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Abstract: Maxwell-Lodge effect is the observed electric field (or electromotive force) outside a long
solenoid, where the magnetic field is essentially zero. Proposed explanations for the Maxwell-Lodge
effect include non-local induction (the magnetic field inside the solenoid generating an electric field
outside), the magnetic vector potential acting as a physical quantity that produces the electric field
outside the solenoid, or Weber’s force resulting from moving electrons. In this paper, we calculate
the electric fields of a solenoid using the electric field theory of Weber’s electrodynamics. We show
that the solenoid not only generates the conventional magnetic field inside the solenoid but also
produces velocity- and acceleration-related electric fields both inside and outside the solenoid. This
explanation, based on the electric field theory of Weber’s electrodynamics, is simpler and more
straightforward.
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1. Introduction

The Maxwell-Lodge effect [1,2] refers to the observed electric field outside a long solenoid with
a slowly varying current. According to classical electromagnetism, the Coulomb electric field inside
and outside the solenoid is zero because there is no net charge. Thus, the observed electric field must
be due to induction. For a long solenoid with constant current, the magnetic field inside the solenoid
is uniform, while the magnetic field just outside is nearly zero. However, when the current varies
slowly, the assumption of a zero magnetic field outside leads to inconsistencies in Maxwell’s
equations (as well as in extended electrodynamics) [3,4]. Solutions to Maxwell’s equations under
these conditions reveal both an induced electric field and a very small magnetic field outside the
solenoid [5]. It is generally accepted that these fields can be treated as quasi-stationary, with
negligible electromagnetic radiation.

According to Maxwell’s equations [6], a changing magnetic field generates an electric field, and
by the principle of locality in physics, this must occur locally. In the case of a slowly varying current,
the magnetic field inside the solenoid changes, while the magnetic field outside remains essentially
zero. This makes it difficult for classical electromagnetism to explain the detected electric field outside
the solenoid unless one assumes a non-local effect, i.e., the varying magnetic field inside somehow
causes the electric field outside [7].

Even though the magnetic field outside is zero, the magnetic vector potential is not [8]. Since the
time-varying magnetic vector potential contributes to the electric field, it is proposed that the
observed field outside is caused by this variation. While this explanation seems to uphold the locality
principle, it assumes that the magnetic vector potential is physically real—a point still debated in
classical theory [2]. Many studies [2,8-11] support the physical reality of magnetic vector potential,
though the traditional view treats it as merely a mathematical construct.

A pioneering study explained the induced electromotive force outside a long solenoid using
Weber’s force [12], avoiding the controversial reality assumption of a physical vector potential. In
this paper, we continue along this path, using the field theory of Weber’s electrodynamics [13] to
derive the electric fields of a solenoid. We demonstrate that electron motion in the current produces
magnetic and electric fields both inside and outside the solenoid.
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2. Electric Fields of Weber’s Electrodynamics

In the electric field theory of Weber’s electrodynamics [13], the force that a charge Q exerts on
another charge q can be written in the following form (equation 1) for any given reference frame.
Let Q have velocity v; and acceleration a;, and q have velocity u; and acceleration w;. The
distance between the two charges is 7, and n;, is the unit vector pointing from charge Q to charge
q. Here, &, is the vacuum permittivity and c is the speed of light.

Fk = Q[Ek + uiML-k]-uj + ul-Bik + Ek + WiLik + Ek] (1)
where:
__Om
K™ 4me,r2
E, 3
k
Bik = C_2 (—2511 + 3ninj)vj ’
_ E, 3 2)
Ek =7; F (611 — Eninj) 17]'
E.r
Lie=—3m
= —EkT
Ek = C—Zniai

In this formulation:

e E, is the classical Coulomb electric field,
® By isequivalent to the magnetic field,
e Ej isthe electric field due to the charge Q (source) velocity,
o E, isthe electric field due to the charge Q (source) acceleration,
* My is the electric field acting on the charge g (receiver) velocity,
e Ly is the electric field acting on the charge g (receiver) acceleration.
To obtain the total field from multiple source charges, we sum the contributions of each
individual charge. To compute the force on a single receiver charge, we apply Equation (1) using its

properties (charge, velocity, and acceleration) and the total electric field resulting from the
superposition of all source charges.

3. Long Solenoid with Constant Current

In this section, we analyze a circular electric current in a solenoid centered at the origin, as shown
in Figure 1a. Our goal is to calculate the electric fields at point A on the x-axis, as depicted in Figure
1b,c.

Assume that the current is constant. The positive charges in the solenoid are stationary, while
the negative charges (electrons) move with a velocity v along the circular path, experiencing an
acceleration a that points towards the z-axis (Figure 1b).
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Figure 1. A) Schematic diagram of the solenoid; B) Top-down view of the solenoid with radius R; C) Side view
of the solenoid, showing the electrical action at point A (located at x, 0, 0) due to a current segment ds.

Given the coexistence of positive and negative charges in the solenoid, the terms E;, My, and
Ly, will be zero due to the cancellation of the positive and negative charge contributions. Therefore,
we focus on calculating the terms By, Ey, and E, from the moving negative charges in the solenoid.

Let’s begin by describing the current segment ds = Rdf - dz, where 8 is the angle around the
solenoid’s circular path. The vector 7 is pointing from the segment ds to point A, with a unit vector
n;. The surface density of negative charge is —p, where p is the electron charge density.

The vector 7, its magnitude and unit vector are given by:

7f=(x—Rcos8,—Rsinf,—z)
r =|7| =/ (x — Rcos0)% + (R sin 6)2 + z2 3)

1
n; =;(x—RcosG,—Rsin9,—z)

Next, the differential Coulomb electric field dE, due to the current segment is:

ds - (—pny)
dEy, = ————
k 4mear?

(4)

The velocity and acceleration components of the moving negative charges (electron) are given
by:
v; = v(—sinf,cos6,0)
v? 5
ai=?(—cose,—sin9,0) ©)
Using the above expressions for v; and a;, we proceed to calculate the magnetic field and
electric field components resulting from these moving electrons. From Equations (2, 3, 4, 5), the
differential magnetic field contribution from the current segment is:

b b b
ds - (—pv) (P11 D1z D13
dBy, = m by by b3 (6)
0 b3y b3y b3
where the components b;; are given by the following expressions:
by; = 2sin@1r%x — 2sin @ r?R cos O + 6x?sin@ R cos @ — 3x sin @ R?>cos?H — 3x3sin O
by, = —2sin?0r?R — 3xsin?0R? cos 6 + 3x2sin?6R
b;3 = —2sin@r%z —3xsinf Rcos O z
by = —2cosO1?%x + 2cos?0r?R + 3x2sin?6R — 3xsin®OR? cos O
by, = 2sin 6 72R cos @ — 3xsin30R? (7)

by3 = 2cos O 1%z — 3xsin?ORz

by; = 3x?sinfz —3xsinBRcosf z
bs, = —3xsin?6zR

b33 = —3xsin § z2
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We integrate the components along the solenoid, and then we obtain Bj:

0 By O
By = (1321 0 o> 8
0 0 0

In this equation, all other components become zero due to symmetry, except for By, and B,,,
for which we perform numerical integration. The parameters for the numerical integration are
predefined as follows: the solenoid radius R = 0.1m; the solenoid length is 10 m; the electron surface
density p =8.5x10%°m™2; the electron charge is 1.6 X 1071°C; the electron drift velocity is
4 x 10~*m/s; the speed of light ¢ = 3 x 108m/s; and the vacuum permittivity &, = 8.854 x 1072F/
m.

The result of the integration is plotted in Figure 2a. Inside the solenoid, the B;, and B,
components are uniform. Outside the solenoid, the B,, and B,; components are zero. This outcome
is consistent with the magnetic field predicted by classical electromagnetism.

Similarly, from equations (2,3,4,5), we can derive differential electric field dE,:

2
- pve-ds .
df, =—— (&, &, & 9
K 87T£0T5C2( 1 €2 €3) )
where:
&, = —2r%x + 2r?R cos 8 + 3x3sin%6 — 3x%sin?6R cos
é, = 2sin@r?R — 3x2sin36R (10)

é; = 2r%z — 3x%sin%6z

We integrate these components along the solenoid to obtain Ej . Due to symmetry, all
components become zero except for E;, which is computed through numerical integration.

E.=(E, 0 0) (11)
Again, from equation (2,3,4,5), we can derive differential electric field dE K
WBo= B 5 #) (12)
where:
g, = —x?cosf + xR + xRcos?0 — R? cos 0
&, = xRsinf cosf — R?sinf (13)

é; =xcosfz—Rz

We integrate these components along the solenoid to obtain Ej. Due to symmetry, all
components become zero except for E;, which is computed using numerical integration.

E.=(E, 0 0) (14)

The integrated E; and E; components are plotted in Figure 2b. Inside the solenoid, E; is zero,
while E, is non-zero and increases with radius. Outside the solenoid, both £, and E, are non-zero;
however, their sum is zero.

For a charge q located at point A, with velocity u; and acceleration w;, the force exerted on it
can be calculated using equation (1):

Fk = Q[Ek + uiMikju]- + uiBik + Ek + WiLik + Ek] = quiBik + Ek + Ek (15)

The force term qu;B;; is consistent with the Lorentz force derived from classical magnetic
theory. However, the terms E; and E, can only be obtained from the field theory of Weber’s
electrodynamics.
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Figure 2. A) B components (B;,, B,;) and the magnetic field from classical electromagnetism as a function of

radius; B) E components £; (Evl), E, (Eal), and their summation (Ev1 + Eal) as a function of radius.

4. Long Solenoid with Slowly Varying Current

Here, we consider a solenoid with a slowly varying current (Figure 3a). The solenoid has the
same geometry and parameters as the one in Section 3 (Figure 1), except that it has an acceleration
component in the tangential direction. We will not repeat the analysis of the electric fields due to the
current itself. Instead, we will only analyze the electric field contributed by this tangential
acceleration component.

a; = ay(—sin@,cosf,0) (16)

From equation (2,3,4,16), we can calculate differential electric field dE, due to this tangential
acceleration component:

= pag-ds _ _ _
dEy = dmegric? & & eé3) 17)
where:
&, = —x%sin@ + xR sin 6 cos O
&, = xRsin*6 (18)

é; =xsinfz

We integrate them along the solenoid, resulting in E,. Here, all other components become zero
due to symmetry except for E,, for which we perform numerical integration.

Ec=(0 E 0) 19)

The parameters we used are the same as those in Section 3, with the addition that ay =
4 x 10~*m/s?. This represents the maximum acceleration of a sinusoidal current at 1 Hz, assuming a
maximum current of 4 X 10”*m/s. The integration outcome is plotted in Figure 3b. Inside the
solenoid, E, increases linearly with radius. Outside the solenoid, E, decreases with radius. This
outcome is consistent with the electric field derived from classical electromagnetism, assuming an
infinitely long solenoid.
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Figure 3. A) Top-down view of the solenoid with radius R; B) E component E, (Ea2) and the electric field from

classical electromagnetism as a function of radius.

5. Short Solenoid with Constant Current

Here, we consider a scenario in which the solenoid is short and the current is constant. The
solenoid length is reduced to 0.01 m, and all other parameters are the same as those in Section 3. The
calculated B and E components are plotted in Figure 4.

The B components are no longer uniform inside the solenoid. Outside the solenoid, the B
components reverse polarity and gradually decrease with radius (Figure 4a). This behavior is
consistent with classical electromagnetism. However, classical electromagnetism predicts a zero
electric field both inside and outside the solenoid. In contrast, the field theory of Weber’ s
electrodynamics predicts non-zero E components. Compared with the long solenoid case, the E
components are dominated by the velocity-related component E; . The acceleration-related
component E; is relatively small (Figure 4b), and the two components do not cancel each other
outside the solenoid.
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Figure 4. A) B components (B,;, B;1) as a function of radius; B) E components E; (Ev1), E, (Eal) as a

function of radius.

5. Discussion

In classical electromagnetism, a time-varying electric field generates a magnetic field, and a time-
varying magnetic field generates an electric field. The electric and magnetic potentials are typically
not regarded as physical quantities, but rather as mathematical tools for calculating electric and
magnetic fields. Furthermore, under the principle of locality, field generation must occur locally.
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However, in the case of a long solenoid with a slowly varying current, this conventional
understanding faces challenges. The magnetic field outside the solenoid is essentially zero, while the
magnetic vector potential remains non-zero. To explain the induced tangential electric field outside
the solenoid, one must either abandon the principle of locality or assume that the magnetic vector
potential is a physical entity. Yet, there is no consensus on which interpretation is correct. Moreover,
the explanation based on the magnetic vector potential raises a further question: what generates the
magnetic vector potential outside the solenoid? If it is generated by the magnetic field inside the
solenoid, this again implies non-locality.

In contrast, the explanation provided by the field theory of Weber’s electrodynamics is simpler
and more direct. The solenoid wire contains stationary positive charges and moving electrons
(negative charges). The combined effects of these charges produce electric fields, which can have six
components. Since the positive and negative charges are balanced, three of these components are
zero. The remaining three non-zero components include the B component (equivalent to the
magnetic field), a velocity-dependent E component, and an acceleration-dependent E component.
Unlike in classical electromagnetism, these components are independent of each other. The electric
field is not generated by the magnetic field; rather, all components are generated directly by the
motion of electrons in the solenoid.

The electric fields in Weber’s electrodynamics are non-local, similar to the Coulomb field
produced by a stationary charge. The apparent contradiction between non-locality ("action at a
distance") and the principle of locality can be reconciled, as discussed in detail in a previous paper
[14]. Essentially, the electric fields in Weber’s electrodynamics can form waves due to the presence of
virtual charges (many-body effects) in a polarizable vacuum [15,16].

In this paper, the current variation is slow (1 Hz), so radiative effects can be neglected. However,
when the frequency of current variation is high (>6 kHz), observed electromotive force (emf) deviates
from the linear Weber force prediction [12]. Explaining this deviation may require incorporating
radiation effects.

For a long solenoid, the velocity-related and acceleration-related electric fields cancel each other
outside the solenoid. This may be one reason why previous experiments failed to detect the velocity-
related electric field [17]. In the case of a short solenoid, the velocity-related electric field is not
canceled by the acceleration-related component. However, this field is quite weak and may be
difficult to detect.

6. Conclusion

In this paper, we provided a simple and straightforward explanation of the Maxwell-Lodge
effect using the electric field theory of Weber’s electrodynamics. The tangential electric field is
generated directly by the moving electrons in the solenoid, rather than being induced by the magnetic
field or magnetic vector potential. Additionally, we demonstrated the different components of the
electric field both inside and outside long and short solenoids, highlighting their similarities and
differences compared to classical electromagnetism.
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