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ABSTRACT: In the last decade, an increasing awareness was directed to the role of Vitamin D in non-skeletal
and preventive roles for chronic diseases. Vitamin D is an essential hormone in regulating
calcium/phosphorous balance and in the pathogenesis of inflammation, insulin resistance and obesity. The
main forms of vitamin D, Cholecalciferol (Vitamin D3) and Ergocalciferol (Vitamin D2) are converted into the
active form (1,25-dihydroxyvitamin D) thanks to two hydroxylations in the liver, kidney, pancreas and immune
cells. Some anti-inflammatory cytokines are produced at higher levels by vitamin D, while some pro-
inflammatory cytokines are released at lower levels. Toll-Like Receptor (TLR) expression is increased, and a
pro-inflammatory state is also linked to low levels of vitamin D. Regardless of how it affects inflammation,
various pathways suggest that vitamin D directly improves insulin sensitivity and secretion. The level of
vitamin D in the body may change the ratio of pro- to anti-inflammatory cytokines, which would impact insulin
action, lipid metabolism, and the development and function of adipose tissue. Many studies have
demonstrated an inverse relationship between vitamin D concentrations and pro-inflammatory markers,
insulin resistance, glucose intolerance, metabolic syndrome, obesity and cardiovascular disease. It is interesting
to note that several long-term studies also revealed an inverse correlation between vitamin D levels and the
occurrence of diabetes mellitus. Vitamin D supplementation in people has controversial effects. While some
studies demonstrated improvements in insulin sensitivity, glucose and lipid metabolism, others revealed no
significant effect on glycemic homeostasis and inflammation. This review aims to provide insight into the
molecular basis of the relationship between vitamin D, insulin resistance, metabolic syndrome, type 1 and 2
diabetes, gestational diabetes, and cardiovascular diseases.

Keywords: vitamin D; insulin-resistance; metabolic syndrome; type 1 and 2 diabetes; gestational
diabetes; cardiovascular diseases and metabolism

INTRODUCTION

In recent years, the attention to the role of vitamin D in different fields is growing. Vitamin D is
a liposoluble prohormone with endocrine, autocrine, and paracrine functions and is fundamental to
bone metabolism [1]. Vitamin D has a role in extra-skeletal functions; consequentially, there is a
relationship between vitamin D deficiency and some pathologic conditions, including diabetes,
metabolic syndrome, non-alcoholic liver disease, autoimmune diseases, hypertension, cardiovascular
disease and cancer [2-9] (Figure 1). Moreover, the recent pandemic of COVID-19 has underlined the
possible therapeutic role of Vitamin D in some aspects of the infection and the association between
severe vitamin D deficiency and COVID-19-related health outcomes [10-12]. Many studies have
reported the existence of immuno-modulatory effects of vitamin D and that its deficiency may be
associated with a sub-inflammatory state [13]. Diabetes and metabolic syndrome represent a major
clinical and public health problem. The disease burden related to diabetes and metabolic syndrome
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is increasing significantly, particularly in older subjects [14,15]. According to the International
Diabetes Federation, data released in 2021 showed that 537 million adults live with diabetes
worldwide. The total number is predicted to rise to 643 million by 2030 and to 783 million by 2045,
instead of the previous estimation of 693 million [16]. Many epidemiological and observational
studies have found an association between vitamin D insufficiency and the incidence of type 1 and
type 2 Diabetes [17-21]. In this sense, many studies reported the existence of different mechanisms
able to explain the potential role of vitamin D in glucose metabolism, such as preservation of the -
cell function and slow failure of residual (3-cell function in patients with type 1 diabetes and latent
autoimmune diabetes [22,23]. Furthermore, vitamin D determines direct stimulation of insulin
secretion and improves peripheral insulin resistance by reducing systemic inflammation through the
vitamin D receptor on pancreatic beta cells and in muscles and liver [24-26]. This last mechanism also
plays a key role in metabolic syndrome development [27]. The lack of vitamin D receptors in
cardiovascular tissue increased ventricular mass dysregulation of metalloproteinases and fibroblasts,
promoting the fibrotic process and ventricular dilatation [28].

Given this background, an extensive search of SCOPUS, PubMed, and CENTRAL was
performed using the following string ((vitamin d) OR (calcifediol)) OR (ergocholecalciferol)) AND
(systematic review [pt] OR meta-analysis [pt]) AND 2017:2023 [dp]). This review aims to explore the
molecular basis of the role of vitamin D in insulin resistance, type 1 and 2 diabetes, gestational
diabetes, metabolic syndrome and cardiovascular disease.
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Figure 1. The pleiotropic effect of vitamin D |Risk of developing GDM

1. VITAMIN D METABOLISM

Vitamin D is a liposoluble prohormone that humans can acquire through nutrition and by
synthesis in the skin during exposure to UV radiation [29]. Vitamin D3 (Cholecalciferol) is the main
source of vitamin D, and vitamin D2 (Ergocalciferol) are the forms through which vitamin D exists.

Most of the amount of Cholecalciferol comes from the endogenous production in the skin after
sun exposure; a small amount of Cholecalciferol has an exogenous origin and derives from foods.
Ergocalciferol is contained in dairy products and nutritional supplements and is the vegetal form of
vitamin D [30].
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Once in the circulation, Cholecalciferol and Ergocalciferol are converted in liver tissue by the
action of vitamin D-25-hydroxylase (CYP2R1) to 25-hydroxyvitamin D or calcifediol [25 (OH) DJ;
subsequently, 25(OH)D undergoes a second conversion, by the enzyme 25-hydroxyvitamin D-1a-
hydroxylase (CYP27B1), into active and bioavailable vitamin D (1,25-dihydroxyvitamin or calcitriol
- CT) [1,25 (OH)2 D] [31-33]. This reaction takes place mainly in the kidney. At that point, 1,25 (OH)2
D performs its functions by binding to the vitamin D receptor (VDR), expressed in the cytoplasm of
cells, forming a VDR-RXR-hormone complex (vitamin D receptor - retinoid X receptor) through the
stimulation of the heterodimerization of the VDR with the retinoid X receptor [15]. In the nucleus, it
regulates the expression of many genes through their up or downregulation [32]. 1,25 (OH)2 D has
about 1000-fold higher affinity than 25(OH) for the VDR. CYP27B1 is also expressed in other tissues,
like activated macrophages, microglia, parathyroid glands, breast, colon and keratinocytes; 1,25
(OH)2 D has autocrine and paracrine effects [34,35]. It is known that vitamin D is associated with
bone health and can play an essential role in other systems, including the immune system. These
extra skeletal actions are available because of the presence of VDR and hydroxylation enzymes in
different tissues such as the pancreas, kidney, muscles, liver and others. Vitamin D supplementation
(VDS) has hormonal, anti-inflammatory, anti-apoptotic, anti-fibrotic activities, antioxidant and
immune-modulatory effects [36,37], as well as plays a role in insulin resistance, through the reduction
of the expression of some pro-inflammatory cytokines, like interleukin-1 (IL-1) and IL-6 [38].

2. VITAMIN D AND INSULIN RESISTANCE

2.1. Vitamin D, Insulin-resistance and molecular mechanisms

Vitamin D is involved in several non-skeletal health diseases, including common metabolic
disorders like Metabolic Syndrome (MetS), Type 2 Diabetes (T2DM), Impaired Fasting Glucose (IFG),
Non-Alcoholic Fatty Liver Disease (NAFLD) and Polycystic ovarian syndrome (PCOS), that are all
characterized by insulin resistance (IR) [39-41]. It has been demonstrated that there is an inverse
association between vitamin D deficiency and Homeostatic Model Assessment of Insulin Resistance
(HOMA-IR), which is used as the measure of insulin resistance, defined as an increase in insulin
secretion necessary for the maintenance of glycemic homeostasis [42]. Therefore, supplementation of
vitamin D reduces the risk of insulin resistance and circulating levels of insulin [42,43]; the inverse
correlation between vitamin D and HOMA-IR gets more robust with increasing Body Mass Index
(BMI) [42].

Molecular mechanisms underlying the pathophysiological hypothesis of the possible association
between hypovitaminosis D and insulin resistance are mainly associated with the expression of
insulin-receptors and the production of inflammatory cytokines and polymorphism of VDR
expressed in the 3-cells of the pancreas. Based on the above, hypovitaminosis D and insulin resistance
are genetically interrelated [40,42,43].

Concerning insulin receptor expression, it was found that vitamin D increases receptor
expression in muscle, liver and adipose tissue, improving insulin sensitivity [42]. In detail, it was
shown that vitamin D works as an epigenetic factor, affecting the transcription level of many genes
involved in insulin sensitivity, like Insulin Receptor Substrate (IRS), which is increased by 2.4-fold in
high-fat mice models treated with vitamin D [42]. As a result, insulin sensitivity improves in the
target tissues because IRS protein increases insulin sensitivity [42]. In addition, vitamin D improves
the sensitivity of insulin receptors to insulin and glucose transport and promotes the conversion of
proinsulin to insulin [43-45].

Vitamin D deficiency increases the expression of pro-inflammatory cytokines, which can be the
cause of insulin resistance in patients with relatively higher BMI, it has been observed that obesity is
associated with hypovitaminosis D because of three reasons: the less exposure to sunlight, the low
intake of vitamin D through nutrition and the sequestration of vitamin D in the adipose tissue [42].
In addition to this mechanism, it was found that high secretion of the anti-diabetic hormone leptin,
whose levels are deregulated by abdominal adiposity, is associated with insulin resistance. That
means that high doses of vitamin D supplements can decrease leptin levels and reduce BMI in insulin-
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resistant patients [42]. This effect would be linked to a reduced caloric intake mediated by the binding
of vitamin D to its receptors in the paraventricular nucleus of the hypothalamus.

As regards VDR, it is an endocrine member of the nuclear receptor superfamily for steroid
hormones, and it works as a transcription factor that mediates the action of vitamin D through control
of the expression of hormone-sensitive genes, like Calmodulin-Dependent Kinase (CaMKs), which in
turn stimulates VDR-Mediated transcription by phosphorylation levels of VDR [40]. The function of
[-cells may be affected by vitamin D through direct and indirect mechanisms: the direct mechanism
consists of binding of vitamin D to VDR in 3-cells, helping in the release of insulin secretion [42,46];
the indirect mechanism is related to the regulation by vitamin D of calcium flux through the
pancreatic 3-cell because insulin secretion is strongly dependent on calcium [46]. This could be the
reason why tissue calcium levels (adipose tissue and skeletal muscle) affect IR [46]. It was recently
discovered that deletion of macrophage VDR promotes insulin resistance [40].

Recently, it was found that the enzyme activating vitamin D, 1-a-hydroxylase, is present in [3-
cells [46]. Other elements that support the role of vitamin D in the secretion of insulin are the presence
of vitamin D response elements (VDRE) in the promoter region of the insulin gene and the activation
of the insulin gene by vitamin D [42].

2.2. Studies and research

A recent meta-analysis, which included 9232 participants, has studied genetic associations of
four polymorphisms in the VDR with insulin-resistance diseases, particularly Taql, Bsml, Apal, and
Fokl variants. It was found that there is an association between insulin-resistance-related diseases
(mostly with PCOS and MetS than T2DM) and VDR Apal variant (mostly G allele than T allele) in
Asians and population who lived in middle latitude district, Bsml (mostly A allele than G allele) and
Tagql variant (T/C allele) in dark-pigmented Caucasian. At the same time, there was no association
between VDR Fokl variant and insulin-resistance-related diseases in populations with different skin
pigments and in different latitudes [40].

Beneficial effects of high-dose (vitamin D >2000 mg/day and calcium > 1000 mg/day) and in both
short-term and long-term (> 12 weeks) combined vitamin D and calcium supplementation were
found [46]. However, the results obtained so far are conflictive because some trials reported that
supplementation of vitamin D does not reduce insulin resistance [29]. Further studies, like long-term
and large-scale randomized controlled trials, are needed.

3. VITAMIN D AND TYPE 2 DIABETES MELLITUS (T2DM)

3.1. Vitamin D, T2DM and molecular mechanisms

It is well known that T2DM is a public health challenge worldwide, accounting for
approximately 87%-91% of all cases of diabetes. Type 2 Diabetes Mellitus is a chronic metabolic
disorder characterized by inadequate insulin production and consequentially high blood glucose
[47]. T2DM constitute an essential risk factor for premature death and adverse complications, micro
and macrovascular, such as blindness, stroke, heart attack, amputation, and kidney failure [48], and
also determines and impairs quality of life [49]. According to OMS, 762 million people worldwide
suffer from prediabetes [50], which is strongly connected with obesity [51].

Lack or insufficiency of Vitamin D is associated with macrovascular and microvascular
complications of T2DM [52]. Obesity, prediabetes, and T2DM are often characterized by low
circulating vitamin D levels [53].

VDR implicated in the systemic effect of vitamin D, is also expressed in high insulin-sensitive tissues
(pancreas, adipose tissue, muscle) [54]. In our body, vitamin D is an epigenetic factor mediating the
transcription level and enhancing insulin sensitivity [42].
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3.2. Studies and research

According to a recent meta-analysis, vitamin D supplementation improves glycemic
homeostasis and insulin sensitivity [55]. It seems also to work as an anti-diabetic factor by regulating
insulin sensitivity and production, controlling parathyroid hormone levels and anti-inflammatory
cytokine effects [56,57]. Vitamin D has been identified as a potential prevention and treatment
strategy [58]. Low 25-hydroxyvitamin D (25(OH) D) levels are highly prevalent among T2DM
patients [59]. The effects of vitamin D supplementation may explain the association between vitamin
D and T2DM, because it prevented the increase in plasma HbAlc levels and in IR [60-62].

The Gold Standard for evaluating glycemic control in T2DM is represented by glycated
hemoglobin (HbA1c) in line with The UK Prospective Diabetes Study [63].

In line with recent studies, vitamin D supplementation is implicated in plasma HbAlc reduction,
suggesting that vitamin D can contribute in reducing the development of diabetic complications [64].
Also, studies have found that vitamin D supplementation improved beta cell function [65] and insulin
sensitivity [54,66-68], especially in persons at high risk for diabetes.

In particular, vitamin D has a role in lipid metabolism in adipose tissue [69] and may decrease
inflammation [70]. In pancreatic tissue, Vitamin D protects P-cells function, reducing local
inflammation [71,72]. A key role is represented by the activation of the VDR expressed in the
pancreatic beta-cell. Indeed, mice lacking VDR have impaired insulin secretion [73], and the addition
of Vitamin D stimulates pancreatic cells, resulting in increased insulin secretion [74]. It is worth
outlining that the human insulin receptor gene promoter contains a Vitamin D response element,
suggesting that transcriptional activation of the gene may be favoured by calcitriol administration
[75,76]. A calcium-dependent mechanism mediates insulin secretion. Vitamin D may play a role [77]
in regulating the opening and closure of calcium channels, mediating the calcium flux in beta cells
and interacting with receptors (VDR and 1,25D3-MARRS). Therefore, vitamin D deficiency causing
an alteration in calcium flux could interfere with normal insulin secretion [78,79]. In addition, vitamin
D is involved in skeletal muscle metabolism, insulin sensitivity, and lipid composition [80].
Consequently, increasing circulating vitamin D concentration could affect tissue energy and
metabolism, improving systemic insulin sensitivity. The skeletal muscle is crucial in insulin
sensitivity, involving postprandial period 70%-90% of total glucose disposal [81-83]. Thus, vitamin
D supplementation might improve skeletal muscle glucose handling and, as a consequence, insulin
sensitivity [84]. Vitamin D also regulates the adipose tissue, and hypovitaminosis may play a role in
obesity and fat mass due to the restoration of Vitamin D, a fat-soluble vitamin, in the adipose tissue.
[85]. According to Bajaj et al., hypovitaminosis also seems to increase microvascular complications
such as diabetes retinopathy, diabetic neuropathy, diabetic nephropathy, and diabetic foot ulcers
[86], and a meta-analysis demonstrated that increased circulating vitamin D levels protect the kidney
from injury and ameliorate proteinuria in T2DM patients [87]. Concerning microvascular
complications, vitamin D deficiency may be involved in diabetic neuropathy interfering with
nociceptor functions by causing diabetic nerve damage [88], and diabetic retinopathy increasing the
severity and playing a role in the pathogenesis through its effects on the immune system and
angiogenesis [89]. Lastly, lack of Vitamin D promotes macrovascular complications such as
endothelial dysfunction and arterial stiffness [90,91], peripheral arterial disease and carotid arterial
plaque [92]. Hence, hypovitaminosis D (as deficiency or insufficiency) embrace several complications
in diabetic patients; therefore, screening for vitamin D levels in T2DM patients may play a crucial
role in defining the outcomes.

4. VITAMIN D AND TYPE 1 DIABETES MELLITUS (T1DM)

4.1. Vitamin D, T1DM and molecular mechanisms

Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease related to an immune system
alteration that destroys pancreatic £ cells with a consequent quantitative or qualitative dysfunction
of insulin [93]. The prevalence of TIDM has steadily increased over the past few decades in most
countries [94]. Patients with T1IDM are genetically susceptible to developing autoimmune diseases,
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with an increased risk of developing the disease among first-degree relatives [95,96]. Currently, the
research aims to identify genetic and environmental factors predisposing to the onset of the disease.
Current knowledge suggests that an important role could be played by vitamin D, which in the first
years of life modulates the still-growing immune system, which plays a crucial role in the
development of self-tolerance [97-99]. Vitamin D signalling impairment, especially in the first years
of life, increases the risk of autoimmunity [100-102]. Given the role that vitamin D plays in the
immune system, it is believed that it may have a protective role in the development of TIDM [103].

The discovery of vitamin D receptors throughout the body has opened up new reflections on its
possible implication in other diseases, including autoimmune diseases such as TIDM and multiple
sclerosis [104]. Indeed, VDR is also expressed in immune cells, effectively regulating innate and
adaptive immune responses [105].
The expression of 1a-hydroxylase CYP27B1 in specific immune system cells explains how these can
regulate vitamin D levels [106]. Some studies have shown that the activity of
macrophages/monocytes, antigen pre-transmitter cells, T cells, and B cells is regulated by vitamin D
[107]. Vitamin D stimulates the innate immune system by inducing antimicrobial substances, but an
overall opposite effect on adaptive immunity has been reported [108]. Indeed, it plays a role in the
modulation of the activity of dendritic cells [109]. In the presence of 1,25(0OH)2D3, dendritic cells
produce fewer inflammatory factors such as tumor necrosis factor-a and interleukin-12, producing a
less anti-inflammatory tolerance state characterized by increased production of interleukin-10 [109].
In the same way, in late immune responses, 1,25(0OH)2D3 promotes macrophage differentiation,
which is essential for the activation of involutional inflammation in animal models of T1DM, to the
anti-inflammatory phenotype (M1->M2) via the VDR- PPARgamma signalling pathway [110]. More
recently, vitamin D metabolites have also been reported to act directly on various T cell populations.
After activation, T cells begin to express VDRs and are the primary targets of calcitriol in regulating
immune responses [107]. Vitamin D differentiates naive T cells into T helper two cells and regulatory
T cells (T-reg) [111]. In this sense, a randomized controlled trial showed that monthly
supplementation of healthy humans with 140,000 IU cholecalciferol for three months significantly
increased peripheral blood T-reg cell counts compared to placebo [112]. In addition, the binding
between vitamin D and VDRs expressed in active B lymphocytes leads to the inhibition of
immunoglobulin production [113]. These properties of vitamin D, on the regulation of the
inflammatory response are very interesting in TIDM because, in the pancreas of affected patients,
there is an inflammatory infiltrate composed of T lymphocytes, B lymphocytes and macrophages. In
animal models of T1DM, such as nonobese diabetic mice, high doses of calcitriol and non-high
calcium vitamin D analogues arrest involutional inflammation, as indicated by reduced effector T cell
numbers and induction of T-reg cells [114-116].

Fronczak et al. reported that increased maternal intake of vitamin D in food reduced the risk of
autoimmunity against pancreatic beta cells in their offspring; there is no effect of lalpha,25-
dihydroxyvitamin D3 on residual beta cell function and insulin requirements in adults [117].

4.2. Studies and research

According to evidence (systematic reviews, meta-analyses) [118,119] on the link between
vitamin D levels and T1DM, adequate vitamin D status in the first years of life reduces the risk of
diabetes [17,97,99,120], and vitamin D deficiency is more common in people with T1IDM [121,122]. A
cross-sectional study revealed that 70% of children with T1IDM had a vitamin D deficiency [123], and
rickets are associated with an increased risk of TIDM [124]. Also, the TEDDY study reported that a
higher infant concentration of 25(OH)D is associated with lower islet autoimmunity [125]. In contrast,
a birth-cohort study in Finland suggested that sufficient vitamin D supplementation could assist in
decreasing T1DM risk [124].

The risk of developing T1IDM before 15 age is associated with a reduction in serum vitamin D
levels as demonstrated by a case-control study that was part of EURODIAB (OR 0.63) [126]. Human
studies report the relationship between VDR polymorphisms and T1DM risk and 3 cell function.
Although 25D is the major circulating form, pancreatic {3 cells can convert 25D to 1,25D [127]. This
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implies that a small role in beta cell survival in TIDM can be played by exogenous and circulating
1,25 D. Anyhow, rising 25D levels could be helpful to as a substrate for the formation of 1,25D by
beta cells while circulating 1,25 D could exert autocrine and paracrine effects. Considering beta cell
injury at the clinical diagnosis, vitamin D is much less likely to be helpful after disease onset [128]. A
meta-analysis conducted by Najjar et al. found no critical effect of a genetically determined reduction
in 25(OH)D concentrations by selected polymorphisms on T1IDM risk. However, a strong association
was shown in some observational studies [129].

5. VITAMIN D AND GESTATIONAL DIABETES MELLITUS (GDM)

5.1. Pathophysiology of vitamin D levels in pregnancy

In pregnancy, numerous physiological alterations of the maternal metabolism are necessary for
the normal development of the fetus. During pregnancy, a relationship between the maternal and
fetal vitamin D status underlines the importance of an adequate vitamin D level in this period.
Gestational vitamin D metabolism adaptations include a characteristic physiological growing of
1,25(0OH)2D in maternal blood. It rises at the beginning of gestation and reaches its highest levels in
the third trimester when it presents two to three times the levels found in non-pregnant women.
Several studies have shown a correlation between vitamin D levels and GDM [130]. GDM is defined
as glucose intolerance, and IR was first diagnosed in pregnant women [131]. GDM affects up to 14%
of pregnancies [132]. Inadequate glycemic control in women with GDM leads to short- and long-term
maternal complications, including gestational hypertension, preeclampsia, macrosomia, congenital
abnormalities, hypoglycemia in the newborn, and an increased risk of T2DM after pregnancy
[133,134]. GDM is compared a form of impaired glucose tolerance, similar to prediabetes in non-
pregnant individuals, and represents a global public health problem related to serious health
problems in the mother and newborn [135]. Women with a history of GDM have an increased risk of
developing IR syndrome (IRS) and cardiovascular disease (CVD) later in their lives [136]. The rate of
women who develop T2DM within 5-10 years ranges from 20 to 60% [137,138]. The risks of occurrence
of MetS and CVD are three times higher in women with GDM. Indeed, children born to women with
GDM have a higher risk of developing impaired glucose tolerance and obesity. The pathogenesis of
GDM has not yet been cleared. Some studies [139,140] suggest that the onset and development of
GDM are closely related to genetic factors (insulin resistance, family history of diabetes and immune
dysfunction) and environmental (dietary structure and pancreatic (3 cell damage).

5.2. Vitamin D, GDM and molecular mechanisms

Vitamin D can support insulin secretion and normal glucose tolerance [141]. Vitamin D
deficiency seems closely related to the onset of GDM. Among the factors that may play a role in the
onset of GDM is chronic low-grade inflammation [142]. The increased degree of inflammation in early
pregnancy is related to an increased risk of GDM and the development of hyperglycemia [143].
Moreover, in women with GDM, oxidative stress has been found [144-146], while antioxidant status
is down-regulated [147]. Oxidative stress plays an important role in both the pathogenesis and
complications of GDM [148]. A significant inverse association exists between serum vitamin D
concentrations and low-grade inflammation [149]. The low levels of vitamin D trigger inflammatory
responses through the NF-kB pathway by regulating p-p65/RelB in pancreas tissue [150] upwards.
Excessive Ca2+ and reactive oxygen species (ROS) in 8 cells, both in vitamin D deficiency, result in
cell death and promote diabetes [151].

Furthermore, some genes that protect against the onset of diabetes are inactivated by
hypermethylation [152]. Vitamin D prevents hypermethylation by increasing the expression of DNA
demethylases in more regions of genes that protect against diabetes [151]. In addition, a significant
inverse association was also found between serum calcium concentrations, which is positively
regulated by vitamin D, and obesity risk, as another diabetes risk factor [153].

do0i:10.20944/preprints202309.0595.v1
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5.3. Studies and research

Several longitudinal prospective cohort studies have reported the risk of GDM with serum
vitamin D concentrations in early pregnancy [154]. A meta-analysis conducted by Chunfeng Wu et
al. [155] showed that vitamin D supplementation has a beneficial effect on lipidic assessment:
increasing HDL-Cholesterol (HDL-C) levels and is useful for reducing serum Total Cholesterol (TC)
and LDL-Cholesterol (LDL-C) levels of patients with GDM. However, no single opinion exists
between this meta-analysis and the previous ones [156,157]. Preceding meta-analyses [157] pointed
out that vitamin D can improve LDL-C levels but does not affect triglycerides (TG), TC and HDL-C.
The short duration of the studies could explain this. Several studies [158-160] have shown that when
GDM patients have abnormal lipid metabolism, their risk of pregnancy complications increases.
Studies [161,162] proved that vitamin D deficiency is associated with a higher incidence of T2DM,
and vitamin D supplementation can dramatically increase insulin sensitivity in people with IR and
vitamin D deficiency. IR and insufficient secretion underlie the pathogenesis of GDM [163].
According to a network-metanalysis conducted by Shixiao Jin et al. to evaluate the effects of vitamin
D supplementation was the best for reducing fast plasma glucose (FPG) and improving HOMA-IR
compared to the effects of other nutritional strategies [164]. Vitamin D deficiency is a frequent
phenomenon after pregnancy; one study showed that at 25-28 weeks of gestation, the concentration
of 25(OH)D (the active form of the vitamin within the body) in GDM patients is significantly reduced
[165]. Another Systematic Review and Meta-Analysis conducted by Wang M. et al. has shown how
vitamin D supplementation in a population of women with GDM can statistically significantly reduce
serum FPG, insulin, HOMA-IR, as well as complications related to childbirth (cesarean section,
maternal hospitalization and postpartum haemorrhage) and newborn (hyperbilirubinemia, giant
children, hypoglycemia, polyhydramnios, fetal distress, and premature delivery). Vitamin D
deficiency is considered a potential risk factor for abnormal glucose metabolism; Zhang et al. [166]
conducted a study that showed that low vitamin D levels in the blood may increase the risk of GDM
and that adequate vitamin D supplementation may improve GDM status. 25(OH)D can not only
regulate insulin secretion but also stimulate insulin receptor expression to promote insulin sensitivity
[167], achieving the effect of lowering blood sugar. In addition, vitamin D has antioxidant effects,
which can reduce {3 islet cell damage and apoptosis ( of islet cells through active oxidative groups
[168]. Patients with GDM can increase their 25(OH)D concentration through vitamin D
supplementation, thereby improving insulin resistance and decreasing blood sugar [169].

6. VITAMIN D, METABOLIC SYNDROME (MetS) AND CARDIOVASCULAR DISEASE
(CVD)

6.1. MetS and CVD: burden of the problem

MetS is related to abdominal obesity, IR, hypertension, and dyslipidemia [170]. The diagnosis of
MetS including waist circumference (WC), FPG, TG levels, HDL-C levels, total cholesterol levels, and
blood pressure (BP) [171]. The MetS increases the risk of developing T2DM associated with long-term
microvascular and macrovascular damage [172] and CVDs. CVDs are one of the significant causes of
disability and death worldwide [173]. Atherosclerosis is the primary aetiology of CVDs, and it is
considered a chronic inflammatory condition [174]. Several studies have also documented that a
decrease in antioxidant levels and an increase in inflammatory and oxidative stress biomarkers may
be involved in the pathophysiology of T2DM complications [175] and the onset of CVDs [176]. The
inflammatory process can be triggered by metabolic disorders such as atherogenic dyslipidemia
(higher TG and apolipoprotein B, small low-density lipoprotein cholesterol LDL-C particles, and low
HDL-C concentrations), T2DM, and increased inflammatory cytokines [177]. Consequently, the
inflammatory cascade may initiate plaque formation, endothelial damage, and, ultimately, plaque
rupture [174]. The pathophysiology of endothelial dysfunction includes overproduction of reactive
oxidative species, inflammatory cytokines and pro-atherogenic lipoproteins, and an imbalance
between vasodilating and vasoconstricting molecules. Impairment of vasodilatation may be due to
reduced bioavailability of nitric oxide (NO), produced by the endothelial cells and involved in
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multiple physiological processes, including vasodilation, inflammation and platelet aggregation
[178]. On the other hand, dyslipidemia is associated with insulin resistance and elevated risk of CVD
events [179,180]. There are numerous risk factors for MetS e CVDs; among these, the dietary factor is
among the most important [181], such as high-calorie and high-fat diets [182].

6.2. Vitamin D, MetS and CVD and molecular mechanisms

Vitamin D deficiency patients are a risk factor for MetS [183]. Vitamin D deficiency can affect
insulin secretion and sensitivity and play an essential role in the onset of MetS [27]. Furthermore, a
study found that vitamin D supplementation had a positive effect on lipid profile, IR, hyperglycemia,
obesity and hypertension and then on the treatment of MetS-related disorders [184].

Vitamin D can reduce Oxidative Stress (OS) using upregulating cellular Glutathione (GSH) and
antioxidant systems such as glutathione peroxidase and superoxide dismutase [185]. Also, vitamin
D can inhibit Reactive Oxygen Species (ROS) secretion [186]. VDRs are expressed in different tissues,
notably endothelial cells, vascular smooth muscle cells and cardiomyocytes and regulate the
expression of the target gene [187]. Vitamin D3, furthermore is a direct transcriptional regulator of
endothelial Nitric Oxide (NO) synthase. In this pathophysiological situation, OS plays a crucial role
in cellular injury in which the production of reactive ROS suppresses the antioxidant defence system
of the cells, which consequently causes cellular death [188]. Under the physiologic conditions, the
antioxidant defence systems maintain the oxidant-antioxidant balance by adjusting the altering levels
of oxidants [189]. The antioxidant defence systems include enzymes such as glutathione peroxidase,
catalase, superoxide dismutase, and other compounds (albumin, GSH).

Furthermore, different nutrients such as vitamins and minerals can also affect the antioxidant
balance [190-192]. Accordingly, vitamin D has been proposed to have antioxidant properties. The
association between VDS and MetS is controversial. The benefits of VDS in the treatments of MetS
and its disorders connected include improved arterial stiffness, mitochondrial oxidation and
phospholipid metabolism; increased lipoprotein lipase activity, peripheral insulin sensitivity and 3-
cell function; decreased inflammatory cytokines and parathyroid hormone levels, and renin-
angiotensin-aldosterone system activity [193-196].

6.3. Studies and research

Zhu and Heil reported that serum 25D level was linked to the risk factors for MetS [197]. In a
meta-analysis study, Jafari et al. [198] reported that vitamin D supplementation improved the lipid
profile of patients with T2DM. In another meta-analysis, vitamin D intake significantly decreased
insulin resistance in people with T2DM [199]. Several RCTs have studied the impact of vitamin D
supplements on lipid profiles, glucose homeostasis, and C-reactive protein (CRP) in persons with
CVD [200]. Some studies reported no significant relationship between VDS and MetS in adults [201-
203]. Therefore, the association between VDS and MetS still needs evidence to demonstrate whether
VDS helps treat MetS. In a meta-analysis, Ostadmohammadi, Milajerdi, et al. demonstrated the
beneficial effects of vitamin D supplementation on reductions in fasting glucose, insulin
concentrations, and HOMA-IR. In addition, the pooled analysis revealed a significant increase in
serum HDL-C concentrations after vitamin D therapy and a significant reduction in CRP levels.
However, supplementation did not affect TG, TC, and LDL-C levels [204]. Kai-Jie, Zhong-Tao et al.
have realized a meta-analysis to study the effect of vitamin D on MetS in adults using relevant
biomarkers such as anthropometric parameters, BP, blood lipid profile, blood sugar, OS and vitamin
D toxicity. Vitamin D did not affect waist circumference, body mass index, body fat percentage and
BP. VDS significantly reduced FPG, but did not affect HDL-C, LDL-C, TC and TG blood levels. For
OS parameters, VDS significantly lowered malondialdehyde and hypersensitive CRP [205]. Tatiana
P., Caroline K et al. [206] in a systematic review and meta-analysis, randomized clinical trials (RCTs)
investigated the effects of micronutrients on BP in patients with T2DM. In this systematic review, a
reduction in BP, especially systolic BP, has been demonstrated. Observational and experimental data
favour the concept that vitamin D is associated with the pathogenesis of arterial hypertension
[207,208]. A possible mechanism for this link involves the inhibition of the renin-angiotensin-
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aldosterone system by vitamin D. Additionally, in the presence of hypovitaminosis D, an alternative
mechanism could be related to the secondary hyperparathyroidism and relative hypocalcemia that
are commonly seen in these patients [209]. In a meta-analysis, Hajhashemy Z, Shahdadian F, et al.
illustrated that the highest level of blood vitamin D, compared with the lowest level, was significantly
linked to lower odds of MetS in cross-sectional studies on the adult population. In addition, based on
dose-response analysis, each 25 nmol/L (or 10 ng/ml) increment in 25(OH)D was associated with a
15% decreased chance of MetS.

DISCUSSION AND CONCLUSIONS

Data reported in our review support the notion that Vitamin D levels are associated with TIDM
and T2DM, GDM, MetS and CVDs. There is some experimental and epidemiological evidence for the
administration of Vitamin D in these different diseases. In Table 1, we have summarized the results
of Meta-Analyses and Systematic Reviews on the effectiveness of vitamin D administration and their
dosages in the various conditions that we have dealt with in this review. However, data from
randomized clinical trials, very highly heterogeneous, have yielded contrasting data. Although the
possibility of preventing the onset of the disease, vitamin D administration should be started very
early in life or even during pregnancy in TIDM and GDM; moreover, different data showed that
vitamin D administration improves glucose metabolism and the risk T2DM and metabolic syndrome,
randomized clinical studies showed contradictory results for vitamin D supplementation in the
management of altered metabolic states. In this sense, further studies are necessary to determine the
fundamental role of vitamin D deficiency and if it can be considered a causal factor in altered
metabolism.

Table 1. Synthesis of Meta-Analyses and Systematic Reviews on the effectiveness of various dosages of
vitamin D administration in pathologic conditions analyzed.

PARTICIPANTS DOSE OF
AUTHOR/YEAR DESIGN DURATION o) VITAMIN D RESULTS
VITAMIN D AND INSULIN-RESISTANCE (IR)
From 200 IU/day

8946 healthy subjects Vitamin D3 to
or patients with 50.000 TU/week

overweight/obesity, ~ Vitamin D3 (with Reducing effects on

ASb;(‘)gg i: al. MT (12 RCTs) Froajeiosliu IFG, prediabetes, supplementation :?E;Sﬁ;u:igné éel\‘:lisi
GDM, T2DM, PCQOS, dose of calcium, that R
HIV infection ranged from 500
(4395/4551) mg/day to 1000
mg/day)
I ton IR
From 1.000 IU/day (r?apir;(c:ée? ezllezzzase
Sindhughosa et al. MT (7 RCTs) From 10 to 52 735 patients with Vitamin D3 to of H Ol\i A-IR)
2022 41 weeks NAFLD (423/312) 50.000 IU/week L
. . decrement in ALT
Vitamin D3
levels
F 1.000 TU/d
. From 66 to 2423 rom O,OO Ulday Only one trial showed
Pienkowska et al. From 12 to 260 . . Vitamin D3 to ) .
SR (8 RCTs) patients with improvements in FBG
202329 weeks K 88.000 IU/week
prediabetes . and HOMA-IR
Vitamin D3

VITAMIN D AND TYPE 2 DIABETES MELLITUS (T2DM)
Vitamin D and calcium
insufficiency may

2.000 IU/day . .
L. negatively influence
Vitamin D3 or ]
MT (13 Case Vitamin D3 700 glycemia, whereas
Pittas et al. Control Studies; 15 Patients with T2DM or i combined
R N/A . IU/day with K .
2007 % Cross-sectional prediabetes . supplementation with
. supplementation .
studies; 12 RCTs) both nutrients may be
dose of 500 mg/day

. . beneficial in
calcium citrate L.
optimizing glucose

metabolism
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Krul-Poel et al. 2017

84

Mirhosseini et al.
201855

Hu et al.
2019 64

Najjar et al. 202112

Hou et al.
2021120

Yuetal.
2022 128

From 1.000 IU/day
Vitamin D3 to
45.000 TU/week

1797 patients with Vitamina D3 or
T2DM: for the effect 11.200 IU/day
From 4 to 52 on HbAlc 1475 Vitamin D3 for 2
MT (23 RCTs) weeks patients (755/720), for weeks followed by
the effect on FBG 1180 5.600 IU/day for 10
patients (608/572) weeks or from
100.000 to 300.000
IU Vitamin D3
single dose
3848 healthy subjects
or patients with
prediabetes and/or
overweight or obesity,
NAFLD, arterial From 420 IU/day to
MT (28RCTs) ~ 11omB0260 p o tension, cervical ~ 88.880 IU/wee};
weeks . s .
intraepithelial Vitamin D3
neoplasia,
premenopausal and
postmenopausal
women
Up to 50.000
1374 Ul/weekly Vitamin
MT (19RCTs)  © mivneili‘;’ 24 Latients with T2DM D3 or 300.000 UI

(747/627) single injection

Vitamin D3

VITAMIN D AND TYPE 1 DIABETES MELLITUS (T1DM)

MT (10 studies:
3 Cohort; 39884 patients with
5 Case-control; N/A T1DM N/A
2 Matched case- (16370/23514)
control)
MT (16 studies:
12 case-control
studies;
1 cross-sectional
10605 patients with
case-control study; N/A TlDMp (3913/6692) N/A
2 nested case-
control study;
1 case-cohort
study)
The following
therapeutic
regimens were
used:
1,25D 0.25 pg 2nd
daily; 25D 2.000 TU
SR (13 studies: daily; 25D to
9 RCTs; 2 Open From 4 to 12 527 patients with achieve serum 25D
label case-control; > 125 nmol/L;
1 Open label; weeks TIbM Alfacalcidol 0,25
1 Cohort) ug bd 25D; 60.000
IU monthly;
Ergocalciferol (D2) 2
m of 50.000 TU/w;
25D 2.000 IU/d; 25D.
3.000 IU/d;

Calciferol 2.000 TU/d

Significant effect on
FBG in a subgroup of
studies (n =4); no
significant effect in
change of HbAlc

Significant reduction

in HbAlc, FBG and

HOMA-IR

Significant
reduction in HbAlc,
IR (marked by

decrease of HOMA-IR)

and insulin levels in

the short-term vitamin

D supplementation
group

No large effect of a

genetically determined

reduction in 25(OH)D
concentrations by
selected
polymorphisms on
T1D risk

Results demonstrated
a significant inverse
association between

the 25(OH)D
concentration in
circulation and the risk
of TIDM

The maintenance of
optimal circulating
25D levels may reduce
the risk of T1D and
that it may have
potential for benefits in
delaying the
development of
absolute or near-
absolute C-peptide
deficiency
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+ etanercept + GAD-

alum
VITAMIN D AND GESTATIONAL DIABETES MELLITUS (GDM)

456 pregnant women

From 6 to 24 .000 IU of vitamin
Rodrigues et al. 2019 . om 6 to with GDM diagnosed 50.0001U o
MT (6 studies weeksanda . . D3 every 2 weeks
158 . in the second or third .
RCTs) study until . or 1.000 UI daily
. trimester of pregnancy
delivery

MT (29 studies: 18

Improves adverse
maternal and neonatal
outcomes related to
GDM

Cohort; The lowest risk of
9 Nested case- GDM was found
Milajerdi et al. control;1 N/A 42668 patients with ~ Blood vitamin D~ among those with a
2021 134 Prospective cross- GDM or not levels serum vitamin D levels
sectional; 1 of 40 and 90 nmol/L
Retrospective
cohort)
The results showed
that vitamin D
supplementation
during pregnancy
From 50.000 IU of  could significantly
MT (19 RCTs of
Wang et al. ( *% " From6to12 1198 patientswith  vitamin D32 reduce maternal
these 13 concerned . .
2021 # weeks GDM times/day to 1.200 cesarean section rate,
GDM) .
1U daily maternal
hospitalization rate,
and postpartum
hemorrhage in women
with GDM
MT (15 studies: The result showed that
9 Cohort; 42636 t 1 levels of
Chatzakis et al onory preghan Blood vitamin D 'or €V obserum
2021 162 6 Nested N/A women levels 25(0OH)D were
case- (1848/40788) associated with a
control) higher chance of GDM
Reduce serum LDL-C,
TG, and TC levels and
1682 preenant women From 50.000 IU of  increase the serum
Wu et al. MT (20 studies From 2 to 16 . pregna . worme vitamin D3 2 HDL-C level. Reduce
with GDM diagnosed .
2023 155 RCTs) weeks times/day to 1.200 maternal and neonatal
(837/845) . e .
IU daily hyperbilirubinemia
and hospitalization
risk.
VITAMIN D, METABOLIC SYNDROME (MetS) AND CARDIOVASCULAR DISEASE (CVD)
A single dose of
De Paula TP et al. MT (7 RCTs) From 3 to 52 542 patients with VIIEI)H; Tvlljtir(ilor?DOgO e:;zg;;;;;o; lsr;]:tl:),lic
2017 205 k T2DM (472/7!
0 weeks (472/70) (100.000 IU or BP
200.000 IU)
50.000 IU/week  Improving glycemic
Ostadmohammadi et Vitamin D3 or control, HDL-C and
F to24 dults with CVD !
al. MT (8 RCTs) ro“n;eik: 630a (‘31055 /;"2‘5) VD' 50,000 1U every two CRP levels; it did not
2019 203 weeks or 300.000 IU  affect TG, TC and
single dose LDL-C levels
Dose-response MT
. . . Inverse
(43 epidemiological L
. association between
. studies: 38 cross- . . N
Hajhashemy Z et al. sectional 1 nested N/A 309.206 adults with o Blood Vitamin D serum vitamin D
202728 without MetS levels in adults  concentrations and risk
case of MetS
control, and 4
cohorts studies)
Decreased BP, FPG,
F 1.000 TU/d HOMA-IR and CRP
QiKj et al. MT (13RCTs)  [rom8to24 1076 adults with MetS ri)llil:an?iing/toay lev(e)ls it didar?ot Sffect
2022 204 weeks (530/546) .

50.000 IU/week

HDL-C, LDL-C, TC,
and TG levels
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I/C: Intervention/Control; IR: Insulin-Resistance; MT: Meta-Analysis; RCT: Randomized Controlled Trials; IFG:
Impaired fasting Glucose; GDM: Gestational Diabetes Mellitus; T2DM: Type 2 Diabetes Mellitus; PCOS:
PolyCystic Ovary Syndrome; FBG: Fasting Blood Glucose; HOMA-IR: Homeostatic Model Assessment of Insulin
Resistance; NAFLD: Non-alcoholic Fatty Liver Disease; HbAlc: Glycated Hemoglobin; SR: Systematic Review;
IR: Insulin-Resistance; TIDM: Type 1 Diabetes Mellitus; N/A: Not Applicable; MetS: Metabolic Syndrome; CVD:
Cardiovascular Disease; BP: Blood Pressure; TG: Triglycerides; TC: Total-cholesterol; LDL-C: LDL-cholesterol;
HDL-C: HDL-cholesterol; CRP: C-Reactive Protein.
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