing diagnostic methods limit early lung cancer 

diagnosis. Therefore, development of a simple but efficient lung cancer screening method is 

important to improvement of both the diagnosis rate and the survival rate of lung cancer patients. 

In this study, ten photosensitive materials with high sensitivity and high specificity were screened 

accurately to construct a microarray sensor that can rapidly identify six types of lung cancer 

biomarkers in exhaled breath. Results from hierarchical cluster analysis (HCA), principal 

component analysis (PCA) and difference maps showed that the classification of the analytes 

agreed with structure similarity laws. The detection results from parallel experiments and 

structurally similar analytes, in turn, cluster into a group; the fingerprints of the different analytes 

have specific response regions. The well-screened sensor chip fabrication workload and cost were 

both reduced by approximately two thirds, while the microfluidic device sensitivity and stability 

increased by approximately 1.3 times their corresponding values before optimization. The dual-

channel device also offers real-time contrast detection and synchronous parallel detection 

functions and has potential application prospects for use in extensive screening of high-risk 

populations for lung cancer. 
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1. Introduction 

Lung cancer is a major disease that poses a serious threat to human health and life. Global 

cancer statistics data show that there are approximately 18.1 million new cases and 9.6 million 

deaths from cancer worldwide annually, and the morbidity and mortality rates of lung cancer are 

the highest among all cancers [1]. Lung cancer has a long incubation period, and if the lifestyles, 

diets and exercise habits of patients can be consciously improved within this latent period, it may 

be possible to reverse or prevent lung cancer. However, because there are no obvious symptoms of 

lung cancer in the early stages, the general public’s awareness of prevention measures is poor; this, 

along with a lack of relevant screening, means that patients often miss the best time for treatment 

of the disease [2]. Therefore, early screening and diagnosis of lung cancer is both the key link to a 

cure and the most important bottleneck in the path toward that cure. Design and development of 

detection methods that can detect the hidden dangers of such a serious disease during the early 

clinical stage and even during the incubation period of lung cancer is of considerable theoretical 

significance and practical value. While traditional lung cancer diagnosis techniques, including 

imaging-based examinations, pathological examinations and microscopic examinations, can 

improve the survival rates of patients to some extent and reduce the mortality rates of high-risk 

groups, they are still limited by trauma, high false negatives, high cost and other factors [3, 4]. 

When a tumor grows in the body, the tumor cells will generate specific substances. These 

substances are then released into the blood and exchanged in the lungs, thus presenting measurable 

highly expressed components in the patient’s expiration. This indicates the feasibility of 

expiration-based detection in the breath of lung cancer patients [5]. Pauling et al. first reported that 

the expiration from an average human contains approximately 250 chemical components [6], and, 

since then, thousands of these components have been identified. There are not many disease-

related substances among these components and the relevant concentration is generally low, at 

around the parts-per-trillion (ppt) level. Even so, the changes in the components and the levels of 

the trace volatile organic compounds (VOCs) in lung cancer patients show significant differences 

when compared with those of healthy people, while they also still reflect the metabolism of the 

lung cancer cells and thus allow the stage of the illness to be determined [7-11]. In breath-based 

testing of lung cancer [12], while commonly used large instrument analysis technology (e.g., gas 
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chromatography (GC), GC-mass spectrometry (GC-MS)) is commercially available, it is a time-

consuming and high-cost approach [13]. Acute olfactory recognition methods can eliminate 

interference to detect the specific smell of lung cancer accurately, but the special sniffers required 

must be trained for a long time [14]. Bionic detection technology (electronic noses) can 

distinguish and identify large numbers of gases, is noninvasive, and offers real-time, convenient 

and efficient operation. The electrochemical sensing method of this type that has attracted most 

widespread attention is highly sensitive and low in cost, but still faces challenges in terms of 

selectivity and anti-interference characteristics [15]; however, the photochemical sensing method 

based on the cross response is intuitive, fast, safe and efficient, and is thus more suitable for 

extensive lung cancer screening of high-risk populations [16, 17]. 

Suslick et al. first proposed the concept of the visual sensor array in 2000 [18], and based on 

this concept, analysis and recognition of the substances in exhalation that originate from lung 

cancer were realized [19]; this effectively promoted the diversification and development of lung 

cancer breath diagnosis. In our previous study, a 6×6 visualized sensor array was constructed to 

detect specific lung cancer markers in an exploratory manner [20], and some advances have been 

made in the lung cancer screening field. However, because of the complexity of the components of 

the clinical breath samples and the low content levels of the disease-related substances, it is easy 

for interference signals to be produced and for signals to be missed, so it is necessary to remove 

impurities and enrichments before detection. Simultaneously, the 36 primarily selected sensing 

materials did not all have recognition functions on the samples, which means that it is necessary to 

reduce the detection costs and the time consumed in chip preparation by trimming the sensing 

materials. To provide further improvements in the accuracy, sensitivity and recognition capability 

of the detection system in this study, an “adsorption-thermal desorption-dual channel sensing 

system” will be constructed independently. Simultaneously, based on the results of previous 

studies, the sensing materials were screened accurately for the molecular structures of lung cancer 

markers to aid in optimization and fabrication of microarray sensors. 

2. Materials and methods 

2.1. Materials and chemicals 

The VOCs and the sensitive materials were supplied by Sigma–Aldrich (St. Louis, MO, 

USA). The porous hydrophobic polyvinylidene fluoride (PVDF) membrane (pore diameter: 0.45 
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µm) was bought from Millipore Co. Ltd. (Bedford, MA, USA). The quartz capillary (inner 

diameter: 0.3 mm) and the 10L Krinkle Tedalr were purchased from Lekang Reagent Supplies 

(Xuzhou, China). 99.999% N2 was bought from the Jiacheng Experimental Instrument business 

department (Xuzhou, China). A Tenax Ta 200 mg stainless steel adsorption tube and an ATDS-

3400B low-temperature secondary thermal desorption apparatus were bought from Boli 

Instrument Co. Ltd. (Shanghai, China). The ultra-pure water was generated using a Millipore 

Direct-Q Water system (Molsheim, France). 

2.2. Precise selection method of sensitive materials 

When targeting the molecular structures of lung cancer markers contained in exhalation, 

accurate screening requires the center sites of the sensitive materials to bind tightly to the analytes 

and generate strong interactions; simultaneously, color changes in the sensing units are caused by 

the good chromophores and the high cross-response efficiency of the sensitive materials. When 

using the above screening method, and based on a previous study, three types of sensitive material 

(Fig. 1) were selected: a response material containing metal ions that could provide electrons or 

metal coordination sites based on a Lewis acid-base reaction, such as tetraphenyl metal porphyrin 

(where the metal is zinc, iron, or manganese); a chromotropic dye based on a zwitterionic solvent 

or gas that would respond to local polar molecules, such as Nile red or disperse orange; and a pH 

indicator based on Brønsted-Lowry acid-base theory that uses proton acidity or hydrogen bond 

binding, such as bromocresol green, bromothymol blue, cresol red, brilliant yellow and 

chlorphenol red. Therefore, when compared with methods that depend on physical adsorption 

alone, the 2×5 visual sensor array that was established using 10 sensitive materials (Tab.1) 

provides greater interaction between the sensitive materials and the analytes. This method can 

reduce detection costs and workloads, and guarantees the detection efficiency of the sensor array. 

2.3 Microarray chip preparation method 

First, a hydrophobic PVDF membrane was cut into smaller membranes with dimensions of 

8×16 mm, which were then placed into a die. A sensitive material solution (approximately 0.1 μL) 

was dropped using a quartz capillary tube under a N2 protective atmosphere and smeared over the 

PVDF membrane until the solution spread into a uniformly-sized dot (diameter ≈2 mm). The 

material was adhered perfectly on the membrane using microcontact technology to prepare the 

2×5 array chip. The prepared array chip was dried and stored in the N2 atmosphere while also 
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being kept out of the light. 

2.4. Calculation methods for RSD and Vi 

The calculation formulas for the relative standard deviation (RSD) and the detection volume 

of the saturated vapor (Vi) are shown in Table 1. The RSD equation is given as follows: 

, where S is equal to the standard deviation and is determined using the equation 

, andX is equal to the mean. A lower percentage in these results indicates greater 

stability in the data set. Vi is calculated using the Antoine equation, which relates the vapor 

pressure to the temperature. 

2.5. Recognition method of sensor 

In this study, the smell is identified by collecting color change information before and after 

the chemical reaction between the sensitive materials and the VOCs. In the dual-channel 

microarray sensing system (Fig. 2), a light-emitting diode (LED) and a complementary metal-

oxide-semiconductor (CMOS) camera combine to convert the chemical reaction signal into a light 

signal (Fig. 2(a)-(c)), and the red (R), green (G), and blue (B) values are collected from each 

sensing element (Fig. 2(d)). Visual difference maps can then be obtained using the relative values 

of RGB change before and after the reactions between each sensor element (Fig. 2(e)-(f)) and the 

analyte, as illustrated in Fig. 2(g). The image signals and data signals are generated by color 

changes in the sensing unit that result from the reaction of the photosensitive materials and the 

analytes; the output signals are then recognized and judged using a pattern recognition system. 

3. Results  

3.1. Fabrication of dual-channel sensor 

A dual-channel sensor was independently designed and constructed, and its branch channels 

were aligned with each of the rows of sensitive materials (Fig. 3(c)) to ensure that the detection 

object and the sensitive material would make contact and react adequately; when compared with 

the single channel sensing method, it is easier to implement real-time contrast detection and 

synchronous parallel detection of test sets of "lung cancer clinical breath specimen and control 

groups," "clinical breath specimen and atmosphere," and "lung cancer clinical breath specimen 

and nitrogen," with improved detection sensitivity and speed. In this study, soft lithography 

technology was used to fabricate the dual-channel microstructure of the sensor, which has 
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appropriate surface tension and is conducive to detection of gas that is slowly passing through the 

structure. Simultaneously, the vertical grinding method, the mosaic method and other methods are 

combined to fabricate an organic glass sensing model and a light-proof box to ensure the air-

tightness of the instrument. 

3.2. Perfection of the sensor system  

To improve its accuracy, precision and detection efficiency, the sensor system was further 

improved during this study (Fig. 3). The mixed expired air samples were concentrated using an 

enrichment tube that was equipped with Tenax Ta 200 mg (Fig. 3(a)). After thermal desorption 

(Fig. 3(b)), the VOCs pass over the self-made dual-channel microarray chip (Fig. 3(c)) and react 

with the sensitive material on the chip. This method can avoid false signals and missed signals 

effectively and is intended to provide an important guarantee and a strategy for effective detection 

of the clinical breath samples in the later stages. 

3.3. Discrimination of VOCs 

VOC-saturated vapor was extracted using a microsyringe and was then injected into a bag filled 

with N2 (10 L) and connected to the dual-channel microarray sensor to realize 0.6 L/min constant 

velocity when driven by a pump. VOCs were detected at four different concentrations, and each 

experiment was repeated five times. The detection temperature was controlled at 26°C, and the 

relative humidity was 32%. The response time was 7 min. Information including the calculated 

and measured test results for the 10 ppm VOCs are shown in Table 2; the RSD within the control 

group is 0.1%, thus indicating that the self-built sensor shows stable performance. The RSDs of all 

the analytes are within the 1.7% to 2.9% range (i.e., <3%), thus indicating the good repeatability 

of the proposed method. 

3.4. Fingerprint analysis of VOCs 

Figure 4 illustrates the difference maps of the six VOCs at four different concentrations. To 

demonstrate the effectiveness of the sensor clearly, the initial RGB value was amplified ten-fold. 

The results show significant crosswise differences among the difference maps of the analytes, 

where targets with similar structures have similar regional results; slight differences occur among 

the results for the same analyte at different concentrations longitudinally, with a positive 

correlation reflecting the increase in the response signals of the difference maps. This study has 

thus realized effective identification of multiple lung cancer markers in exhaled breath and the 
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detected concentrations can reach the ppb level; this is intended to provide solid technical support 

for more comprehensive detection of these lung cancer markers. 

3.5. Response data analysis of the VOCs  

The data were analyzed using direct digital image acquisition technology, and each analyte 

was described using a 30-dimensional vector (RGB differences of 10 sensitive substances). The 

Euclidean distance (ED) is generated using equations with the following formula: 

ED=sqrt[(R1−R1
0)2+(G1−G1

0)2+(B1−B1
0)2+…(R10−R10

0)2+(G10−G10
0)2+(B10−B10

0)2]. The 

Euclidean distance-response time curve (Fig. 5) shows that the equilibrium time for the six VOCs 

is 6 min; the Euclidean distance of an analyte containing an active group was longer than that of a 

relatively stable analyte, e.g., the Euclidean distances of benzenes and 1,2,4-trimethylbenzene 

were longer than the corresponding distances for decane and undecane. The detection results for 

the N2 control group (Euclidean distance of close to 0, RSD value of 0.1%) shows that the system 

has weak interference and high stability. 

3.6. Pattern recognition analysis of VOCs 

Principal component analysis (PCA) is performed to visualize the data, and the two main 

component score vectors are used to draw the two-dimensional scatter diagram for the five times 

parallel data of the six VOCs at 10 ppm. As illustrated in Fig. 6(a), the two components that 

account for 75.2% of the total amount of information can be used to separate the analytes, and 

there is no overlap among scatter plots for all samples. When the parallel samples are aggregated 

together, the analytes with similar structures are close to each other, while the different structural 

analytes are located far apart. Hierarchical cluster analysis (HCA) is a process in which an abstract 

analyte is separated into similar analytes. The response system tree obtained in this study 

represents the multivariate distances among the analytes in the 30-dimensional RGB color space. 

The HCA tree diagram illustrates that the detection results from the parallel experiment initially 

aggregate into a cluster; classification of the analytes matches the structural similarity pattern of 

the VOCs; the detection objects are then classified into different sets according to their similarity 

(Fig. 6(b)). The illustrations visually indicate the specific response areas of the three VOCs. 

4. Discussion 

This research is based on combination of the cross-response principle with the pattern 

recognition method to achieve a characteristic fingerprint. The pattern recognition algorithm can 
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obtain the properties, concentration and similarity of the object. The independently constructed 

dual-channel microarray sensor system offers the advantages of rapid noninvasive testing at low 

cost and with high sensitivity, and is thus an ideal screening method for major diseases such as 

lung cancer. When compared with the single-channel sensing method, it is easier to realize 

multiple real-time controlled experiments and double-sample synchronization parallel experiments 

using the proposed system, which effectively improves the experimental accuracy and the 

detection speed. The study successfully achieved rapid, high-sensitivity detection of most 

representative lung cancer markers, and the results of analysis of the differential spectra, HCA and 

PCA consistently showed that the classification of the analytes conformed to the law of structural 

similarity, which is intended to provide an important guarantee for effective detection of the 

clinical breath samples at a later stage. 

4.1. Optimization effects of the sensor 

When lung cancer occurs, lipid peroxidation takes place in the unsaturated fatty acid on the 

cell membrane or on the subcell membrane and generates alkanes that are difficult to dissolve or 

metabolize in blood and are excreted out via expiration; aldehydes are generated during the 

detoxification process of cytochrome p450 and the metabolism of tobacco; and aromatics are 

generated from the effects of smoking, drinking, pollution and radiation, causing peroxidation 

damage to unsaturated fatty acids on the cell membranes, protein and DNA. Lung cancer-related 

VOCs are released slowly via excretion in relatively high concentrations. For the most widely 

accepted three types of VOC described above, ten types of sensitive material were screened 

precisely to construct a 2×5 microarray for sensing of six VOCs at 10 ppm. The sensitivity 

S=△E÷C, where ΔE is the Euclidean distance difference between the sample and the blank; and C 

is the concentration of the detected substance. In this case, a larger S value indicates higher 

sensitivity. Comparison of the optimized method (dual channel 2×5 microarray) and the primary 

method (single channel 6×6 array) confirmed the feasibility and validity of the proposed method. 

The results (Fig. 7) show that the sensitivity and the stability of the optimized method increased by 

approximately 1.3 times for the microchannels constructed by soft lithography in microfluidic 

devices, while the detection speed increased by two times, and the workload, cost and production 

time for the chips were reduced by two-thirds for two-channel high speed data acquisition system 

and well-screened photosensitive materials. Therefore, this study reduces the detection cost and 
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the corresponding workload while also effectively improving the detection sensitivity and stability 

and the detection speed.  

4.2. Cross-response mechanism of the sensor 

The dual-channel microarray sensor established in this work showed good stability and 

sensitivity, which is attributed to the molecular interactions that occur between the sensitive 

materials and the target materials on the sensor array (Fig. 8); the sensitive materials that contain 

hydroxyl may form hydrogen bonds with the aldehydes; the sensitive materials that contain 

benzene rings may form π–π interactions with the aromatics; acid-base indicators may have Lewis 

weak acid base reactions with aldehydes/aromatics on the surface; porphyrins may form metal 

coordinations with the VOCs; and the sensitive materials may have Van der Waals' force and 

physical adsorption interactions with the target molecules. These interactions realize the cross-

responses for the VOCs in a class-selective manner via synergetic effects. Compared with other 

techniques like electrochemical method, ion mobility spectrometry and so on, the visualized 

microfluidic channels method constructed in this paper was a new attempt and was of the 

characteristics of intuition, simplicity, celerity, accuracy and little interference.  

In this study, the Tenax Ta 200 mg enrichment device, the ATDS analyzer and the dual-

channel microarray sensor are integrated together to realize purification and enrichment/thermal 

desorption/sensing detection for multicomponent samples, which can effectively avoid generation 

of interference signals and missed detection signals while improving the accuracy of the sensing 

analysis. Optical materials with stable performances, high sensitivity, active centers and 

chromophores have been accurately screened as the sensing units of the microarrays to improve 

their selectivity. The dual-channel microarray sensor was constructed to realize real-time contrast 

detection and synchronous parallel detection, thus enhancing the recognition ability of the sensor 

system. This study provides an important guarantee and a strategy for noninvasive, rapid, 

economical and efficient lung cancer screening, and has potential application prospects for both 

extensive lung cancer screenings and large-scale health screenings. 

5. Conclusions 

In this paper, a prototype of a highly sensitive and selective dual-channel microarray sensor 

based on porphyrins and dyes has been fabricated for qualitative and semi-quantitative analysis of 

analytes. In this research, a series of color difference maps for six analytes were obtained 
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precisely, and the RGB response signals were further analyzed using PCA and HCA. The analysis 

results showed that the microarray sensor provided a rapid response within 6 min for VOC 

identification with high sensitivity; this is possible because the sensing materials have high affinity 

and selectivity for the analytes. The dual channel microarray sensor’s speediness and high 

sensitivity mean that the noninvasive technique will be suitable for lung cancer screening and 

other types of large-scale health screening. 
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Table 1 Calculation formulas for Vi and RSD 

 

Table 2 RSD and Vi of 10ppm VOCs and N2 
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Name Calculation formulas 

Vi 

Antoine equation: lg Pi =A–B ∕ (t+C) 

Ci = P i ∕ RT × 22.4 ∕M × (273+ t) ∕273 

Vi= Cs / Ci×Vs 

RSD  

 

 

A, B, C: Antoine parameters; Ci: gas concentration of saturated vapor, ppm; t: detection temperature, °C; Vi: 

detected volume of saturated vapor, mL; Cs: detected concentration, 10 ppm; Vs: 10 L; RSD: relative standard 

deviation; X: average value; S: standard deviation. 
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Table 2 

 

Category Name Pi T/ K Vi / mL %RSD 

Alkanes 

decane 150 293 16.7 2.0 

undecane 140 293 17.8 2.1 

Aromatic compounds 
benzene 13820 300 0.2 1.8 

1,2,4-trimethybenzene 280 293 9.0 2.9 

Aldehydes 
hexanal 1150 293 2.2 1.7 

heptanal  400 298 6.3 2.2 

Control group N2 298 10 0.1 
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Figures Captions 

 

Fig. 1. Three sensitive material types for microarray construction. 

 

Fig. 2. Optical control-signal acquisition system for microarray sensor and its working principle 

(a-CCD camera; b-microarray; c-LED light source; d-computer; e-initial image; f-final image; g-

difference map). 

 

Fig. 3. Enrichment and thermal desorption processes for dual-channel microarray sensing system 

(a-Tenax Ta 200 mg enrichment device; b-ATDS-3400B thermal desorption device; c-Dual-

channel microarray sensor device; d-Computer). 

 

Fig. 4. Digital color difference maps of the sensor array for six VOCs at four concentrations. 

 

Fig. 5. Euclidean distance-response time curves for six VOCs at 10 ppm. 

 

Fig. 6. (a) Scatter diagram of PCA, and (b) dendrogram of HCA for six VOCs at 10 ppm; the 

corresponding difference maps are shown in the inset.  

 

Fig. 7. (a) Euclidean distance and (b) digital color difference maps of the optimized method and 

the primary method for six VOCs at 10 ppm. 

 

Fig. 8. Possible microarray recognition mechanism for analytes. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2019                   doi:10.20944/preprints201907.0150.v1

https://doi.org/10.20944/preprints201907.0150.v1


 

 

 

 

 

 

Fig. 7. 
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Fig. 8. 
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