
Brief Report Not peer-reviewed version

Maxwell–Lodge Effect and Electric

Fields of a Solenoid

Qingsong Li *

Posted Date: 23 April 2025

doi: 10.20944/preprints202504.1916.v1

Keywords: Maxwell-Lodge effect; Electric field; Weber’s force; Field theory; Solenoid

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2788472


 

 

Brief Report 

Maxwell–Lodge Effect and Electric Fields of a 
Solenoid 
Qingsong Li 

Independent Researcher, Sugar Land, Texas, USA (qingsong.li.geo@gmail.com) 

Abstract: Maxwell–Lodge effect is the observed electric field (or electromotive force) outside a long 
solenoid, where the magnetic field is essentially zero. Proposed explanations for the Maxwell–Lodge 
effect include non-local induction (the magnetic field inside the solenoid generating an electric field 
outside), the magnetic vector potential acting as a physical quantity that produces the electric field 
outside the solenoid, or Weber’s force resulting from moving electrons. In this paper, we calculate 
the electric fields of a solenoid using the electric field theory of Weber’s electrodynamics. We show 
that the solenoid not only generates the conventional magnetic field inside the solenoid but also 
produces velocity- and acceleration-related electric fields both inside and outside the solenoid. This 
explanation, based on the electric field theory of Weber’s electrodynamics, is simpler and more 
straightforward. 

Keywords: Maxwell-Lodge effect; electric field; Weber’s force; field theory; solenoid 
 

1. Introduction 

The Maxwell–Lodge effect [1,2] refers to the observed electric field outside a long solenoid with 
a slowly varying current. According to classical electromagnetism, the Coulomb electric field inside 
and outside the solenoid is zero because there is no net charge. Thus, the observed electric field must 
be due to induction. For a long solenoid with constant current, the magnetic field inside the solenoid 
is uniform, while the magnetic field just outside is nearly zero. However, when the current varies 
slowly, the assumption of a zero magnetic field outside leads to inconsistencies in Maxwell’s 
equations (as well as in extended electrodynamics) [3,4]. Solutions to Maxwell’s equations under 
these conditions reveal both an induced electric field and a very small magnetic field outside the 
solenoid [5]. It is generally accepted that these fields can be treated as quasi-stationary, with 
negligible electromagnetic radiation. 

According to Maxwell’s equations [6], a changing magnetic field generates an electric field, and 
by the principle of locality in physics, this must occur locally. In the case of a slowly varying current, 
the magnetic field inside the solenoid changes, while the magnetic field outside remains essentially 
zero. This makes it difficult for classical electromagnetism to explain the detected electric field outside 
the solenoid unless one assumes a non-local effect, i.e., the varying magnetic field inside somehow 
causes the electric field outside [7]. 

Even though the magnetic field outside is zero, the magnetic vector potential is not [8]. Since the 
time-varying magnetic vector potential contributes to the electric field, it is proposed that the 
observed field outside is caused by this variation. While this explanation seems to uphold the locality 
principle, it assumes that the magnetic vector potential is physically real—a point still debated in 
classical theory [2]. Many studies [2,8–11] support the physical reality of magnetic vector potential, 
though the traditional view treats it as merely a mathematical construct. 

A pioneering study explained the induced electromotive force outside a long solenoid using 
Weber’s force [12], avoiding the controversial reality assumption of a physical vector potential. In 
this paper, we continue along this path, using the field theory of Weber’s electrodynamics [13] to 
derive the electric fields of a solenoid. We demonstrate that electron motion in the current produces 
magnetic and electric fields both inside and outside the solenoid.  
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2. Electric Fields of Weber’s Electrodynamics 

In the electric field theory of Weber’s electrodynamics [13], the force that a charge 𝑄 exerts on 
another charge 𝑞 can be written in the following form (equation 1) for any given reference frame. 
Let 𝑄  have velocity 𝑣௜  and acceleration 𝑎௜, and 𝑞  have velocity 𝑢௜ and acceleration 𝑤௜. The 
distance between the two charges is 𝑟, and 𝑛௞ is the unit vector pointing from charge 𝑄 to charge 𝑞. Here, 𝜀଴ is the vacuum permittivity and 𝑐 is the speed of light. 𝐹௞ = 𝑞ൣ𝐸௞ + 𝑢௜𝑀௜௞௝𝑢௝ + 𝑢௜𝐵௜௞ + 𝐸෨௞ + 𝑤௜𝐿௜௞ + 𝐸ധ௞൧  (1) 

where: 𝐸௞ = 𝑄𝑛௞4𝜋𝜀଴𝑟ଶ            𝑀௜௞௝ = 𝐸௞𝑐ଶ ൬𝛿௜௝ − 32 𝑛௜𝑛௝൰ 𝐵௜௞ = 𝐸௞𝑐ଶ ൫−2𝛿௜௝ + 3𝑛௜𝑛௝൯𝑣௝ 𝐸෨௞ = 𝑣௜ 𝐸௞𝑐ଶ ൬𝛿௜௝ − 32 𝑛௜𝑛௝൰ 𝑣௝ 𝐿௜௞ = 𝐸௞𝑟𝑐ଶ 𝑛௜ 𝐸ധ௞ = −𝐸௞𝑟𝑐ଶ 𝑛௜𝑎௜   
(2) 

In this formulation: 

• 𝐸௞ is the classical Coulomb electric field, 
• 𝐵௜௞ is equivalent to the magnetic field, 
• 𝐸෨௞ is the electric field due to the charge 𝑄 (source) velocity, 
• 𝐸ധ௞ is the electric field due to the charge 𝑄 (source) acceleration, 
• 𝑀௜௞௝ is the electric field acting on the charge 𝑞 (receiver) velocity, 
• 𝐿௜௞ is the electric field acting on the charge 𝑞 (receiver) acceleration. 

To obtain the total field from multiple source charges, we sum the contributions of each 
individual charge. To compute the force on a single receiver charge, we apply Equation (1) using its 
properties (charge, velocity, and acceleration) and the total electric field resulting from the 
superposition of all source charges. 

3. Long Solenoid with Constant Current 

In this section, we analyze a circular electric current in a solenoid centered at the origin, as shown 
in Figure 1a. Our goal is to calculate the electric fields at point A on the x-axis, as depicted in Figure 
1b,c. 

Assume that the current is constant. The positive charges in the solenoid are stationary, while 
the negative charges (electrons) move with a velocity 𝒗ሬሬ⃑  along the circular path, experiencing an 
acceleration 𝑎⃑ that points towards the z-axis (Figure 1b). 
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Figure 1. A) Schematic diagram of the solenoid; B) Top-down view of the solenoid with radius 𝑅; C) Side view 
of the solenoid, showing the electrical action at point A (located at 𝑥, 0, 0) due to a current segment 𝑑𝑠. 

Given the coexistence of positive and negative charges in the solenoid, the terms 𝐸௞, 𝑀௜௞௝, and 𝐿௜௞ will be zero due to the cancellation of the positive and negative charge contributions. Therefore, 
we focus on calculating the terms 𝐵௜௞, 𝐸෨௞, and 𝐸ധ௞ from the moving negative charges in the solenoid. 

Let’s begin by describing the current segment 𝑑𝑠 = 𝑅𝑑𝜃 ∙ 𝑑𝑧, where 𝜃 is the angle around the 
solenoid’s circular path. The vector 𝑟 is pointing from the segment 𝑑𝑠 to point A, with a unit vector 𝑛௜. The surface density of negative charge is −𝜌, where 𝜌 is the electron charge density. 

The vector 𝑟, its magnitude and unit vector are given by: 𝑟 = ሺ𝑥 − 𝑅 cos 𝜃 , −𝑅 sin 𝜃 , −𝑧ሻ 𝑟 = |𝑟| = ඥሺ𝑥 − 𝑅 cos 𝜃ሻଶ + ሺ𝑅 sin 𝜃ሻଶ + 𝑧ଶ 𝑛௜ = 1𝑟 ሺ𝑥 − 𝑅 cos 𝜃 , −𝑅 sin 𝜃 , −𝑧ሻ 
(3) 

Next, the differential Coulomb electric field 𝑑𝐸௞ due to the current segment is: 𝑑𝐸௞ = 𝑑𝑠 ∙ ሺ−𝜌𝑛௞ሻ4𝜋𝜀଴𝑟ଶ  (4) 

The velocity and acceleration components of the moving negative charges (electron) are given 
by: 𝑣௝ = 𝑣ሺ− sin 𝜃 , cos 𝜃 , 0ሻ 𝑎௜ = 𝑣ଶ𝑅 ሺ− cos 𝜃 , − sin 𝜃 , 0ሻ 

(5) 

Using the above expressions for 𝑣௝  and 𝑎௜ , we proceed to calculate the magnetic field and 
electric field components resulting from these moving electrons. From Equations (2, 3, 4, 5), the 
differential magnetic field contribution from the current segment is: 

𝑑𝐵௜௞ = 𝑑𝑠 ∙ ሺ−𝜌𝑣ሻ4𝜋𝜀଴𝑟ହ𝑐ଶ ൭𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ𝑏ଷଵ 𝑏ଷଶ 𝑏ଷଷ൱ (6) 

where the components 𝑏௜௝ are given by the following expressions: 𝑏ଵଵ = 2sin 𝜃 𝑟ଶ𝑥 − 2sin 𝜃 𝑟ଶ𝑅 cos 𝜃 + 6𝑥ଶ sin 𝜃 𝑅 cos 𝜃 − 3𝑥 sin 𝜃 𝑅ଶ𝑐𝑜𝑠ଶ𝜃 − 3𝑥ଷ sin 𝜃 𝑏ଵଶ = −2𝑠𝑖𝑛ଶ𝜃𝑟ଶ𝑅 − 3𝑥𝑠𝑖𝑛ଶ𝜃𝑅ଶ cos 𝜃 + 3𝑥ଶ𝑠𝑖𝑛ଶ𝜃𝑅 𝑏ଵଷ = −2 sin 𝜃 𝑟ଶ𝑧 − 3𝑥 sin 𝜃 𝑅 cos 𝜃 𝑧 𝑏ଶଵ = −2 cos 𝜃 𝑟ଶ𝑥 + 2𝑐𝑜𝑠ଶ𝜃𝑟ଶ𝑅 + 3𝑥ଶ𝑠𝑖𝑛ଶ𝜃𝑅 − 3𝑥𝑠𝑖𝑛ଶ𝜃𝑅ଶ cos 𝜃 𝑏ଶଶ = 2sin 𝜃 𝑟ଶ𝑅 cos 𝜃 − 3𝑥𝑠𝑖𝑛ଷ𝜃𝑅ଶ 𝑏ଶଷ = 2 cos 𝜃 𝑟ଶ𝑧 − 3𝑥𝑠𝑖𝑛ଶ𝜃𝑅𝑧 𝑏ଷଵ = 3𝑥ଶ sin 𝜃 𝑧 − 3𝑥 sin 𝜃 𝑅 cos 𝜃 𝑧 𝑏ଷଶ = −3𝑥𝑠𝑖𝑛ଶ𝜃𝑧𝑅 𝑏ଷଷ = −3𝑥 sin 𝜃 𝑧ଶ   
(7) 
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We integrate the components along the solenoid, and then we obtain 𝐵௜௞: 

𝐵௜௞ = ൭ 0 𝐵ଵଶ 0𝐵ଶଵ 0 00 0 0൱  (8) 

In this equation, all other components become zero due to symmetry, except for 𝐵ଵଶ and 𝐵ଶଵ, 
for which we perform numerical integration. The parameters for the numerical integration are 
predefined as follows: the solenoid radius 𝑅 = 0.1𝑚; the solenoid length is 10 m; the electron surface 
density 𝜌 = 8.5 × 10ଶ଺𝑚ିଶ ; the electron charge is 1.6 × 10ିଵଽ𝐶 ; the electron drift velocity is 4 × 10ିସ𝑚/𝑠; the speed of light 𝑐 = 3 × 10଼𝑚/𝑠; and the vacuum permittivity 𝜀଴ = 8.854 × 10ିଵଶ𝐹/𝑚. 

The result of the integration is plotted in Figure 2a. Inside the solenoid, the 𝐵ଵଶ  and 𝐵ଶଵ 
components are uniform. Outside the solenoid, the 𝐵ଵଶ and 𝐵ଶଵ components are zero. This outcome 
is consistent with the magnetic field predicted by classical electromagnetism. 

Similarly, from equations (2,3,4,5), we can derive differential electric field 𝑑𝐸෨௞: 𝑑𝐸෨௞ = 𝜌𝑣ଶ ∙ 𝑑𝑠8𝜋𝜀଴𝑟ହ𝑐ଶ ሺ𝑒̃ଵ 𝑒̃ଶ 𝑒̃ଷሻ (9) 

where: 𝑒̃ଵ = −2𝑟ଶ𝑥 + 2𝑟ଶ𝑅 cos 𝜃 + 3𝑥ଷ𝑠𝑖𝑛ଶ𝜃 − 3𝑥ଶ𝑠𝑖𝑛ଶ𝜃𝑅 cos 𝜃 𝑒̃ଶ = 2sin 𝜃 𝑟ଶ𝑅 − 3𝑥ଶ𝑠𝑖𝑛ଷ𝜃𝑅 𝑒̃ଷ = 2𝑟ଶ𝑧 − 3𝑥ଶ𝑠𝑖𝑛ଶ𝜃𝑧 
(10) 

We integrate these components along the solenoid to obtain 𝐸෨௞ . Due to symmetry, all 
components become zero except for 𝐸෨ଵ, which is computed through numerical integration. 𝐸෨௞ = ሺ𝐸෨ଵ 0 0ሻ  (11) 

Again, from equation (2,3,4,5), we can derive differential electric field 𝑑𝐸ധ௞: 𝑑𝐸ധ௞ = 𝜌𝑣ଶ ∙ 𝑑𝑠4𝜋𝜀଴𝑟ଷ𝑐ଶ𝑅 ሺ𝑒̿ଵ 𝑒̿ଶ 𝑒̿ଷሻ         (12) 

where: 𝑒̿ଵ = −𝑥ଶ cos 𝜃 + 𝑥𝑅 + 𝑥𝑅𝑐𝑜𝑠ଶ𝜃 − 𝑅ଶ cos 𝜃 𝑒̿ଶ = 𝑥𝑅 sin 𝜃 cos 𝜃 − 𝑅ଶ sin 𝜃 𝑒̿ଷ = 𝑥 cos 𝜃 𝑧 − 𝑅𝑧 
(13) 

We integrate these components along the solenoid to obtain 𝐸ധ௞ . Due to symmetry, all 
components become zero except for 𝐸ധଵ, which is computed using numerical integration. 𝐸ധ௞ = ൫𝐸ധଵ 0 0൯         (14) 

The integrated 𝐸෨ଵ and 𝐸ധଵ components are plotted in Figure 2b. Inside the solenoid, 𝐸෨ଵ is zero, 
while 𝐸ധଵ is non-zero and increases with radius. Outside the solenoid, both 𝐸෨ଵ and 𝐸ധଵ are non-zero; 
however, their sum is zero. 

For a charge 𝑞 located at point A, with velocity 𝑢௜ and acceleration 𝑤௜, the force exerted on it 
can be calculated using equation (1): 𝐹௞ = 𝑞ൣ𝐸௞ + 𝑢௜𝑀௜௞௝𝑢௝ + 𝑢௜𝐵௜௞ + 𝐸෨௞ + 𝑤௜𝐿௜௞ + 𝐸ധ௞൧ = 𝑞𝑢௜𝐵௜௞ + 𝐸෨௞ + 𝐸ധ௞ (15) 

The force term 𝑞𝑢௜𝐵௜௞  is consistent with the Lorentz force derived from classical magnetic 
theory. However, the terms 𝐸෨௞  and 𝐸ധ௞  can only be obtained from the field theory of Weber’s 
electrodynamics. 
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Figure 2. A) 𝐵 components (𝐵ଵଶ, 𝐵ଶଵ) and the magnetic field from classical electromagnetism as a function of 
radius; B) 𝐸 components 𝐸෨ଵ (Ev1), 𝐸ധଵ (Ea1), and their summation (Ev1 + Ea1) as a function of radius. 

4. Long Solenoid with Slowly Varying Current 

Here, we consider a solenoid with a slowly varying current (Figure 3a). The solenoid has the 
same geometry and parameters as the one in Section 3 (Figure 1), except that it has an acceleration 
component in the tangential direction. We will not repeat the analysis of the electric fields due to the 
current itself. Instead, we will only analyze the electric field contributed by this tangential 
acceleration component. 𝑎௜ = 𝑎଴ሺ− sin 𝜃 , cos 𝜃 , 0ሻ (16) 

From equation (2,3,4,16), we can calculate differential electric field 𝑑𝐸ധ௞ due to this tangential 
acceleration component: 𝑑𝐸ധ௞ = 𝜌𝑎଴ ∙ 𝑑𝑠4𝜋𝜀଴𝑟ଷ𝑐ଶ ሺ𝑒̿ଵ 𝑒̿ଶ 𝑒̿ଷሻ  (17) 

where: 𝑒̿ଵ = −𝑥ଶ sin 𝜃 + 𝑥𝑅 sin 𝜃 cos 𝜃 𝑒̿ଶ = 𝑥𝑅𝑠𝑖𝑛ଶ𝜃 𝑒̿ଷ = 𝑥 sin 𝜃 𝑧 
(18) 

We integrate them along the solenoid, resulting in 𝐸ധ௞. Here, all other components become zero 
due to symmetry except for 𝐸ധଶ, for which we perform numerical integration. 𝐸ധ௞ = ൫0 𝐸ധଶ 0൯  (19) 

The parameters we used are the same as those in Section 3, with the addition that 𝑎଴ =4 × 10ିସ𝑚/𝑠ଶ. This represents the maximum acceleration of a sinusoidal current at 1 Hz, assuming a 
maximum current of 4 × 10ିସ𝑚/𝑠 . The integration outcome is plotted in Figure 3b. Inside the 
solenoid, 𝐸ധଶ  increases linearly with radius. Outside the solenoid, 𝐸ധଶ  decreases with radius. This 
outcome is consistent with the electric field derived from classical electromagnetism, assuming an 
infinitely long solenoid. 
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Figure 3. A) Top-down view of the solenoid with radius 𝑅; B) 𝐸 component 𝐸ധଶ (Ea2) and the electric field from 
classical electromagnetism as a function of radius. 

5. Short Solenoid with Constant Current 

Here, we consider a scenario in which the solenoid is short and the current is constant. The 
solenoid length is reduced to 0.01 m, and all other parameters are the same as those in Section 3. The 
calculated 𝐵 and 𝐸 components are plotted in Figure 4. 

The 𝐵  components are no longer uniform inside the solenoid. Outside the solenoid, the 𝐵 
components reverse polarity and gradually decrease with radius (Figure 4a). This behavior is 
consistent with classical electromagnetism. However, classical electromagnetism predicts a zero 
electric field both inside and outside the solenoid. In contrast, the field theory of Weber’ s 
electrodynamics predicts non-zero 𝐸  components. Compared with the long solenoid case, the 𝐸 
components are dominated by the velocity-related component 𝐸෨ଵ . The acceleration-related 
component 𝐸ധଵ  is relatively small (Figure 4b), and the two components do not cancel each other 
outside the solenoid. 

 

Figure 4. A) 𝐵  components (𝐵ଵଶ , 𝐵ଶଵ ) as a function of radius; B) 𝐸  components 𝐸෨ଵ  (Ev1), 𝐸ധଵ  (Ea1) as a 
function of radius. 

5. Discussion 

In classical electromagnetism, a time-varying electric field generates a magnetic field, and a time-
varying magnetic field generates an electric field. The electric and magnetic potentials are typically 
not regarded as physical quantities, but rather as mathematical tools for calculating electric and 
magnetic fields. Furthermore, under the principle of locality, field generation must occur locally. 
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However, in the case of a long solenoid with a slowly varying current, this conventional 
understanding faces challenges. The magnetic field outside the solenoid is essentially zero, while the 
magnetic vector potential remains non-zero. To explain the induced tangential electric field outside 
the solenoid, one must either abandon the principle of locality or assume that the magnetic vector 
potential is a physical entity. Yet, there is no consensus on which interpretation is correct. Moreover, 
the explanation based on the magnetic vector potential raises a further question: what generates the 
magnetic vector potential outside the solenoid? If it is generated by the magnetic field inside the 
solenoid, this again implies non-locality. 

In contrast, the explanation provided by the field theory of Weber’s electrodynamics is simpler 
and more direct. The solenoid wire contains stationary positive charges and moving electrons 
(negative charges). The combined effects of these charges produce electric fields, which can have six 
components. Since the positive and negative charges are balanced, three of these components are 
zero. The remaining three non-zero components include the 𝐵  component (equivalent to the 
magnetic field), a velocity-dependent 𝐸 component, and an acceleration-dependent 𝐸 component. 
Unlike in classical electromagnetism, these components are independent of each other. The electric 
field is not generated by the magnetic field; rather, all components are generated directly by the 
motion of electrons in the solenoid. 

The electric fields in Weber’s electrodynamics are non-local, similar to the Coulomb field 
produced by a stationary charge. The apparent contradiction between non-locality ("action at a 
distance") and the principle of locality can be reconciled, as discussed in detail in a previous paper 
[14]. Essentially, the electric fields in Weber’s electrodynamics can form waves due to the presence of 
virtual charges (many-body effects) in a polarizable vacuum [15,16]. 

In this paper, the current variation is slow (1 Hz), so radiative effects can be neglected. However, 
when the frequency of current variation is high (>6 kHz), observed electromotive force (emf) deviates 
from the linear Weber force prediction [12]. Explaining this deviation may require incorporating 
radiation effects. 

For a long solenoid, the velocity-related and acceleration-related electric fields cancel each other 
outside the solenoid. This may be one reason why previous experiments failed to detect the velocity-
related electric field [17]. In the case of a short solenoid, the velocity-related electric field is not 
canceled by the acceleration-related component. However, this field is quite weak and may be 
difficult to detect. 

6. Conclusion 

In this paper, we provided a simple and straightforward explanation of the Maxwell-Lodge 
effect using the electric field theory of Weber’s electrodynamics. The tangential electric field is 
generated directly by the moving electrons in the solenoid, rather than being induced by the magnetic 
field or magnetic vector potential. Additionally, we demonstrated the different components of the 
electric field both inside and outside long and short solenoids, highlighting their similarities and 
differences compared to classical electromagnetism. 
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