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Abstract: This study introduces a novel calibration method for accurate external wrench measurement using a

6-axis FT sensor, designed to mimic human-like capabilities in robots. While current approaches for FT sensor

calibration often rely on fixed parameters, our method models and calibrates essential parameters: bias, crosstalk,

CoM, and inclination, to ensure reliable force measurements in mobile and inclined environments. A mobile

manipulator installed with an FT sensor and a gripper is used to demonstrate calibration effectiveness across

varying postures and inclined conditions, with non-linear optimization applied to minimize sensor-data errors.

The proposed method addresses typical calibration challenges, including the effects of the end tool and base

inclined, which are not commonly covered in existing methods. Results show that, on a non-inclined base,

crosstalk and CoM calibration reduce average error by approximately 14% and variance by 38%. On an inclined

base, our full calibration process reduces mean error by 42% and variance by 65%. These findings highlight

the importance of inclined calibration for achieving accurate external force estimations, especially for mobile

manipulator applications where the environment changes often.

Keywords: calibration; sensors; crosstalk; optimization

1. Introduction

Humans possess proprioceptive sensors that enable them to estimate the weight of objects
accurately, excluding the weight of their own weight. This sensory ability allows humans to use
gravity as a reference to estimate the weight of an object reliably, even when the ground is inclined
or their posture changes. Implementing a similar capability in robots requires using FT sensors to
estimate the weight of objects based on the gravitational force acting on the sensor. However, because
FT sensors utilize multiple strain gauges or capacitance measurements to calculate force and torque,
changes in posture or ground inclination can disrupt consistent weight estimation.

In this study, we introduce a calibration method designed to emulate human-like capabilities in
robots. Our approach allows robots to isolate and exclude the weight of an end tool, enabling accurate
estimation of an object’s weight alone. By performing our calibration method, we achieve a precise
separation of force and torque, which allows for consistent weight estimation across various postures
and inclinations. Also, this calibration method enables robots to adapt to changing environmental
conditions and orientations, similar to the way humans can maintain consistent weight perception
regardless of ground inclination or body posture. This work contributes to the field of biomimetic
robotics by equipping robots with the ability to adjust their force and weight estimation processes,
which is crucial for interactions on manipulation.

When performing tasks that involve interaction with the surrounding environment, it is essential
to accurately understand the relationship between the manipulator and the object being interacted
with or to assess the interaction based on force and torque feedback. Knowing the forces acting
between the environment and the robot is crucial for generating the desired motions in response.
In the field of robotics, researchers often utilize joint torque sensors or measure the current flowing
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through joint modules to estimate and control the forces acting on the robot’s end-effector or links.
Control strategies that leverage such force and torque feedback include admittance and impedance
control [1,2]. However, these approaches require solving the fundamental dynamics [3], but are
sensitive to parameters such as dynamic parameter estimation [4] and friction compensation [2,5]. In
particular, errors in friction compensation can lead to performance deviations of up to 25%. Moreover,
these methods are complex to implement and require sensors on every link.

In general, when a robot is used to perform tasks in place of humans, the key information needed
is the interaction between the robot’s end-effector and the environment. Therefore, using an FT sensor
to measure forces at the robot’s end-effector simplifies calculating the required movements for the
end-effector. Although this approach requires adding an FT sensor to the robot, it has the advantage of
providing force measurements at the end-effector, even in robots without joint torque sensors.

To obtain the forces acting on the end-effector, an FT sensor is usually installed at the robot’s
end-effector, and the end-tool is attached after the FT sensor. The external force should be isolated
from the FT sensor data. External force refers to the forces and torques acting on the end-effector itself,
excluding any effects from the tool attached beyond the sensor. FT sensor calibration is necessary
because the tool attached to the end (typically a gripper) has its own weight and inertia, which can
cause the sensor to measure force and torque even when no external force and torque are applied. For
accurate calibration, it is essential to estimate the wrench caused by the tool and separate the external
wrench from the sensor’s characteristic crosstalk through appropriate compensation.

Calibration using FT sensors is still an emerging research area. This is because the users typically
use the data provided by the sensor as-is. Generally, during the sensor manufacturing process, internal
calibration is performed to obtain 6-axis force and torque data, and the resulting calibration matrix is
provided to users. Some studies have proposed methods to collect the sensor’s raw data and determine
a calibration matrix using artificial neural networks [6–9]. The calibration matrix obtained through this
process enables users to retrieve force and torque data from the sensor. While this provides calibration
at the sensor level, additional steps are required for users to obtain accurate data when an end tool
is attached and the base is inclined. The research has been conducted to determine parameters such
as bias, CoM, and gravity by sampling in various postures and modeling the sensor system [10–13].
Methods have been proposed to extract physical information using sensor data from specified postures
and the robot’s kinematics, but these approaches have not considered base inclined. More recently,
studies have aimed to calibrate for an inclined base [14]. However, this method has the drawback of
requiring data collection with at least three end tools of known mass and CoM, making it unsuitable
for applications like mobile manipulators, where the base’s incline changes frequently. In the case of a
mobile manipulator, if calibration is time-consuming, the preparation time can increase exponentially
each time a new work location is added.

Current research typically focuses on determining the parameters of a manipulator fixed in a
specific environment and compensating for the effects on the FT sensor using the calculated parameters.
However, these approaches have limitations: when the robot’s installation location changes, causing
changes in leveling, excessive resistance, or degradation, the known joint position data may no longer
be accurate, requiring the user to repeat the calibration process. As a result, these methods are not
suitable for mobile manipulators or robots with small payloads that frequently encounter changing
environments.

To address these challenges, we propose a method for quickly estimating the parameters necessary
for accurate external force estimation using FT sensor data collected from several specific postures.
Additionally, to adapt swiftly to changes in environmental incline, we provide a straightforward
calibration method that updates the robot’s inclination parameters relative to the base, allowing for
external force estimation without hardware modification or extended preparation time. This approach
enables rapid calibration to adapt to varying environments without the need to replace the end tool or
perform additional tasks during the calibration process. Accurate external force estimation following
calibration offers a range of applications. One such application is determining the mass of an object
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grasped by the end tool. Accurately assessing the mass of a grasped object enhances the safety of
environmental interactions involving the object. In some cases, it enables the clear definition of safety
boundaries, such as impact forces during object-environment contact, and provides the ability to
estimate the force the grasped object exerts on the environment when contact is necessary.

The remainder of the paper is as follows. Section 2 describes the details of the proposed sensor
calibration method. Section 3 shows experiments and verifies the proposed method. Finally, Section 4
concludes the paper and suggests the future work.

2. Method

In this section, we introduce the definitions used to explain our calibration method and describe
the calibration process in detail. The goal of the calibration is to determine the parameters that allow
for the removal of the effects caused by the end tool, enabling accurate estimation of the external forces.

2.1. Background

To accurately estimate the external wrench, we need to remove all other influences from the
wrench values measured by the sensor. In our approach, we aim to perform tasks using a mobile
manipulator equipped with an FT sensor and gripper at the end-effector. If we can eliminate the effect
of the gripper’s mass m, which influences the FT sensor due to gravity, we can achieve an accurate
estimation of the external wrench. The wrench values obtained from the sensor include sensor bias.
Bias refers to the offset between the ideal value of zero and the actual force and torque values measured
by the FT sensor when no external forces are applied. Additionally, the sensor readings are affected
by crosstalk. In the context of this FT sensor, crosstalk refers to errors caused by mutual interference
between the changes in internal capacitance, which prevent the independent separation of forces and
torques.

2.2. Notation and Frame Definition

The following notations and definitions are used throughout this paper.

• The vector f ∈ R3 is the force vector composed of x, y, z−axis.
• The vector τ ∈ R3 is the torque vector composed of x, y, z−axis.
• The vector w ∈ R6 is the wrench vector composed of f and τ.
• The vector g ∈ R3 is the gravity vector composed of x, y, z−axis.
• The vector r ∈ R3 is the CoM vector of the end-tool in sensor coordinate.
• The matrix C ∈ R3×6 is the crosstalk matrix.
• The subscript Ai represents the coordinate of vector and matrix A are defined.
• The superscript Ai describes the type of vector and matrix A.
• The operator [·]+ is the pseudo-inverse matrix.
• The operator [·]× is the skew-symmetric matrix.

The coordinates described in Figure 1 are used throughout this paper. Each rotation matrix
between coordinates satisfies the following relationship: g f = Rsge = RsR f gb = RsR f R0gg
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Figure 1. Coordinate definition on our mobile manipulator Moby from Neuromeka.

2.3. Calibration Model

The typical crosstalk value can be interpreted based on changes in the structure of the FT sensor
due to deformation. These changes are estimated by analyzing the variation in strain gauges or
capacitance and are then converted into force or torque. For strain gauges, the variation in the sensors
installed on the structure is calculated through an internal matrix and converted into Force and Torque
that the user can understand. On the other hand, in the case of capacitance-type sensors, raw data is
generated by utilizing changes in the distance between electrodes on the installed substrate (parallel
plates with normal displacement), the area changes due to shear force (parallel plates with shear
displacement), and the angle and distance changes between electrodes orthogonal to the direction of
the shear force (orthogonal plates with shear displacement). Similar to the strain gauge type, the data
are processed through internal calculations to provide force and torque values to the user.

We model the wrench measured by the FT sensor as follows. Let the superscript f t denote the
value measured by the FT sensor, abs the theoretical applied value, bias the bias present in the sensor,
and est our estimated value. Then, the wrench read by the sensor is defined as shown in Eq. (1).

w f t
f = wabs

f + wbias
f + C

[
τest

f
03×1

]
(1)

wabs represents the ideal force applied by the end-tool attached to the sensor, where force is expressed
as mg and torque as r × mg. wbias is the initial default value of each data point when the sensor is first
activated, which varies with each boot. The C matrix is the crosstalk matrix, which maps the influence
of torque on force. Our objective is to determine all terms on the right side of Eq. (1) to compensate for
the wrench caused by the end tool attached to the sensor, thereby enabling the measurement of pure
external force.

Since the wabs caused by the end tool is due to gravity, it is necessary to calculate the body
gravity in the { f } coordinate. If the base frame coincides with the global coordinate system {g}, this
calculation can be simplified using the robot’s forward kinematics. However, if the base is inclined, it
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is essential to know the angle to accurately determine the direction of gravity which is described in
frame {b}.

gb = R0gg = 9.81

 sin β

− sin α · cos β

− cos α · cos β

 (2)

Defining the orientation of the {b} frame relative to the global {g} frame by the roll, pitch, and yaw
angles α, β, and γ, respectively. The gravity acting in the {b} frame can be formulated as in Eq. (2). It
is important to note that since the normal vectors of the {g} and {b} frames can be aligned in opposite
directions through two rotations, as in a pan-tilt configuration, it is sufficient to determine only α and
β to obtain gg without fully calculating R0.

To estimate the force fabs
f , physically exerted by the end tool on the sensor, fest

f is defined as shown
in Eq. (3).

fest
f = mRsR f R0gg = mR f gb (3)

The body gravity of frame {b} obtained from Eq. (2) is transformed to the sensor frame { f } using
forward kinematics, based on data received from the controller. The transformation matrix between
the end-effector {e} frame and the force sensor f frame represents any rotational misalignment due to
sensor assembly error; however, this effect is minimal relative to other factors and can be reasonably
approximated as an identity matrix.

Since the torque arises from the CoM displacement of the end tool and its weight in the { f } frame,
it can be expressed as shown in Eq. (4) using Eq. (2).

τest
f = r f × fest

f

=


(
r31dy − r21dz

)
sin β −

(
r33dy − r23dz

)
cos α cos β −

(
r32dy − r22dz

)
cos β sin α

(r33dx − r13dz) cos α cos β − (r31dx − r11dz) sin β + (r32dx − r12dz) cos β sin α(
r21dx − r11dy

)
sin β − cos α

(
r23dx − r13dy

)
cos β −

(
r22dx − r12dy

)
cos β sin α

 (4)

The r f vector represents the vector of CoM on the end tool in the { f } coordinate system. Expanding
the forward kinematics from the {b} coordinate system to the {e} coordinate system, if each element
of R f is defined as ri,j, τest

f can be expressed in terms of the known variables r11 through r33 and the
unknown variables dx, dy, dz, α, and β.

By using the sensor values obtained from the four postures shown in Figure 2, the bias values can
be determined through Eq. (5).

w f t
1 =

[
fabs

f
τabs

f

]
1

+ wbias + C

[
τest

f
03×1

]
1

, where fabs
f ,1 =

+ fx

+ fy

+ fz

, τabs
f ,1 =

−dz fy + dy fz

+dz fx − dx fz

−dy fx + dx fy


w f t

2 =

[
fabs

f
τabs

f

]
2

+ wbias + C

[
τest

f
03×1

]
2

, where fabs
f ,2 =

− fx

− fy

+ fz

, τabs
f ,2 =

+dz fy + dy fz

−dz fx − dx fz

+dy fx − dx fy


w f t

3 =

[
fabs

f
τabs

f

]
3

+ wbias + C

[
τest

f
03×1

]
3

, where fabs
f ,3 =

− fx

+ fy

− fz

, τabs
f ,3 =

−dz fy − dy fz

−dz fx + dx fz

+dy fx + dx fy


w f t

4 =

[
fabs

f
τabs

f

]
4

+ wbias + C

[
τest

f
03×1

]
4

, where fabs
f ,4 =

+ fx

− fy

− fz

, τabs
f ,4 =

+dz fy − dz fz

+dz fx + dx fz

−dy fx + dx fy


4

∑
i=1

w f t
i = 4wbias

(5)
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When the same force is applied in the {g} frame, the forces and torques from the four postures in
Figure 2 are composed of elements with identical magnitudes but opposite signs. Additionally, since
the crosstalk effects we modeled is a linear combination of τest

f , it is dependent on the sign of τest
f . If

two postures could be identified where each of the three axes has an opposite sign, it would be possible
to cancel out all terms except wbias using only those two postures. However, as such postures do not
exist, we achieve the same effect through a combination of four postures. Consequently, by summing
the sensor data from all four postures, we isolate the term composed solely of wbias.

Figure 2. The four initialization postures for bias estimation. When the same force is applied in the {g}
frame, the forces represented in the { f } frame for each of the four postures are shown.

The crosstalk matrix C is defined as shown in Eq. (6). This matrix represents the influence that
a linear combination of torque values exerts on the force term. As mentioned above, forces and
torques along the same axis do not affect each other in a capacitance-type FT sensor. Therefore, Ct2 f ,
representing the crosstalk from torque to force, is designed as a diagonal matrix with zeros to prevent
mutual influence along corresponding axes. C f 2t, representing the crosstalk from force to torque, is set
to zero in our sensor configuration, as there is no observed impact of force on torque.

C =
[
Ct2 f C f 2t

]
=

 0 c1 c2 0 0 0
c3 0 c4 0 0 0
c5 c6 0 0 0 0

 (6)

2.3.1. Linear Method

The CoM of the end tool can be obtained using Eq. (7). From the relation τ = r × mg = [−mg]×r,
we derive a linear equation in the form r = [−mg]+×τ which can be solved by the least squares method.
By constructing a matrix from the predicted values obtained across n postures, we can determine the
CoM that minimizes the torque error in each posture through the pseudo-inverse.

dx

dy

dz

 =
1
m



[
−g f ,1

]
×[

−g f ,2

]
×

...[
−g f ,n

]
×



+
τ

f t
f ,1

τ
f t
f ,2
...

τ
f t
f ,n

 (7)

The elements of the crosstalk matrix can be obtained using the linear Eq. (8). Since Ct2 f τest
f =

f f t − fest
f , we can vectorize C and convert τ into matrix form by following the definition on Eq. (8)

to achieve a least squares method structure, allowing the elements to be solved through the pseudo-
inverse.
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vec(Ct2 f ) =



〈
τ

f t
1

〉〈
τ

f t
2

〉
...〈

τ
f t

n

〉



+
f f t

1 − fest
f ,1

f f t
2 − fest

f ,2
...

f f t
n − fest

f ,n

,

where vec(Ct2 f ) =
[

0 c1 c2 c3 0 c4 c5 c6 0
]⊺

〈
τ

f t
i

〉
=

0 τy τz 0 0 0 0 0 0
0 0 0 τx 0 τz 0 0 0
0 0 0 0 0 0 τx τy 0



(8)

The tilt information of the base obtained from Eq. (2) is non-linear, making it impossible to determine
parameters using a linear equation. Therefore, while compensation is possible with a linear equation on
a flat surface, it is insufficient on an inclined surface. The case where CoM and crosstalk are calibrated
using Eq. (7) and (8) with the LSM are labeled as LSM Calibration for the following experiments.

2.3.2. Non-Linear Method

The variables required to predict the sensor’s wrench include a total of 11 parameters: the CoM
vector of the end tool, the inclined angle of the base, and the elements of the crosstalk matrix. To
determine these variables, we design an objective function as shown in Eq. (10) and aim to minimize it
using a nonlinear optimization technique.

werr =

∥∥∥∥∥wsensor
f ,i −

([
fest

f
τest

f

]
i

+ wbias
f + C

[
τest

f
03×1

]
i

)∥∥∥∥∥
2

, (9)

H(X) =
n

∑
i=1

werr
i , where X =

[
dx dy dz α β c1 c2 c3 c4 c5 c6

]
(10)

By using the predicted values obtained through Eq. (3) and (4), along with the bias values from
Eq. (5), we minimize the error with respect to the sensor data. Defining werr as Eq. (9), we set the
objective function H as the summation of the werr

i values across n specified postures, allowing us
to find the variables through gradient descent. The case where CoM, crosstalk, and inclination are
calibrated using Eq. (10) are labeled as Full Calibration for the following experiments.

3. Experiments and Results

In this section, we apply our calibration method to a real robot and sensor, presenting the results.
The mobile manipulator used is the Moby manufactured by Neuromeka shown in Figure 1, which
consists of a 7-DOF manipulator and a mobile 4WIS-4WID platform. The FT sensor used is the AFT200
manufactured by AIDIN ROBOTICS, with detailed specifications provided in Table 1. The end tool
used is the Robotiq’s 3-Finger Adaptive Gripper.
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Table 1. Specification of AFT200 FT sensor from ADIN ROBOTICS.

Index Value Unit

Type capacitance -
Nominal force range 200 N

Nominal torque range 15 Nm
Limit force ( fxyz) 300 N

Limit torque (τxyz) 25 Nm
Resolution ( fxyz) 0.15 N
Resolution (τxyz) 0.015 Nm

Maximum sample rate 1,000 Hz

The data acquisition postures for calibration are shown in Figure 3. In our case, the CoM of
the end tool is the furthest along the z-axis in the { f } coordinate system, resulting in the greatest
torque generation. Therefore, data were collected from 10 postures that produce the highest torque.
Depending on the shape of the end tool, users may choose different postures for calibration.

Figure 3. 10 sampling poses used for calibration throughout this paper. These postures are selected
by rotating the wrist angle in the orientation that generates the highest torque, allowing for various
orientations.

To assess the accuracy of the base inclined estimation, we first adjust the inclination of the mobile
platform as shown in Figure 4 and compare the results. The estimated base inclined angles are then
compared with the geometric analysis, and the results are presented in Table 2.

Figure 4. The mobile base with an inclined. The inclined angle can be calculated geometrically using
the wheelbase of the mobile robot and the height of the step.
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Table 2. The result of inclined estimation. Since the geometrically calculated angle is not expressed as a
rotation about our defined coordinate axes, we converted the results of our calibration into a screw
angle to facilitate the comparison of magnitudes.

Parameter Kinematics [◦] Calibration Result [◦]

α - 1.38
β - 4.88

screw angle 4.8 5.07

To analyze the impact of each calibration parameter, we define the calibration levels for the
following experiments as follows: cases where only bias calibration is performed are labeled as No
Calibration; cases where CoM and crosstalk are calibrated using Eq. (7) and (8) with the LSM are labeled
as LSM Calibration; and cases where floor inclined calibration using Eq. (10) is additionally performed
using Eq. (3) are labeled as Full Calibration.

3.1. CoM Estimation

The CoM estimation based on the data obtained from Figure 3 yielded the results shown in Table 3.
Considering the data specified in the Robotiq 3-Finger Adaptive Gripper datasheet and the length
of the mount we designed, the CoM along the z-axis is approximately 105 mm, while the estimated
result is 104.4 mm. The difference in the CoM results for the x- and y-axes is due to the fact that our
calibration aimed to estimate the wrench acting on the sensor. Therefore, the calibration was performed
to predict the CoM in a way that minimizes the effect of the end tool on the sensor.

Table 3. The result of CoM estimation.

Parameter Datasheet [mm] Estimation [mm]

dx -8 4.7
dy 0.0 -7.4
dz 1051 104.4

1 This data represents the values specified in the datasheet, with the addition of the height of the mount we designed.

3.2. Crosstalk Calibration

The reason for setting C f 2t to zero when designing the crosstalk matrix C is that torque is
minimally affected by crosstalk. Figure 6 shows the results when the wrist angle of the end-effector is
rotated 360 degrees, starting from a posture with the highest torque, as in the calibration data collection
postures. In this case, the CoM estimated without any inclined was used, and no crosstalk calibration
was performed. As a result, the fext exhibited significant errors due to the influence of crosstalk. In
contrast, the øext showed a maximum error of 0.1 Nm, indicating that the influence of crosstalk on
torque is minimal. As shown in Table 4, the mean and variance of the external torque are very small.
Therefore, our approach to modeling the crosstalk matrix is reasonable.

Table 4. The table of the mean and variance of the external torque for each axis in data collected by
rotating only the wrist in the sampling pose, without performing crosstalk calibration. To assess the
relationship with the ideal value of zero, the mean and variance were calculated based on the absolute
values of the data.

τext
x τext

y τext
z

Mean Variance Mean Variance Mean Variance
No Calib. 0.059 0.002 0.062 0.002 0.015 0.0001

To evaluate whether the crosstalk calibration can compensate for the effects of the end tool’s own
weight, we conducted an experiment using a Robotiq 3F gripper, trying a pick-and-place scenario on a
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non-inclined base. The path of the scenario is described in Figure 5. When the CoM is not estimated,
the data from the gripper’s datasheet is used directly. During the experiment, the gripper does not
grasp any object, and no external forces are applied. Ideally, the external wrench wext = w f t − wcomp

should be zero, where wcomp = west
f + wbias

f + C
[
τest⊺

f 01×3

]⊺
.

Figure 5. The robot path in the pick-and-place scenario. The robot sequentially moves from posture 1
to posture 4, with posture 2 set at an angle of approximately 30 degrees to simulate a torque-generating
situation.

Figure 6. The graph of external force and torque measured when the wrist is rotated in the sampling
pose posture without crosstalk calibration. Since only the gripper is attached and no external forces are
applied, the values should ideally converge to zero.

The first experiment is conducted on a non-inclined surface with an inclination of zero to in-
vestigate the impact of crosstalk. Figure 7a shows the external force and torque graphs during the
pick-and-place operation in the No Calibration, while Figure 7b shows the same data for the LSM
Calibration. As you can see in Figure 7, in postures where torque is generated due to the influence of
the end tool, significant force errors are observed due to crosstalk. The analysis of the external force
and torque data along each axis, as shown in Figure 7a, is summarized in Table 5. When crosstalk
calibration was applied, the average external force decreased by approximately 33% along the x- and
y-axes and by about 8% along the z-axis. The variance decreased by around 57% for the x-axes and
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y-axes and by about 15% for the z-axis. In contrast, the external torque showed almost identical results.
This is because the estimated CoM closely matches the CoM specified in the datasheet, and no crosstalk
compensation was applied for torque. Therefore, crosstalk compensation effectively reduces errors
due to force.

(a) The graph of the external force and
torque when the scenario is performed on
a non-inclined base with No Calibration.

(b) The graph of the external force and
torque when the scenario is performed on
a non-inclined base with LSM Calibration.

Figure 7. Two different data comparing the external force and torque when Figure 7a only No Calibration
is applied and when Figure 7b LSM Calibration are applied on a non-inclined base. Since there is no
inclined, Full Calibration does not affect the result.

Table 5. The table of the mean and variance of force and torque for each axis when calibration is
performed using two methods on a non-inclined base.

f ext
x f ext

y f ext
z τext

x τext
y τext

z
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

No Calib. 0.858 0.349 1.262 1.014 1.185 0.530 0.075 0.004 0.085 0.005 0.019 0.0002
LSM Calib. 0.571 0.154 0.843 0.432 1.098 0.447 0.071 0.004 0.086 0.004 0.017 0.0001

3.3. Inclination Calibration

To investigate the impact of the inclined base, we conduct the second experiment in three calibra-
tion steps: No Calibration, LSM Calibration, and Full Calibration. The results of the experiment are shown
in Figure 8. The base is inclined by approximately 5 degrees as we set up in Figure 4. Comparing Fig-
ures 8a and 8b, we can see that while the external force error in Figure 8b has decreased due to crosstalk
compensation, the torque error remains due to the base’s inclined, indicating that the estimated CoM
and crosstalk are insufficient to reduce the torque error. In fact, the torque error is the same as in
Figure 8a, where No Calibration is applied. Comparing Figures 8b and 8c, we observe that both force
and torque have converged close to zero in Figure 8c. This result demonstrates effective compensation
for the errors in force and torque caused by the base inclined, and compared to Figure 8a, where No
Calibration is applied, it shows that the influence of the end tool has been effectively compensated.
Additionally, as mentioned in the CoM results, our calibration method compensates using the data
provided by the sensor, enabling effective calibration from the sensor’s perspective even if there are
discrepancies with the datasheet.
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(a) The graph of the ex-
ternal force and torque
when the scenario is per-
formed on a inclined base
with No Calibration.

(b) The graph of the ex-
ternal force and torque
when the scenario is per-
formed on a inclined base
with LSM Calibration ap-
plied.

(c) The graph of the ex-
ternal force and torque
when the scenario is per-
formed on a inclined base
with Full Calibration ap-
plied.

Figure 8. The Graph comparing the external force and torque when calibration is performed using
three methods on an inclined base.

Table 6. The table of the mean and variance of force and torque for each axis when calibration is
performed using three methods on an inclined base.

f ext
x f ext

y f ext
z τext

x τext
y τext

z
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

No Calib. 1.509 0.835 0.648 0.230 1.679 1.594 0.088 0.005 0.211 0.015 0.014 0.0001
LSM Calib. 1.384 0.539 0.526 0.191 1.366 0.960 0.081 0.005 0.206 0.014 0.015 0.0001
Full Calib. 0.537 0.153 0.506 0.190 1.148 0.586 0.068 0.003 0.088 0.005 0.015 0.0001

The analyzed experimental data is presented in the table. Figures 8a and 8b showed a trend
similar to that in Figure 7. Although crosstalk compensation reduced the force error, the presence of
base inclined prevented convergence close to zero. Comparing the data in Figures 8b and 8c, we can
see that estimating the inclined angle allowed the error to converge close to zero. For external torque,
the mean values in the x, y, and z-axes decreased by 64%, 22%, and 32%, respectively, and the variance
decreased by 82%, 17%, and 63%, respectively. Additionally, the final results in Table 5, obtained from
experiments on a non-inclined base, are nearly identical to the results obtained on an inclined base.
Therefore, our calibration method achieves the same external force estimation accuracy on an inclined
base as on an even floor.

We conduct the same pick-and-place motion with the gripper holding an object with 2 kg of
mass. Since the gripper is grasping an object, the FT sensor measures the wrench resulting from both
the gripper’s weight and the object’s weight. Given that the calibration was performed using the
previously described method to compensate for the gripper’s weight, the external wrench should
reflect only the effect of the object’s weight. The results of estimating the object’s mass under three
conditions are shown in Figure 9. To estimate the mass of an object grasped by the gripper, we
calculated the l2-norm of external force. However, the actual wrench applied is not ideally separated
into force and torque components. In the No Calibration results, during the period between 2–8 seconds,
where both force and torque are applied together, there is a significant fluctuation in the magnitude of
the external force. This is due to the lack of ideal separation between force and torque, which requires
the crosstalk calibration we propose. With LSM Calibration, force and torque separation is achieved,
resulting in a more stable external force magnitude over the same period. However, due to the inclined
base, there remains an offset from the true mass of 2 kg. Finally, in the Full Calibration results, where
the base inclined is accounted for, the estimated mass converges closer to the actual 2 kg.
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Figure 9. The graph showing the mass estimation results for the three different calibration scenarios.

The analysis of mass estimation data from the three calibration stages in the pick-and-place
scenario is shown in Table 7. In the No Calibration results, the error is due to crosstalk from external
torque, while in the LSM Calibration results, it is due to an offset from the inclined base. This is evident
from the variance, which decreased by approximately 87%. The high variance in No Calibration reflects
the failure to accurately separate force and torque, whereas in LSM Calibration the separation was
successful, but an error remains due to the base inclined, affecting the { f } gravity axis. With Full
Calibration, compensating for the gravity axis error brought the estimated mass closer to 2 kg, and
alignment of the gravity axis further reduced variance by an additional 36%.

Table 7. The table of mass estimation results [kg] for the three different calibration scenarios.

Mean MAE Variance
No Calibration 1.730 0.302 0.107

LSM Calibration 2.308 0.308 0.014
Full Calibration 1.993 0.081 0.009

The above results were obtained from dynamic data collected during the pick-and-place scenario.
To ensure an accurate comparison, we also performed mass estimation under static conditions across
various postures with different orientations, as shown in Table 8. The overall trends are consistent with
the previous experiment: crosstalk compensation enabled force and torque separation, while inclined
compensation allowed for more accurate estimations.

Table 8. The table summarizes the mass estimation results [kg] across five different orientations for
each of the three calibration scenarios.

Pose 1
roll: 28.8◦

pitch: 165.7◦

yaw: 27.7◦

Pose 2
roll: 53.5◦

pitch: -171.4◦

yaw: 99.7◦

Pose 3
roll: 140.6◦

pitch: 24.2◦

yaw: 109.2◦

Pose 4
roll: -43.9◦

pitch: -154.2◦

yaw: 46.1◦

Pose 5
roll: -66.1◦

pitch: -170.7◦

yaw: 179.74◦
Mean MAE Variance

No Calib. 2.58 2.26 1.14 1.08 1.25 1.66 0.674 0.496
LSM Calib. 2.26 2.28 1.64 2.10 2.07 2.07 0.214 0.067
Full Calib. 2.22 2.28 1.70 1.97 2.08 2.05 0.182 0.053

4. Conclusion

In this paper, we introduce a calibration method for accurately obtaining external forces by mod-
eling an FT sensor to determine essential parameters, including bias, crosstalk, CoM, and inclination.
Although discrepancies can exist between the FT sensor’s measured data and actual physical quantities,
our goal is to model the sensor to minimize the error between the FT sensor data and the predicted
values to obtain accurate external forces. Tasks requiring interaction with the environment through a
robot necessitate the attachment of an end tool. To isolate contact forces with the external environment,
it is essential to compensate for the wrench due to the end tool’s weight, which we achieve through
calibration. Notably, adding inclined angle calibration, found to be the most critical factor, improves
compensation performance. In Section 3, we evaluated whether calibration was appropriately applied
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in response to changes in the environment. Our calibration results showed that on a non-inclined
base, crosstalk and CoM adjustments reduced the overall mean error by approximately 14% and
variance error by 38%. On an inclined base, the overall mean error decreased by about 42%, and
the variance error was reduced by around 65%. These results indicate that working on an inclined
base can significantly impair accurate external force estimation using FT sensors, underscoring the
necessity of our calibration method, including inclined compensation, to ensure consistent FT sensor
performance. We expect that the proposed calibration method will be valuable in applications like
mobile manipulators, where environments change frequently and interaction with the environment is
essential.
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The following abbreviations are used in this manuscript:

CoM Center of Mass
DOF Degrees of Freedom
FT Sensor Force-Torque Sensor
LSM Least Squares Method
4WIS-4WID Four-Wheel Independent Steering and Driving
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