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Abstract: We propose that the Big Bang does not have a singular start, but that it originates from 8

gravitational collapse of a low density cloud to form a Black Hole (BH) of mass M ' 6× 1022 M� 9

about 25 Gyrs ago. After 11Gyrs of collapse, it results in a high density cloud that bounces into 10

expansion because of neutron degeneracy pressure. Observationally, this model is very similar to the 11

standard Big Bang cosmology but there is no need for Inflation or Dark Energy (DE). The observed 12

cosmological constant Λ is not a new form of DE, but results from the dynamics of the Big Bang 13

expansion inside the BH event horizon rS = 2GM =
√

3/Λ. Why our Universe has such a large mass 14

M (or small Λ value)? If τO ' 10Gyr is the astronomical time needed for observers like us to exist, we 15

find a simple anthropic prediction, based only on gravitational collapse from Gaussian fluctuations, 16

that the maximum probability for M is MO < M < 3MO where MO = τO/3G. This agrees well with 17

the measured values for τO and M in our Universe. 18

Keywords: cosmology; dark energy; general relativity; black holes 19

1. Introduction 20

A cosmological model predicts the background evolution, composition and structure 21

of the observed Universe given some initial conditions. The standard cosmological model 22

[1,2], also called ΛCDM, assumes that our Universe began in a hot Big Bang expansion at 23

the very beginning of space-time. Such initial conditions seem to violate energy conserva- 24

tion and are very unlikely [3–5]. The model also requires three more exotic ingredients: 25

Inflation, Dark Matter and Dark Energy (DE), for which we have no direct evidence or 26

understanding at any fundamental level. Despite these shortfalls, the ΛCDM model seems 27

very successful in explaining most observations by fitting just a handful of free cosmolog- 28

ical parameters, such as H0 and Ωm. We propose a new cosmological model, the Black 29

Hole Universe (BHU) [6–8], based on well established physical concepts that can explain 30

the same observations without the need of introducing such exotic ingredients. Recent 31

observations show discrepancies or tensions with ΛCDM prediction in the measurements 32

of cosmological parameters from different time-scales (see [9] for an extended review). 33

Such tensions, if confirmed, could be supportive of the BHU model [10–12]. 34

1.1. The local spherical metric 35

The most general form of a flat metric with spherical symmetry in physical or Schwarzschild
(SW) coordinates (t, r, θ, φ) in units of c ≡ 1, can be written as follows:

ds2 = −[1 + 2Ψ(t, r)]dt2 +
dr2

1 + 2Φ(t, r)
+ r2dΩ2. (1)

The simplest approximation for a static BH is the SW metric: 2Φ = 2Ψ = −2GM/r ≡
−rS/r which corresponds to a singular point of mass M [13]. Regardless of its metric, a
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physical BH can be defined as an object of total mass-energy M with a radial size R that is
smaller or equal to its SW radius rS:

rS =
2GM

c2 ' 2.9Km
M

M�
. (2)

This corresponds to a radial escape velocity ṙS = c ≡ 1. As events cannot travel faster
than c, nothing can escape from inside rS. The energy density of a BH inside rS is always:

ρBH =
M
V

=
3M

4πr3
S
=

3r−2
S

8πG
' 9.8× 10−3

[
M�
M

]2 M�
Km3 . (3)

This value should be compared with the atomic nuclear saturation density:

ρNS ' 2× 10−4 M�
Km3 (4)

which corresponds to the density of heavy nuclei and results from the Pauli Exclusion 36

Principle applied to neutrons and protons. For a Neutron Star (NS) with M ' 7M�, both 37

densities are the same: ρBH = ρNS. This similarity explains why NS are never larger than 38

M ' 7M�, as a collapsing cloud with such mass reaches BH density ρBH before it reaches 39

ρNS. The maximum observed M for NS is closer to M ' 3M� [14], which agrees with more 40

detailed considerations that include the equation of state estimates. Cold nuclear matter at 41

neutron density is a major unsolved problem in modern physics. As we will show, it could 42

be key to understand cosmic expansion. 43

1.2. The global FLRW metric 44

The Friedmann–Lemaitre–Robertson–Walker (FLRW) metric can describe a flat infinite
homogeneous and isotropic space. In co-moving coordinates ξα = (τ, χ, θ, φ):

ds2 = −dτ2 + a(τ)2
[
dχ2 + χ2dΩ

]
. (5)

This metric is also spherically symmetric, so it is a particular case of Eq.1. Comparing
the solid angle term dΩ to Eq.1, note that the SW or physical coordinates are r = aχ,
which imply Hubble’s law: ṙ ≡ dr/dτ = ȧ

a r ≡ Hr. The scale factor, a(τ), gives the
expansion/contraction as a function of co-moving or cosmic time τ (proper time for a
co-moving observer). For a perfect fluid with density ρ and pressure p, the solution to GR
field equations is well-known:

H2 =
8πG

3
ρ = H2

0

[
Ωma−3 + ΩRa−4 + ΩΛ

]
, (6)

where ρc ≡
3H2

0
8πG and ΩX ≡ ρX

ρc
, where Ωm represents the current (a = 1) matter density

and ΩR is the radiation. The effective cosmological constant term ΩΛ results from: ρΛ ≡
ρvac +

Λ
8πG where ρvac represents the vacuum or the ground state of a scalar field: ρvac =

−pvac = V(ϕ) with negligible kinetic energy. At any time, the expansion rate H2 is given
by ρ. Energy–mass conservation requires that ρ ∝ a−3(1+ω), where ω = p/ρ is the equation
of state of the different components: ω = 0 for matter, ω = 1/3 for radiation, and ω = −1
for ρΛ. Given a∗ = a(τ∗) at time τ∗ the solution dominated by a component with ω is:

a(τ) = a∗

[
3(1 + ω)

2
τH∗

] 2
3(1+ω)

⇒ rH =
3(1 + ω)

2
τ (7)

The Hubble Horizon is defined as rH ≡ H−1. Structures that are larger than rH cannot 45

evolve because the time that a perturbation takes to travel that distance is larger than the 46

expansion time. How can these structures form if they were never in causal contact? This 47
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question poses the horizon problem. In the Big Bang model, this problem is solved by 48

Cosmic Inflation [15–18], a period of exponential expansion that must have happened right 49

at the beginning of time (τ = 10−30sec). After expanding by a factor e60, Inflation leaves 50

the universe empty and we need a mechanism to stop Inflation and to create the matter 51

and radiation that we observe today. This is called re-heating. These components require 52

fine-tuning and free parameters that we do not understand at a fundamental level and 53

occur at energies (> 1015GeV) that are out of reach from direct validation [1]. 54

1.3. Cosmic Acceleration 55

Cosmic acceleration is defined as q ≡ (ä/a)H−2. Taking a derivative of Eq.7, we 56

find q = − 1
2 (1 + 3ω). For regular matter, we have ω > 0 so we expect the expansion to 57

decelerate (q < 0). However, the latest concordant measurements from a Type Ia supernova 58

(SN), galaxy clustering, and the Cosmic Microwave Background (CMB) all agree with DE 59

with ω = −1.03± 0.03 [19], which means that the expansion ends up dominated by q ' 1. 60

However, there is no fundamental understanding of what DE is or why ω ' −1. This is 61

very similar to Inflation above but at 10−12 GeV energy. A candidate for DE is ρΛ [20–23]. 62

The value q ' 1 is also important to obtain a longer age estimate of 14 Gyr, which is needed 63

to account for the oldest stars and to give more time for structures to grow from the CMB 64

seeds δT ' 10−5 to the amplitude (and shape) we observe today [24–26]. 65

Note how q = 1 means Ḣ = 0, so that H becomes constant and all structures become
super-horizon and freeze, such as in Inflation. In the physical (SW) frame of Eq.1, this
corresponds to a static hypersphere (deSitter) metric with:

2Φ = 2Ψ = −Λr2/3 ≡ − r2

r2
Λ
≡ −r2H2

Λ. (8)

We often say that the expansion accelerates but it is more physical to say that the expansion 66

becomes asymptotically static, as proposed by Einstein [20] when he introduced Λ. A 67

constant H is equivalent to H = 0 for a physical observer. 68

2. Inside a Black Hole 69

The density of our Universe (in Eq.6) inside its Hubble Horizon rH = 1/H corresponds
to that of a BH in Eq.3. This can be easily understood, because the escape velocity (or
Hubble flow) at r = rH is the speed of light: ṙH = HrH = 1. The mass inside rH follows
rH = 2GM and H2 tends toward a constant H2

Λ = 8πG
3 ρΛ = H2

0 ΩΛ. The Universe becomes
asymptotically static (in the SW frame) with a fixed radius ( rΛ = H−1

Λ ). In that limit we
have an static BH with rS = rΛ. Consider an outgoing radial null geodesic to ∞ (i.e., the
Event Horizon, [27]) starting at proper time τ from anywhere inside the FLRW metric:

r∗ = a
∫ ∞

τ

dτ

a(τ)
= a

∫ ∞

a

d ln a
aH(a)

<
1

HΛ
≡ rΛ (9)

As the Hubble rate becomes constant, r∗ freezes to a constant value r∗ = rH = rΛ. So the
FLRW Event Horizon corresponds to the interior of a BH. What is outside rΛ? In the limit of
empty space outside, Birkhoff’s Theorem (see [28,29]) tell us that the metric outside should
be SW metric [30]. This solution can also be verified using Israel’s junction conditions (see
below). So, no signal from inside rΛ can reach outside and we have SW metric outside
with a mass inside given by rΛ = 2GM. This is pretty much the definition of a BH. The
FLRW metric with Λ is a BH as seeing from outside. This also provides a fundamental
interpretation for Λ, which is just given by the SW mass inside [7]. For ΩΛ ' 0.7 and
H0 ' 70 Km/s/Mpc we have:

rS ' 1.6× 1023km ; M =
rS
2G
' 6× 1022M� (10)
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Figure 1. The FLRW metric can be used to model an infinite universe (left), collapsing (top) or
expanding (bottom), and a cloud of finite mass M and size R(τ) (red circle) in empty space (middle)
or inside its SW radius rS = 2GM (right). In the BHU, cosmic expansion originated with the freefall
of a FLRW cloud (top middle) that collapsed into a BH (top right) and later bounced into expansion
(bottom right), trapped inside rS, which results in cosmic acceleration. The Hubble Horizon rH = H−1

(blue circle) moves faster than R, so that perturbations become super-horizon during collapse and
re-enter during expansion, solving the horizon problem without Inflation.

This interpretation breaks homogeneity (on scales larger than rΛ), but this is needed if we 70

want causality. Homogeneity is inconsistent with a causal origin [30,31], the same way that 71

a Big Bang out of nothing is inconsistent with Energy conservation. 72

2.1. The FLRW cloud 73

We can arrive at the same conclusion from a different perspective. The FLRW solution 74

and metric can also be used to describe a local spherical homogeneous cloud of variable 75

radius R and fix mass M, which collapses or expands in freefall. Based on Gauss law (or 76

the corollary to Birkhoff’s theorem [28]) each sphere r < R evolves with independence of 77

what is outside r > R. As a consequence, the local FLRW solution is also a valid solution in 78

GR [32]. Using Israel junction conditions [33], one can show [6,8] that the physical radius 79

coordinate R of the FLRW cloud follows: 80

R = [r2
HrS]

1/3 (11)

For a regular star R > rS so the expansion is subluminar R < rH . The static solution 81

requires the famous R > 9/8rS Buchdahl bound [34]. But it is clear that our Universe has 82

R > rH (we observe super-horizon scales in the CMB) which requires R < rS in Eq.11: i.e. 83

we are inside our own BH! 84

In the SW frame of Eq.1, this local FLRW solution corresponds to 2Φ = −H2r2 for 85

r < R (and 2Φ = −rS/r for r > R), which for the static case is a well known solution 86

for a BH interior [35]. This frame duality can be understood as a Lorentz contraction 87

γ = 1/
√

1− ṙ2 where the velocity ṙ is given by the Hubble law: ṙ = Hr, which results 88

from the change of variables: r = aχ. An observer in the SW frame, not moving with the 89

fluid, sees the moving fluid element adχ contracted by the Lorentz factor γ: adχ ⇒ γdr, 90

which explains how you can get 2Φ = −H2r2 in Eq.1 from Eq.5 [6]. For ω = p = 0, R in 91

Eq.11 follows a time-like geodesic in freefall with constant χ = R/a = rS/aBH . For ω 6= 0, 92

R = r∗ follows the null geodesic in Eq.9. Compared with Eq.7, R grows slower than rH 93
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Figure 2. The CMB sky represented as the surface of a sphere (two view angles) whose radius is the
distance traveled by the CMB light to reach us (at the center of the sphere). The red circle represents
the Big Bang surface (τ = 0). The CMB particle horizon χ ' rH (small red cones) is the distance
travel by light between τ = 0 and τCMB and subtends a small angle (' 1deg.) in the CMB sky. Large
grey circles on the CMB surface are super-horizon boundaries (labeled H1, H2 and H3) in the relative
variations of cosmological parameters (color scale) at different locations of the CMB sky [10] (see also
[36]). They show that there is a cutoff in super-horizon perturbations (of size θ ' 2R/dCMB ' 60deg.)
out of the τ = 0 surface. Here we show Ωm but maps are very similar for other parameters, such as
H0 (see [10] for details).

so perturbations become super-horizon during collapse and re-enter during expansion, 94

solving the horizon problem without the need of Inflation, as explain in Fig.1. 95

3. The Black Hole Universe (BHU) 96

How did we end up inside a BH? Our local FLRW cloud must have collapsed and
formed a BH. Before it collapse, the density of such a large cloud was so small that radiation
escaped the cloud, so that p = 0 (ω = 0). Radial co-moving shells of matter are in free-fall
collapse and continuously passes R = rS inside its own BH horizon. If we take τ∗ in Eq.7
as the time τBH (aBH) when rH = −rS, we find that the BH forms at time:

τBH = τ∗ = −
2

3(1 + ω)
rS ' −11Gyrs, (12)

i.e. before τ = 0 (the Big Bang) or 25Gyr ago. The collapse continuous inside until it reaches 97

nuclear saturation (GeV) in Eq.4 and the situation is similar to the interior of a collapsing 98

star. We conjecture that this leads to a Big Bounce because of the Pauli Exclusion Principle. 99

The collapse is halted by neutron degeneracy pressure, causing the implosion to rebound 100

[37]. Neutron stars or small primordial BHs could result in compact remnants that can 101

make up all or part of Dark Matter Ωm [38]. Diffuse remnants then correspond to regular 102

(baryonic) matter ΩB. The observed ratio Ωm/ΩB ' 4 indicates that most remnants were 103

compact. 104

Gravitational instability [39–41] allows perturbations in ρ to grow causally during the 105

collapse but they exit rH as we approach τ = 0. Such causally disconnected regions will 106

therefore have slightly different Ωm and H0 at the time close to the Big Bounce (10−4s). 107

These regions correspond to super-horizon perturbations in the CMB (see Fig.2) that re- 108

enter rH during the expansion given rise to the structures that we see today in Cosmic 109

Maps. Because R is always finite, we expect a cut-off in the spectrum of perturbations 110

which is at odds with the simplest prediction of Inflation. As illustrated in Fig.2, recent 111

anomalies in measurements of cosmological parameters over very large super-horizon 112

scales [9] agree well with the BHU predictions [10,11]. 113

A comoving observer sees the Hubble law of Eq.6 from anywhere inside but the
background is not isotropic for R > rS in Eq.11 unless you are at the center. Once the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2022                   doi:10.20944/preprints202205.0266.v1

https://doi.org/10.20944/preprints202205.0266.v1


6 of 10

FLRW cloud collapses to become a BH, nothing can escape out of the event horizon rS, so
the condition p = 0 at the horizon r = r∗ = R is automatically fulfill, even when in the
last stages of the collapse part of the energy could transformed into heat (p 6= 0). The GR
field equations change for an expanding FLRW cloud inside a BH because rS becomes a
boundary in the Hilbert action [7]: rS behaves like a Λ term (Λ = 3/r2

S), despite having
Λ = 0 to start with. A co-moving observer anywhere inside such a local FLRW cloud has
no way to distinguish it from an infinite FLRW universe. We can understand this curious
behavior in the dual frame by considering radial null events (ds2 = 0) connecting (0, r0)
with (t, r) in deSitter metric Eq.8, which follow:

r = rΛ
rΛ + r0 − (rΛ − r0)e−2t/rΛ

rΛ + r0 + (rΛ − r0)e−2t/rΛ
.

It takes t = ∞ to reach r = rΛ from any point inside, no matter where r0 is. This agrees 114

with Eq.9. The homogeneous solution seems to have larger symmetry (more killing vectors) 115

than the FLRW cloud, but this is not the case when we have Λ or when we are inside a 116

BH (which is equivalent). This is apparent in deSitter metric, which can be expressed as a 117

homogeneous expanding FLRW metric of Eq.5 with H = HΛ or as a static hypersphere of 118

Eq.8 (see also [42]). 119

4. The Apollonian Universe 120

What was there before our BHU collapsed? We will assume here that there are other 121

BHUs and regular matter within a larger space-time that we call the Apollonian Universe. 122

This has to be a much larger space-time, may be unbounded, but we assume that otherwise 123

similar to ours: a uniform background with energy density ρ̄ with an initially Gaussian 124

distribution of small fluctuations δ, so that ρ = ρ̄(1 + δ). We don’t know the initial particle 125

composition of the Apollonian Universe, but we can assume that it is similar to the one 126

in our BHU. For weakly interacting, collisionless dark matter (CDM), the hierarchical 127

gravitational collapse leads to dense dark matter halos and not to collapsing BHs. This 128

is the case even if the CDM that we observed today does not correspond to a new exotic 129

particle but is made of compact objects with regular matter (like stellar BHs and Neutron 130

stars). BHs could still form inside CDM halos. So compact objects could correspond to 131

halos with smaller BHs or just regular BHs. 132

By its definition, gravity dominates for masses above the Jeans mass M > MJ . For such
large masses, we can then use the Press-Schechter formalism [43] to predict the number of
collapsed objects n(M) of a given mass M. For scale-free power spectrum (also close to the
one in our BHU):

n(M)dM =

√
1
π

(
M
M∗

)1/2
exp

(
− M

M∗

)
ρ̄ dM
M2 (13)

where M∗ is corresponds to the gravitational collapse non-linear transition scale. The 133

important point to notice is that large collapsed objects are exponentially suppressed for 134

M > M∗. The typical value of M∗ increases with time. The value today corresponds to a 135

cluster mass: M∗ ' 1014M� but was lower in the past. 136

We assume that the probability of having observers like us increases linearly with time 137

for τ > τO and is zero for τ < τO. So τO is the astronomical time needed for observers 138

like us to exist. Its value must be close to τO ' 13Gyrs, corresponding to the age of our 139

galaxy [44], which is only about 3 times the age of our planet: 4.5Gyr [45]. The BH collapse 140

time in Eq.12 is proportional to M, so that a large mass M ' 6× 1022M� in Eq.10 has a 141

typical collapse time of τ ' 11Gyr in Eq.12. The expansion time is longer because of the 142

acceleration caused by the BH event horizon, but during deSitter phase the Hubble horizon 143

shrinks and structure formation halts. So in practice, the relevant timescale is the one given 144

by matter domination (ω ' 0) in Eq.12: τ = 3GM. 145
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Figure 3. Anthropic probability P(∆) in Eq.14 for different values of MO/M∗. This corresponds to
the probability for an observer like us to be in a BH of mass M = MO(1 + ∆). MO corresponds to the
minimum time τO ' 10Gyr needed for a galaxy and planet like ours to form. M∗ is the non-linear
mass scale. Regardless of M∗, the maximum in P(∆) is always within 0 < ∆ < 2 or MO < M < 3MO.

We express M in terms of ∆: M = MO(1 + ∆), where MO = τO/3G is the BH mass
corresponding to τO in Eq.12. The anthropic probability P(∆) that an observer lives inside
a BH of such mass is them:

P(∆) ∝
n(M)

n(MO)
∆ = (1 + ∆)−3/2 ∆ exp

(
−M0

M∗
∆
)

(14)

We have divided n(M) in Eq.13 by n(M0) because we are interested in the relative number 146

of BHs above the ones with the minimal mass MO. Fig.3 shows Eq.14 for some values of 147

MO/M∗. For MO � M∗ the probability is dominated by the exponential suppression and 148

P(∆) peaks around ∆ = 0. This means that most observers will live in a BH with mass MO. 149

So an accurate estimation of τO provides a prediction for MO and therefore a prediction 150

for rS = 2GMO and Λ = 3/r2
S, in agreement with the values measured in our BHU. For 151

MO ' M∗ the probability P(∆) peaks around ∆ = 1, which predicts that most observers 152

live in BHs which are two times MO. For MO � M∗ the result is independent of M∗ and 153

the peak is at ∆ = 2. Thus, regardless of M∗, the maximum probability corresponds to 154

observers in a BH with mass MO < M < 3MO or collapse times τO < τ < 3τO, which is 155

very consistent with the measurements in our Universe for τO and M in Eq.10. In terms of 156

Λ this corresponds to ΛO/9 < Λ < ΛO, where ΛO is the value corresponding to MO or τO. 157

5. Discussion and Conclusion 158

We propose that cosmic expansion originated from the collapse of a cloud in an 159

existing background. We assume that such background is flat with k = 0 and Λ = 0, as in 160

empty space. The field equations of GR are local and they do not change k or Λ because 161

these are global topological quantities which are not altered by the presence of matter. We 162

should therefore adopt the most simple topology, that of empty space, unless we find some 163

evidence or good reason to the contrary. The so call flatness problem, that is solved by 164

Inflation, is only a problem if the Big Bang singularity creates curvature. In the BHU model 165

the singularity is avoided at GeV, well before Quantum Gravity effects (1019 GeV), so we 166

do not expect a global curvature or Λ in this model’s background. 167

In nature, we never observe cold matter with densities larger than that of an atomic 168

nuclei in Eq.4. This is due to Pauli Exclusion Principle in Quantum Mechanics, which 169

prevents fermions from occupying the same quantum state. We propose here that, when the 170

collapse reaches nuclear saturation density, it bounces back, as it happens in a supernova 171

core collapse. The bounce happens at times and energy densities that are many orders of 172
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Table 1. Model comparison. Observations that require explanation.

Cosmic observation Big Bang (ΛCDM ) explanation BHU explanation
Expansion law FLRW metric FLRW metric

Element abundance Nucleosynthesis Nucleosynthesis
Cosmic Microwave Background (CMB) recombination recombination

All sky CMB uniformity Inflation Uniform Big Bounce
Cosmic acceleration, BAO & ISW Dark Energy BH event horizon size

14Gyr age since τ = 0 Dark Energy BH event horizon size
Rotational curves & Cosmic flows Dark Matter compact remnants (BHs, NS) of Big Bounce
Ωm > ΩB & gravitational lensing Dark Matter compact remnants (BHs, NS) of Big Bounce

CMB fluctuations δT = 10−5 free parameter Big Crunch perturbations
Ωm/ΩB ' 4 free parameter fraction of compact to difuse renmants
ΩΛ/Ωm ' 3 free parameter time to deSitter phase

Large scales anomalies in CMB Cosmic Variance (bad luck) super-horizon cutoff λ < 2R
anomalies in cosmological parameters Systematic effects super-horizon perturbations

flat universe k = 0 Inflation topology of empty space
monopole problem Inflation low energy Big Bounce

magnitudes away from Inflation or Planck times. Thus, Quantum Gravity or Inflation are 173

not needed to understand cosmic expansion or the monopole problem [16]. Further work 174

is needed to understand the details of such a Big Bounce: to estimate the perturbations, 175

composition, and fraction of compact and diffuse remnants that resulted. This could 176

explained from first principles some of the free parameters in the ΛCDM model, as shown 177

in Table 1. 178

The Big Bounce could provide a uniform start for the Big Bang, solving the horizon 179

problem (see Fig.1): super-horizon perturbations during collapse (and bounce) seed struc- 180

ture (BAO and galaxies) as they re-enter rH during expansion. The main differences with 181

Inflation are the origin of those perturbations and the existence of a cutoff in the spectrum 182

of fluctuations given by R in Eq.11. Such a cutoff has recently been measured in CMB 183

maps [8,10–12] (see Fig.2). Galaxy maps are also able to measure this signal [46,47] which 184

could also appear as a dipole [48]. The existence of such super-horizon perturbations could 185

be related to the tension in measurements of the cosmological parameters from different 186

cosmic scaletimes [9,49–52], which have similar variations in cosmological parameters to 187

the measured CMB cutoff anomalies in Fig.2. 188

The fact that the universe might be generated from the inside of a BH has been studied 189

extensively in the literature [53–58]. The BHU solution is similar to the Bubble Universe 190

solutions [59–66]. However, some important differences exist. In the BHU, no surface terms 191

(or Bubble) are needed and the matter and radiation inside are regular. Several authors 192

have previously proposed that the FLRW metric could be the interior of a BH [67–72] but 193

not quite as formulated here. 194

The BH collapse time in Eq.12 is proportional to M, so that a large mass M ' 6× 195

1022M� in Eq.10 is just the right one to allow enough time for galaxies and planets to 196

form before deSitter phase dominates. This provides an anthropic explanation [26,73] as 197

to why we life inside such a large BH or why Λ = 3/rS is so small. According to Eq.14 198

(see also Fig.3) the maximum probability corresponds to observers to appear in BH with 199

ΛO > Λ > ΛO/9, where ΛO is the value corresponding rS ' 2/3τO in Eq.12 for the 200

minimum time τO needed for observers to exit. If we assume that this time τ agrees with 201

the age of our galaxy we find good agreement between this prediction and the estimated Λ 202

measurements. These arguments neglect global rotation of the FLRW cloud (or the BHU). 203

Such rotation could slow down the expansion rate (see Appendix C in [8]) and play some 204

role in the bounce and collapse time. 205

The BHU solution can also be used to model the interior of smaller BHs, but they 206

will not form regular galaxies or stars. The bounce proposed here, based in Quantum 207
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Mechanics, could avoid both the BH and the Big Bang singularities [74,75]. The BHU also 208

eludes the entropy paradox [4] in a similar way as that proposed by Penrose [5]. The 209

difference is that the BHU does not require new laws (infinite conformal re-scaling) or 210

cyclic repetition. Our expansion will end up trapped and static inside a larger and older 211

universe, possibly containing other BHUs. 212
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