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Abstract: More than 110 countries including 500 cities worldwide have set the goal of reaching car-
bon neutrality. Heating contributes to most of the residential energy consumption and carbon emis-
sions. The green energy transition of fossil-based heating systems is needed to reach the emission
goals. However, the heating systems vary in energy source, heating technology, equipment location,
and these complexities make it challenging for households to compare heating systems and make
decisions. Hence, a decision support tool that provides a generalized ranking of individual heating
alternatives is proposed for households as decision-makers to identify the optimal choice. This pa-
per presents an analysis of 13 heating alternatives and 19 quantitative criteria in technological, en-
vironmental, and financial aspects, combines ideal solution based Multi-Criteria Decision Making
with 6 weighting methods and 4 normalization methods, and introduces ensemble learning with a
fuzzy membership function derived from Cauchy distribution to finalize the final ranking. The ro-
bustness of the proposed method is verified by 3 sensitive analyses from different aspects. Air to
water heat pump, solar heating and direct district heating are the top three rankings in the final
result under Danish national average data. A framework is designed to guide the decision-makers
apply this ranking guideline with their practical feasible situations.

Keywords: MCDM,; Individual Heating; Fuzzy; Energy Transition; Ensemble

1. Introduction

Climate change is currently considered one of the most significant global crises. Lim-
iting global warming to 1.5°C requires rapid and deep transitions in energy, land, urban
and infrastructure, and industrial systems [1]. Governments are seriously taking this into
the agenda. More than 110 countries including 500 cities worldwide have set the goal of
reaching carbon neutrality [2]. In addition, 78% of European cities have greenhouse gas
(GHG) mitigation targets [3]. Challenges have been raised in the long-term planning and
decision making of the energy transition for municipalities in order to reach the emission
goals [4]. Especially in the Danish context of our research, the municipality has a key role
in the national transition to a fossil-free society because strategic energy planning in Den-
mark is clearly defined as a responsibility of the municipalities.

Heat is the key part of the energy transition. Heating for buildings takes nearly 25%
of global energy end-use, where fossil fuels heating is responsible for 8% of global CO2
emissions [5]. Danish Climate Agreement for Energy and Industry 2020 [6] emphasizes
oil and gas boilers must be phased out and replaced by green district heating or electric
heat pumps to achieve green heating. This agreement [7] allocates DKK 2.3 billion to sup-
port the replacements for the next 10 years, which includes subsidies for heat pumps and
free disconnection of gas networks. Hence, there is an increasing need for decision sup-
ports to identify the optimal heating choice, especially the green transition path for those
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using natural gas and oil as heating sources, in order to achieve the climate commitments
of local governments.

Heating systems differ in energy source, heat technology, equipment location, heat
carrier, transfer mechanism and heat requirement in the heated spaces [8,9]. Energy
sources are the major factor impacting the environment [10], which can be divided as fos-
sil fuels including oil, gas and coal, and renewables including biomass, solar, geothermal,
air, water and waste [9]. Apart from the traditional single energy source, research for com-
binations of multiple energy sources is increasing, like hybrid source heat pumps [11] and
district heating [12]. Heat technology has been developed in each category, including fire-
place, stove, boiler, heater, heat pump, solar thermal collector and cogeneration. Heating
systems can also be classified as local, central and district heating systems by equipment
location[8]. Therefore, there are many different kinds of combinations that can be made
for a heating system, and the complexity of it would increase the difficulty to make an
optimal decision, especially for regular households.

Thus, how one can choose an optimal heating system becomes the next challenge.
There are mainly three general aspects that need to be considered when one makes a heat-
ing choice, which are financial costs, technical considerations, and climate friendliness.
Financial costs are costs covering all usage span, such as cost for purchasing equipment,
installation, maintenance and periodical consumption. Technical considerations usually
include considerations for heating efficiency, lifespan, difficulties comparing with cur-
rently installed old technologies, and other technical problems such as noise level. Climate
change calls more and more attention to the environment not only by governments but
also residents. A recent survey conducted by Evida, which is a national natural gas sup-
plier in Denmark, shows that over 44% of individuals in Denmark believe climate-friendly
energy technology would be one out of three most important features to be considered if
they need to buy a new heating technology, and it ranks on the third position among total
twelve choices (the top two are both financial costs related)[13]. However, considering too
many indicators, especially sometimes contradictory regarding financial cost and climate
friendliness, could be a huge challenge. Hence, a decision support instrument, such as
Multi-Criteria Decision-Making (MCDM) which is especially effective facing such a cir-
cumstance[14], becomes necessary.

Many have used MCDM in evaluating and selecting optimal renewable and non-
renewable energy sources [15]. However, there has been little scientific literature focusing
on household-level energy technology (Only 14 research assessed renewable energy tech-
nologies in households through MCDM in 30 years), although its significant potential for
decarbonization is acknowledged [16]. None of them compares more than 7 technology
alternatives, which are far less for individuals to make a full comparison towards all po-
tential alternatives, and only one of them focus on Denmark.

This research aims to propose a decision support tool that provides a generalized
ranking of individual heating alternatives for decision-makers to identify the optimal
choice. The solution is based on an analysis of 13 heating alternatives and 19 quantitative
criteria in technological, environmental, and financial aspects. It combines ideal solution
based MCDM with 6 weighting methods and 4 normalization methods, and introduce
ensemble learning with a fuzzy membership function derived from Cauchy distribution
to finalize the final ranking.

This study contributes both theoretically and practically. The theoretical contribution
lies in the proposed general framework to support objective decision making by optimiz-
ing the rankings from multiple ideal solutions based MCDMs through a fuzzy ensemble
approach, in order to achieve the optimal combination and decrease the variance of rank-
ing results from a single MCDM. The practical contribution lies in providing a full, de-
tailed, yet generalized ranking of heating alternatives. It could be used as a guidebook for
both residence and municipalities for the heat energy transition. Moreover, the proposed
tool can be easily generalized to countries or regions with similar characteristics, based on
the individual energy data in that country or region.
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2. Methods

Multi-criteria analysis is needed considering sustainability’s multi-dimensional na-
ture, energy systems’ complexity [17], and variation of households’ situations. Thus, nu-
merous studies are applying MCDM methods in energy sectors regarding sustainability
analysis. [18] applied MCDM for the development of renewable energy systems on is-
lands. [19] introduced the framework of dividing MCDM application methodological pro-
cess into 5 steps. It starts from alternative selection, criteria selection, weighting and eval-
uation, followed by final treatment as the end, which only include sensitive, reliability
analysis and Monte Carlo Simulation. [20] shows that recent surveys are focusing on
MDDM for sustainability and renewable energy support.

Although there is much development of MCDM towards application in energy sec-
tors, certain limitations of this approach have been identified as well. [21] argued the com-
plexity of energy planning issues regarding the presence of different approaches. The dif-
ferent results of all approaches with uncertain final decision values showed that there was
aneed for appropriate quantitative techniques to deal with the imprecise information and
to evaluate the real effect of uncertainties on the final results, such as ranking the alterna-
tives. [22] argued that results from MCDM could be easily altered because of its alterna-
tions nature in the underlying assumptions, such as criterion weights.

Ensemble learning is an interpretation for the wisdom of the crowd and ensemble
methodology can be explained from the tendency of human nature to collect various opin-
ions and information and weigh and combine them in order to make a more complicated
and reasonable decision which is believed that aggregation of a group of ideas is better
than choosing only one from all [23]. Ensemble learning is introduced to the approach to
eliminate the limitations of MCDM mentioned above.

The decision support methodology in this paper is shown in Figure 1 and tested in
the Danish heating ranking. It starts with the selected alternatives and criteria according
to the defined problem, follows with data preprocessing, and forms alternatives and cri-

teria matrix M;; as input to the next step. Then, the objective weights w; and normal-

ized matrix M, are calculated and combined with the evaluation methods to generate

m ranking data sets Rmi. Finally, the final ranking E is aggregated by an ensemble

approach using fuzzy membership function derived from Cauchy and logarithm function
to support the decision-making process.
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Figure 1. Decision support methodology.
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2.1. Multi-Criteria Decision-Making

MCDM has rapidly developed a large number of objective and subjective methods
in recent years. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
becomes one of the most popular approaches in the field of solving energy sector issues
due to its relatively rational logic [16]. It selects the alternative with the shortest distance
from the positive ideal solution and the longest distance from the negative ideal solution
[19]. Vise Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) has the advantage
of maximizing “group utility” for the “majority” and minimizing individual regret for the
“opponent” [24]. Through a proximity analysis of the ideal solution, VIKOR could de-
velop a ranking with several, usually conflicting alternative criteria [19]. This paper fo-
cuses on these two ideal solution based methods with the combination of objective
weighting and normalization.

Table 1 shows the equations used for weighting and normalization methods with the
corresponding notations defined in Table 2. The normalization equation has separated for
a different target. For criteria that target maximization (max), it means the larger the value
of that criterion is, the better it is. For criteria that target minimization (min), it means the
smaller value of that criterion is, the better it is.

Table 1. Equations for Weighting and Normalization.

Weighting Method Equation
1
Mean w; = n
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Std RN
2 o)
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Table 2. Nomenclature.

Notation Definition

I Alternative set

J Criteria set

w; I criteria weight

M; % alternative’s score vector
M; Jin criteria ‘s score vector

Zij " alternative 7% criteria score
0] Standard deviation of a dataset
Ty T after normalization

n Criteria number

T Correlation coefficient

M, i after normalization
M; 7 after normalization

2.2. Ensemble

An ensemble learning methodology originally from machine learning is adopted to
generate a stronger ranking by utilising relatively weaker ranking sets from each MCDM.
Fuzzy membership distribution with Cauchy distribution is introduced[25].

By assuming a) when ranking = 1, membership = 0.9, b) when ranking = 6, member-
ship =0.1, and c) when ranking = 13, membership = 0, f(x) can be calculated through Cau-
chy distribution as shown in Equation (1) and (2).

1-[1+4+a(z—b)?", 1=2=6
@)= eme+a, 6<z<13 @
25,3 _ 1 . mi3
T TR T BT g @)
6 6

All the MCDM rankings will be summarized to the final ranking through a fuzzy
transition. The final ranking calculation is shown in Equation (3), where rank(A,S) means
A’s ranking in set S, Sij means im technology and ju ranking.

r(i) = rank (]Z f(sij)a ZE ]Z f (Sij)) 3)

3. Results

The represented data for individual heating systems is considered and calculated
based on a typical single-family house with average characteristics including 150 m? area,
18MWh annual heat demand, 8kW peak demand, 4kW hot water capacity and average
improvements for building before 1979 [26]. This assumption also corresponds to the
Evida report [13], where over 75% of participants in Denmark reside in a residential area
between 100 and 200 m2.

3.1. Alternatives and Criteria Matrix

The heating alternatives are selected based on the principle of representative tech-
nologies and available mature products in the Danish market but also international indi-
viduals to support a generic comparison [26]. Both possible currently installed heating
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technology and available green heating technology are listed, which could provide a clear
comparison to the decision-makers. A total of 13 heating technology alternatives has been
investigated as shown in Table 3. These comprehensive alternatives could provide a com-
plete ranking to decision-makers.

Table 3. Lists of 13 heating alternatives.

Heating alternatives ID

QOil boiler H1

Gas boiler H2

Biomass boiler (auto) H3
Biomass boiler (manual) H4
District heating (indirect) H5
District heating (direct) Hé6
Heat pump (air to water) H7
Heat pump (air to water, low-price product) H8
Heat pump (ground source) H9
Heat pump (gas-hybrid) H10
Heat pump (air-to-air) H11
Woodstove H12

Solar heating H13

Since the decision-makers are households all over Denmark with different locations,
currently installed heating technologies, financial situations, application of regulations
and personal preferences, the feasible heating sets considered by each decision-maker
vary a lot. Specifically, whether the house is located in a current district heating or future
district heating area decides its feasibility of choosing district heating. The functioning
condition, remaining lifespan, and possibilities of currently installed heating combining
with additional heating also influence the decision-maker's choices. The financial situa-
tion will influence much while considering technologies with high investment. Some de-
cision-makers could face regulations that constrain solar panels or other external units
(e.g. heat pumps) installation due to architectural concerns. Besides, personal preferences,
such as enjoying the warmness of woodstove, would also largely influence the choice of
decision-makers. Therefore, the designed framework sperate the above individual indica-
tors to the decision-maker’s own subjective consideration and keep the ideal solution
based ensemble heating ranking objective. Hence, all criteria selected are quantitative in-
dicators regarding technical, environmental, and financial data. Since there are both full-
year heating and supplement-only heating alternatives, the expected share of space heat-
ing demand and hot tap water demand can be covered by each alternative are listed. Table
4 summarises all selected criteria with their measurement, id, data source and max or min
ideal target.

Table 4. Criteria sets for heating alternatives assessment.

Dimension Criteria Measurement ID Target  Source
Expected covered space heating demand share T1 max [26]
Expected covered hot tap water demand share T2 max [26]
. Annual average heat efficiency net heat/fuel consumption T3 max [26]
Technical . i
Technical economic lifespan years T4 max [26]
Time spends on manual maintenance hours/y T5 min [26]
Noise dB T6 min [26,27]
SO: emission g/GJ El min  [26,28,29]
Environmental PM25 emission g/GJ] E2 min [26,28,29]

NOx emission g/GJ E3 min  [26,28,29]
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CH4 emission g/GJ E4 min  [26,28,29]
N20 emission g/GJ] E5 min [26,28,29]
COzemission kg/GJ E6 min [28-30]
Nominal equipment investment k€ F1 min [26]
Nominal install investment k€ F2 min [26]
Nominal additional investment k€ F3 min [26]
Financial Fixed electricity cost €ly F4 min [26]
Fixed operating and maintenance cost €y F5 min [26]
Fuel cost €/GJ F6 min [28,31]
Subsidy k€ F7 max [32]

The data is mainly collected from Danish Energy Agency and its subsidiary. The
measurement unit is unified through a calculation based on 1 MWh = 1000 kWh = 3.6 GJ
and 1 EUR = 7.45 DKK. The emission of district heating and heat pumps are calculated
based on the used fuel distribution in district heating production and electricity produc-
tion and losses on the transition. The noise is set by the influence level and average dB of
the available product. The fuel cost is a national average, and the subsidy is for specific
heat pumps according to Danish Executive Order. Alternatives and criteria matrix with
all quantitative results is provided in Table 5.

Table 5. Alternatives and criteria matrix.

Criteria H1 H2 H3 H4 H5 Hé6 H7 HS8 H9 H10 H11 H12  H13

T1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.3 0.1
T2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.7
T3 0.9 1.0 0.8 0.8 1.0 1.0 3.2 3.0 3.5 2.2 49 0.7 0.2
T4 20.0 20.0 20.0 20.0 25.0 25.0 16.0 12.0 20.0 18.0 12.0 20.0  25.0
T5 0.0 0.0 20.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0
T6 42.0 42.0 42.0 420 25.0 250 520 67.0 42.0 50.0 64.0 49.0 250
El 6.7 0.4 25.0 25.0 0.7 0.7 9.3 9.8 8.5 11.0 6.1 25.0 0.0
E2 5.0 0.1 14.0 14.0 0.1 0.1 0.3 0.3 0.2 0.3 0.2 28.8 0.0
E3 52.0 20.4 70.0 70.0 4.7 4.7 18.9 19.8 17.2 24.0 12.3 90.0 0.0
E4 0.0 1.0 2.0 2.0 0.2 0.2 0.1 0.1 0.1 0.2 0.1 1250 0.0
E5 0.0 1.0 4.0 4.0 0.5 0.5 6.3 6.7 5.8 7.5 4.1 4.0 0.0
E6 74.1 49.5 0.0 0.0 2.6 2.6 11.5 12.0 10.5 134 74 0.0 0.0
F1 4.3 2.7 3.8 4.5 1.3 1.0 6.9 4.6 7.1 6.7 1.2 21 29
F2 1.3 1.2 1.1 1.9 1.1 1.1 4.0 4.0 7.5 4.6 0.5 0.4 1.2
F3 0.0 2.0 6.0 0.0 3.0 3.0 0.0 0.0 0.0 2.0 0.0 1.6 0.0
F4 9.7 9.7 16.6 13.8 8.3 2.8 0.0 0.0 0.0 0.0 0.0 0.0 3.5
F5 1749 1819 357.6 4203 378 46.0 3114 359.7 2873 3758 1503 1450 49.0
F6 14.0 10.4 14.2 142 261 261 260 26.0 26.0 26.0 26.0 7.5 0.0
F7 0.0 0.0 0.0 0.0 0.0 0.0 3.5 2.8 4.3 0.0 0.0 0.0 0.0

3.2. Weighting Matrix

Table 6 lists 5 weighting results from different weighting methods. Most weights
have a good balance between different criteria with low deviation. However, a large var-
iance can be noticed in the Std weighting method, which highlight criteria F5 with 44.4%
weight. It will be evaluated by sensitive analysis.
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Table 6. Weights results of 19 criteria from 5 different weighting methods.

Criteria Mean Std Entropy  CRITIC Angle Gini
T1 0.0526 0.0011 0.0033 0.0542 0.0279 0.0188
T2 0.0526 0.0012 0.0804 0.0601 0.0307 0.0200
T3 0.0526 0.0046 0.0086 0.0520 0.0483 0.0447
T4 0.0526 0.0139 0.0007 0.0669 0.0154 0.0126
T5 0.0526 0.0679 0.0804 0.0538 0.0818 0.0911
T6 0.0526 0.0437 0.0014 0.0491 0.0212 0.0180
El 0.0526 0.0308 0.0804 0.0511 0.0550 0.0551
E2 0.0526 0.0289 0.0804 0.0481 0.0776 0.0849
E3 0.0526 0.0955 0.0804 0.0467 0.0544 0.0536
E4 0.0526 0.1127 0.0804 0.0480 0.0943 0.1012
E5 0.0526 0.0089 0.0804 0.0496 0.0483 0.0478
E6 0.0526 0.0728 0.0804 0.0546 0.0730 0.0755
F1 0.0526 0.0070 0.0049 0.0493 0.0370 0.0345
F2 0.0526 0.0068 0.0103 0.0438 0.0530 0.0488
F3 0.0526 0.0060 0.0804 0.0533 0.0678 0.0728
F4 0.0526 0.0194 0.0804 0.0610 0.0633 0.0685
F5 0.0526 0.4441 0.0061 0.0451 0.0392 0.0371
F6 0.0526 0.0295 0.0804 0.0568 0.0322 0.0271
E7 0.0526 0.0052 0.0804 0.0566 0.0796 0.0882

3.3. MCDM Ranking Results and Analysis

The 48 MCDM rankings resulted from the combination of 6 weighting methods * 2
evaluation methods * 4 normalization methods are listed in Table A1l. The ranking results
of TOPSIS have shown a larger variance compared to VIKOR. As shown in Figure 2, nor-
malization methods heavily influence the ranking results in the same weighting method,
but a similar trend can be noticed in the same normalization methods using different
weighting. Besides, the ranking generated by VIKOR apparently will not change through
different normalization methods and share similarities when using different weighting
methods as shown in Figure 3.
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Figure 2. Ranking changes comparison.
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Hl H2 H3 H4 HS H6 H7 H8 HY9 HI10 H11 HI12 H13

e Mean Vikor MinMax/Max/Vector/Enhanced e [ntropy Vikor MinMax/Max/Vector/Enhanced
Std Vikor MinMax/Max/Vector/Enhanced el CRITIC Vikor MinMax/Max/Vector/Enhanced
Angle/Gini Vikor MinMax/Max/Vector/Enhanced

Figure 3. Ranking comparison in VIKOR.

3.3.1. Sensitive Analysis to v in VIKOR

As the final score calculation formula of VIKOR is shown in Equation (4), there is a
parameter v to weight the strategy of maximum group utility, which represents the ma-
jority of criteria [19]. Normally, v is set to 0.5 to represent the risk-neutral group who
weigh the group utility and the individual regret equally. Hence, to generalize this deci-
sion making, the value of v has been changed to discover the influence of different pref-
erences existing in a large number of national and even international decision-makers.

B S, —min(S) R, —min(R)
Qi_vmax(S)—min(S) +(1=v) max (R) — min (R) @
s (i) 5

where iy negative ideal solution S; = Z w ( — —
iJ .
max <M j) — min (M j)
max(37,) - 7,
i positive ideal solution R; = maz { w;;( — —)}
max (M j) — min (M j)

The sensitive analysis results are listed in Table 7. The rankings of H3 to H9 are more
easily influenced by the change of v, where the ranking will fluctuate in a certain range.
However, the range of absolute value change is still logically reasonable on a large scale.

Table 7. Sensitive analysis results of changing parameter v in VIKOR.

vV Hl H2 H3 H4 H5 Hé6 H7 H8 H9 HI0 HI11 HI12 HI13

005 9 7 12 13 5 6 1 4 3 10 8 11 2
010 9 7 13 12 4 3 1 5 6 10 8 11 2
015 9 7 13 12 6 3 1 5 4 10 8 11 2
020 9 7 13 12 6 3 1 5 4 10 8 11 2
025 9 7 13 12 6 3 1 5 4 10 8 11 2
030 9 7 13 12 6 3 1 5 4 10 8 11 2
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035 9 7 11 12 6 3 1 5 4 10 8 13 2
040 9 7 6 3 1 5 4 10 8 12 2
045 9 7 6 3 1 5 4 10 8 12 2
050 9 7 6 3 1 5 4 10 8 12 2
055 9 7 6 3 1 5 4 10 8 12 2
060 9 7 3 1 6 4 10 8 13 2
065 9 7 3 1 6 4 10 8 12 2
070 9 7 3 1 6 4 10 8 12 2
075 8 6 4 1 11 3 9 7 13 2
080 8 6 2 10 7 13 1
085 9 6 4 10 8 13 1
090 9 5 10 13 1
095 9 5 10 13 1
1.00 = 9 5 10 13 1

3.4. Ensemble Results

With the proposed fuzzy Cauchy distribution membership function, the ensemble
ranking, shown in the first row of Table 8, is 1. Heat pump (air to water), 2. Solar heating,
3. District heating (direct), 4. Heat pump (ground source), 5. Heat pump (air to water, low-
price product), 6. District heating (indirect), 7. Heat pump (air-to-air), 8. Gas boiler, 9. Oil
boiler, 10. Heat pump (gas-hybrid), 11. Biomass boiler (manual), 12. Biomass boiler (auto),
13. Woodstove. In order to validate the robustness of the ranking result, sensitive analysis
of the possible influencing factors, which are the high variance weight and fuzzy param-
eter setting, is needed.

3.4.1. Sensitive analysis to with or without high variance weight

Since the Std weighting method generated a high variance weight range from 0.001
to 0.444, a comparison experiment of with and without Std weighting is conducted to
evaluate how high variance weight can influence the final ranking result. As shown in
Table 8, 6 alternatives change 1 place, H11 and H12 exchange their rankings by changing
2 places, and the rest stays the same ranking. Therefore, the proposed method can handle
high weight variance.

Table 8. Final ensemble ranking with or without the ranking results calculated by Std weighting.

H1 H2 H3 H4 H5 He H7 H8 H9 H10 HI11 HI12 H13
With std 9 8§ 12 11 6 3 1 5 4 10 7 13 2
Withoutstd 9 7 12 11 6 4 1 5 3 10 8 13 2

3.4.2. Sensitive analysis to the fuzzy ensemble method

The parameter of the original fuzzy Cauchy distribution membership function is set
based on the theory that decision-makers prefer top-ranking alternatives more. However,
the preference degree could change in a certain range, so the influence of different mem-
bership values is tested below.

6 — 9y
. . 1—y
When ranking = 1, membership= y;,a= 25y, ,b=
9y, ? 1— Y
(1*y1)<1* ﬂ) 1—y
1 In13 .
;o= T3, d= T3 — 1, then the following f(x) can be calculated by

101n% 10l
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Equation (1) when y; vary from 0.6 to 0.999 as shown in Figure 4. The final ensemble

ranking results in Table 9 show a rather consistent ranking while facing different mem-

doi:10.20944/preprints202109.0067.v1

bership.
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Figure 4. f(x) changes trend in different membership.

Table 9. Final ensemble ranking influenced by different membership.

fuzzy y1 H1 H2 H3 H4 H5 Hé6 H7 H8 H9 HI10 H11 HI12 HI13
0.6 10 8 13 11 6 3 1 5 4 12 7 9 2
0.7 10 8 13 11 6 3 1 5 4 12 7 9 2
0.8 11 8 12 10 6 3 1 5 4 13 7 9 2
0.9 11 8 12 10 6 3 1 5 4 13 7 9 2
0.99 12 9 11 10 6 3 1 5 4 13 7 8 2
0.999 12 9 11 10 6 3 1 5 4 13 7 8 2

4. Discussion

Based on previous analysis and comparison between VIKOR and TOPSIS methods
[33,34], this paper introduced a framework that combines both methods with multiple
weighting and normalization to generate comprehensive rankings for heat alternatives
decision support, following by an assemble learning with fuzzy membership function to
generate a final ranking. Although the fuzzy theory has been widely used with
MCDM]J35], it is mainly used during the weighting and evaluating methods inside
MCDM to handle the fuzzy environment and subjective information. In this paper, the
fuzzy membership function has been applied after MCDM ranking. Additionally, the en-
semble learning methodology is widely used in machine learning, but it has rarely been
found in MCDM. The proposed framework achieves a perfect combination under the
heating alternatives decision support circumstance. The ensemble learning with fuzzy
membership function has shown great robustness by effectively reducing the outcome
variance while altering the value of each criterion. Thus, with customized changes in each
criterion, it can provide a relatively stable and accurate ranking for heat alternatives deci-
sion support.

This framework has provided a full, detailed, yet generalized ranking of heating al-
ternatives. It contains 13 heating alternatives that are available in product markets. Com-
pared to the previous study [36], the comparison is based on more detailed alternatives
within the same kind of technology. For example, the biomass boiler is divided into auto
and manual categories. The variety ranking of different heat pumps in the final result also
proves the necessity to separate heating alternatives for individual households while fac-
ing these detailed comparisons in real life. In addition, including all alternatives allows
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individuals to compare the currently installed heat technology with possible heat alterna-
tives, so it can provide a clear vision of improvements or gaps. In the meantime, while
expanding the comparison list, the ranking result is relatively consistent with previous
research on Denmark using single TOPSIS, which concludes solar heating is better than
heat pumps and better than wood pellet boilers [36].

Figure 5 shows an example of how this generalized framework derived from the pro-
posed method can apply in real life. In the context of heating transition decisions, the gen-
erated ranking could act as a theoretical guideline for both municipalities and households.
According to the climate coordinator and energy planner in the partner municipality in
Denmark, the households often need advice in changing the heating system. Usually,
households turn to local installers for opinions, but these opinions might be subjective
and influenced by what they sell and used to install. Therefore, municipalities need a tool
to educate households to ask for certain solutions. Hence, the ranking contains all availa-
ble heating alternatives in the market and can act as a comprehensive guideline. With this
information, the decision-makers can easily choose optimal heating from the practical fea-
sible heating sets influence by both personal and realistic factors. Apart from the final
rankings, decision-makers can have an overview of the intuitive quantified indicators in
summarised alternatives and criteria matrix to match their spe-cific preference.

Personal .
: Regulations
Preference
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E=F ]

! ¥

! [ ] - &

f . i Current ’ Financial
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Figure 5. Generalized application framework.

However, the influence of the result on decision-makers has not yet been researched.
Hence, further work will focus on the interaction with decision-makers and consider the
whole framework in Figure 5 into the modelling to generate tailored optimum alternatives
for one’s specific needs. Based on this research, an intelligent decision support tool could
be developed and open to the public with a user-friendly interface. Rather than using it
as a guidebook to compare currently installed technologies with possible heat alterna-
tives, individuals could alter the value of each criterion based on their own situation, so
the result would be further customized.

5. Conclusions

While humanity facing the challenge of self-salvation through carbon neutrality, this
research contributes to helping the heat energy transition in Denmark and globally. Den-
mark is one of the pioneer cases within the EU, many municipalities need this kind of
decision support instrument to better communicate with residence, in order to achieve a
smooth energy transition. The goals of residence, municipalities and researchers are the
same with minimizing costs and carbon emissions. Thus, the framework provided in this
research and also possible research could greatly help the residence and local municipal-
ities of Denmark to achieve their goals. Furthermore, the generalization of this framework
could help more countries in the world.
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Appendix A

Table A1. 48 MCDM ranking results.

Weighting Evaluation Normalization H1 H2 H3 H4 H5 He6é H7 H8 H9 HI10 H11 H12 HI13

Mean Topsis MinMax 7 4 12 11 3 1 6 9 5 10 8 13 2
Mean Topsis Max 9 4 12 11 3 2 5 7 6 10 8 13 1
Mean Topsis Vector 10 8 12 11 7 5 1 4 6 9 3 13 2
Mean Topsis Enhanced 9 4 11 12 2 1 3 5 6 7 10 13 8
Mean Vikor MinMax 7 5 12 11 4 2 1 9 6 10 8 13 3
Mean Vikor Max 7 5 12 11 4 2 1 9 6 10 8 13 3
Mean Vikor Vector 7 5 12 11 4 2 1 9 6 10 8 13 3
Mean Vikor Enhanced 7 5 12 11 4 2 1 9 6 10 8 13 3
Entropy Topsis MinMax 8 6 12 11 7 5 3 4 2 10 9 13 1
Entropy Topsis Max 8 6 12 11 7 5 3 4 2 10 9 13 1
Entropy Topsis Vector 00 9 12 11 7 5 2 3 1 8 6 13 4
Entropy Topsis Enhanced 0 8 11 12 6 5 3 4 2 7 9 13 1
Entropy Vikor MinMax 9 7 12 1 6 5 2 3 1 10 8 13 4
Entropy Vikor Max 9 7 12 1 6 5 2 3 1 10 8 13 4
Entropy Vikor Vector 9 7 12 1 6 5 2 3 1 10 8 13 4
Entropy Vikor Enhanced 9 7 122 11 6 5 2 3 1 10 8 13 4
Std Topsis MinMax 6 5 12 13 2 3 9 10 8 11 4 7 1
Std Topsis Max 6 5 12 13 2 3 9 10 8 11 4 7 1
Std Topsis Vector 6 5 12 13 3 2 8 10 7 11 4 9 1
Std Topsis Enhanced 6 5 11 12 3 2 8 9 7 10 4 13 1
Std Vikor MinMax 6 5 12 13 2 3 9 10 8 11 4 7 1
Std Vikor Max 6 5 12 13 2 3 9 10 8 11 4 7 1
Std Vikor Vector 6 5 12 13 2 3 9 10 8 11 4 7 1
Std Vikor Enhanced 6 5 12 13 2 3 9 10 8 11 4 7 1
CRITIC Topsis MinMax 7 4 12 11 3 1 6 8 5 9 10 13 2
CRITIC Topsis Max 8§ 6 12 11 3 2 5 7 4 10 9 13 1
CRITIC Topsis Vector 0o 8 12 11 7 6 1 3 2 9 5 13 4
CRITIC Topsis Enhanced 9 7 10 12 2 1 3 5 4 6 1 13 8
CRITIC Vikor MinMax 7 5 10 9 3 1 6 12 4 8 13 11 2
CRITIC Vikor Max 7 5 10 9 3 1 6 12 4 8 13 11 2
CRITIC Vikor Vector 7 5 10 9 3 1 6 12 4 8 13 11 2
CRITIC Vikor Enhanced 7 5 10 9 3 1 6 12 4 8 13 11 2
Angle Topsis MinMax 0 8 122 11 7 5 1 3 2 9 6 13 4
Angle Topsis Max 0 8 12 11 7 6 1 3 2 9 5 13 4
Angle Topsis Vector 10 9 12 11 7 6 1 2 3 8 4 13 5
Angle Topsis Enhanced 0 9 11 12 5 1 2 4 7 8 6 13 3
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Angle Vikor MinMax 9 8§ 11 12 6 5 1 2 3 10 7 13 4
Angle Vikor Max 9 8§ 11 12 6 5 1 2 3 10 7 13 4
Angle Vikor Vector 9 8 11 12 6 5 1 2 3 10 7 13 4
Angle Vikor Enhanced 9 § 11 12 6 5 1 2 3 10 7 13 4
Gini Topsis MinMax 10 8 11 12 7 6 1 3 2 9 5 13 4
Gini Topsis Max 10 8 12 11 7 6 1 3 2 9 5 13 4
Gini Topsis Vector 10 9 11 12 7 6 1 3 2 8 4 13 5
Gini Topsis Enhanced 0 9 1 12 7 5 2 3 6 8 4 13 1
Gini Vikor MinMax 9 § 11 12 6 5 1 2 3 10 7 13 4
Gini Vikor Max 9 8§ 11 12 6 5 1 2 3 10 7 13 4
Gini Vikor Vector 9 8§ 11 12 6 5 1 2 3 10 7 13 4
Gini Vikor Enhanced 9 8§ 11 12 6 5 1 2 3 10 7 13 4
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