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Abstract: Analyzing the impacts of urban landscape patterns on the thermal environment has become one of 
the key research areas in addressing urban heat islands (UHI) and improving the living environment. A case 
study was carried out in Fuzhou, Fujian Province of China, to quantify the spatial patterns of urban landscape 
and land surface temperature (LST) in different development areas. The contribution of the thermal 
environment and the factors influencing the heterogeneity of LST were analyzed and discussed. In this study, 
bi-temporal Landsat imagery was selected to calculate LST, percent impervious surface area (ISA), and 
fractional vegetation cover (FVC). The urban area was further divided into three concentric urban zones, 
ranging from the city center to the urban periphery, based on urban development densities. The spatial pattern 
of LST and its variance were analyzed and compared between different zones and different dates. The thermal 
environment contribution of different zones was also quantified to indicate the change in urban landscape 
pattern resulting from urban expansion in different zones. Furthermore, Geodetector was used to explore the 
single factors and interaction factors controlling the spatial patterns of LST in each zone. The results showed 
that (ⅰ) Urban expansion primarily increased in zone 2 and zone 3, and the areal proportion of high and sub-
high LST areas increased from 56.11% and 21.08% to 62.03% and 32.49% in zone 2 and zone 3, respectively, 
from 2004 to 2021; (ⅱ) The heat effect contribution of zones 2 and 3 reached from 75.16% in 2004 to 89.40% in 
2021, indicating that the increase of ISA with >LSTmean was more pronounced in zone 3 and zone 2 during the 
period; (ⅲ) The driving factors of LST spatial distribution were regionally different because of the different 
landscape patterns, and the explanatory power for the heterogeneity of LST in zone 1 was weaker than that in 
zone 2 and zone 3 in the study area; (ⅳ) The interaction of different factors had a higher explanatory power on 
the spatial distribution of LST than a single factor in each zone because the distributions of land cover types 
are heterogeneous in urban area. The results of the study can be used to improve urban planning for urban 
ecology and UHI mitigation. 

Keywords: land surface temperature; linear spectral unmixing; percent impervious surface area; 
fractional vegetation cover; thermal contribution; geodetector 
 

1. Introduction 

The rapid urbanization process has resulted in an increasing impervious surface in urban and 
its surrounding areas, further impacting the urban thermal environment [1,2]. It is obvious that the 
city centers have higher land surface temperatures (LST) and experience higher LST heterogeneity 
than suburbs surrounding in terms of rural-urban temperature differences, a phenomenon known as 
the urban heat island (UHI) effect [3–6]. Therefore, accurate analysis of the urban landscape pattern 
and thermal environment is important for mitigating the UHI and improving urban livability [7]. 

Impervious surface area (ISA) and vegetation cover are two crucial parameters in the analysis of 
LST and urban thermal patterns [6,8]. Urban expansion leads to vegetation areas reduction, 
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impervious surfaces increase, and alterations in regional climate [9,10]. To simulate the climatology 
of UHI phenomena corresponding to changes in urban landscape patterns, it is essential to have data 
on the percentage of ISA and fractional vegetation cover (FVC) that capture the landscape evolution 
[11,12]. Consequently, Landsat remote sensing data with a spatial resolution of 30 m × 30 m are 
commonly employed to generate updated urban landscape pattern data. Due to the mixed pixel 
problem, traditional per-pixel classifiers are often inadequate for handling the intricate fine-scale 
urban landscape patterns. Soft classification techniques, such as spectral unmixing, are typically used 
to extract sub-pixel information for characterizing urban land cover patterns and thermal 
environments [8,13]. 

To mitigate the UHI effect and adapt urban areas to climate change, it is crucial to understand 
how changes in ISA and vegetation cover, as well as their composition, contribute to urban LST [14–
16]. Previous studies have shown that the percentage of ISA and FVC provide complementary 
information to hard-classified land cover types for analyzing the urban thermal environment [17–21]. 
However, the effects and spatial distribution of urban ISA and vegetation on the thermal 
environment need to be further analyzed, particularly in areas with varying ISA and vegetation 
densities due to different stages of urban development [2,22,23]. Therefore, it is necessary to analyze 
the impact of variations in fractional covers of ISA and vegetation on the thermal environment, as 
well as the spatial heterogeneity or agglomeration of LST in different urban development areas 
[2,24,25]. 

In urban areas, continuous percent ISA information with a value from 0% to 100% can reveal 
central business districts and urban residential areas with varying densities and landscape patterns, 
rural developed centers and relatively undeveloped areas [26]. The value of the percent ISA increased 
from 0 to 100% can result in increasing LST and UHI; inversely, FVC with a value increased from 0% 
to 100% can decrease LST and mitigate UHI [12]. Although some studies have indicated that urban 
landscape pattern or land-use types significantly affect LST, few studies explored the different 
landscape patterns and thermal contributions of urban different development areas [1,27]. In order 
to effectively adapt to climate change, it is important to analyze the thermal contribution of different 
landscape patterns to urban functional zones and the entire urban area. 

The spatial heterogeneity of LST is a common geographical phenomenon in urban expansion 
[2,24,28]. Analysis of the spatial distribution and spatial heterogeneity or agglomeration of the urban 
thermal environment in the urbanization process can help planners understand characteristics such 
as the direction and degree of urban expansion, and further promote the healthy development of 
urbanization through reasonable urban planning [29–31]. Geodetector has been applied to analyze 
the factors controlling the spatial patterns of various geographical phenomena [32]. At present, there 
are few studies to measure the spatial heterogeneity of LST resulting from urban expansion and its 
driving forces. In order to effectively guide the construction of the urban ecological environment and 
cope with urban climate change, it is necessary to analyze the connection between the heterogeneity 
characteristics of LST and the influencing factors, which are vital for the identification, prevention, 
and remediation of the negative impact of the urban thermal environment [11,33]. In this study, 
Geodetector was used to reveal the spatial influence of impact factors on LST through driving forces 
analysis in urban different development categories. 

This study selected a study area to explore the spatial influence of urban landscape patterns on 
the thermal environment. A fully constrained linear spectral unmixing method was used to extract 
subpixel fractional cover data. Two Landsat images were selected to quantify the impact of urban 
landscape patterns on the urban thermal environment and the factors controlling spatial 
heterogeneity of urban LST. The objectives of this study were to (1) investigate the characteristics of 
urban landscape pattern and LST in urban different development areas; (2) explore the variations of 
the thermal environment by analyzing and comparing the heat effect contributions based on different 
development zones and different dates; (3) reveal the internal regularities affecting the spatial pattern 
of LST by investigating and comparing the driving factors on LST spatial distribution in urban 
different development areas. Results of the study can provide information for urban planners on how 
to mitigate the UHI effect by rational landscape design and urban management. 
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2. Material and Methods 

2.1. Study Area and Data 

Fuzhou, the capital city of Fujian province in southeastern China, is selected as the study area 
(Figure 1). Fuzhou has experienced rapid urban expansion due to a significant increase in population 
over the last 30 years. This urban expansion entailed a transformation of land cover types, shifting 
from natural surfaces to impervious surface areas. These changes in the urban landscape pattern have 
led to alterations in thermal properties, surface radiative properties, and ecosystems. The city is 
surrounded by mountains and is located in a subtropical humid climate zone. The vegetation in the 
region is predominantly evergreen, and the fraction of vegetation cover remains nearly constant 
throughout different seasons. Fuzhou experiences hot summers, while winters have a mild climate, 
and variations in climate during spring, autumn, and winter are minimal. 

 

 
Figure 1. The location and Landsat 8 image acquired on September 27, 2021 (a false colour composite 
image: red, band 5; green, band 4; blue, band 3) of the study area. (The study area was divided into 
three sectors from city center to urban peripheral areas in right figure. The five sample plots 
delineated with polygons represent test sites were used for accuracy assessment in Table 1.). 

Table 1. Accuracy assessment of fractional covers of ISA and vegetation derived by FCLS from two 
Landsat images. 

 Area from the ETM+ Image 
in 2004 (km2) 

Area from the Google Earth 
Image in 2004 (km2) 

Difference (%) 

 ISA Vegetation ISA Vegetation ISA Vegetation 
Site 1 0.797 1.217 0.767 1.203 3.91 1.16 
Site 2 0.923 1.016 0.933 1.020 -1.07 -0.39 
Site 3 0.347 1.702 0.378 1.682 -8.20 1.19 
Site 4 1.192 0.625 1.129 0.651 5.58 -3.99 
Site 5 0.998 0.807 1.035 0.801 -3.57 0.75 
Total 4.257 5.367 4.242 5.357 0.35 0.19 

 Area from the OLI Image in 
2021 (km2) 

Area from the Google Earth 
Image in 2021 (km2) Difference (%) 

 ISA Vegetation ISA Vegetation ISA Vegetation 
Site 1 1.404 0.844 1.378 0.836 1.89 0.96 
Site 2 1.087 1.067 1.135 1.071 -4.23 -0.37 
Site 3 1.045 1.272 0.992 1.258 5.34 1.11 
Site 4 1.406 0.747 1.312 0.751 7.16 -0.53 
Site 5 1.395 0.744 1.421 0.732 -1.83 1.64 
Total 6.337 4.674 6.238 4.648 1.59 0.56 

Bi-temporal, cloud-free Landsat images were utilized in this study, including a Landsat 7 ETM+ 
image (acquired on September 12, 2004) and a Landsat 8 Operational Land Imager (OLI) and thermal 
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infrared sensor (TIRS) images (acquired on September 27, 2021). Additionally, bi-temporal, high 
spatial resolution images (acquired in 2004 and 2021, respectively) with a 4-meter spatial resolution 
obtained from the Google Earth website were used to assess the accuracy of percent ISA and FVC 
derived through spectral unmixing from Landsat imagery. The land surface reflectance of visible and 
near-infrared bands of Landsat data was derived using the FLAASH model in ENVI. 

To effectively analyze and compare urban landscape and thermal patterns in different 
development areas, the study area was divided into three circular zones (Zone 1, Zone 2, and Zone 
3) from the city center to peripheral urban areas, representing different urban development densities 
(as delineated by yellow lines in the right figure of Figure 1). Zone 1 comprises the urban core area 
with high development density, Zone 3 represents an area with low development density in the 
peripheral urban areas, and Zone 2 encompasses an area with medium development density situated 
between Zone 1 and Zone 3. Zone 2 was not considered part of the urban area in 2004 but was 
included in the urban extent in 2021 due to urban expansion. These three divided zones exhibited 
distinct development densities. The data generated from zonal statistics aids in understanding the 
thermal environment contributions of various urban development areas and the driving forces 
behind the spatial heterogeneities of LST more accurately. 

2.2. Methods 

The methodology for this study consists of four main steps. The first step includes LST retrieval 
and fractional covers retrieval by spectral unmixing. The second step includes LST classification and 
accuracy assessment of subpixel fractional covers. The third step explores thermal environment 
contribution based on different urban zones, this step includes calculation of the thermal 
environment contribution index (CIi), the weighted LST unit index (WLUI) and the regional weighted 
LST unit index (RWLUI). The forth step analyzes driving forces of the LST heterogeneity at different 
zones by calculating q-values. A flowchart of the study is illustrated in Figure 2. 

 
Figure 2. Flowchart showing the steps in the study. 

2.2.1. LST Retrieval and LST Classification 

Bi-temporal LST data were retrieved from Landsat 7 ETM+ and Landsat 8 TIRS/OLI images. The 
radiative transfer equation was employed to derive LST from the Landsat data. Firstly, Top-of-
Atmosphere (TOA) radiance was calculated from the bi-temporal Landsat images through 
radiometric calibration. Subsequently, TOA radiance values for visible/near-infrared bands were 
converted to surface reflectance using the atmospheric correction tool MODTRAN 4.1. 
Simultaneously, TOA radiance values for thermal infrared bands (band 6 of Landsat 7 ETM+ and 
Band 10 of Landsat 8 TIRS) were transformed to surface-leaving radiance (LT) by applying the 
atmospheric correction tool MODTRAN 4.1 and inverting Planck’s law [34]: 
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LT = Lλ−Lμ−τ
(1−ε)Ld
τε

 (1) 

where Lλ is the TOA radiance image for the thermal infrared band, Lμ, Ld and τ are the upwelling 
radiance, downwelling radiance and transmission respectively. The atmospheric correction tool 
MODTRAN 4.1 was used to estimate the values of Lμ, Ld and τ. ε is the surface emissivity calculated 
according to the methods by [35] and [36]. 

Finally, LST were calculated by the Landsat-specific estimate of the Planck curve [37]: 

LST = k2
ln((k1 LT⁄ )+1)

 (2) 

where LST is the temperature in Kelvin (K), k1 and k2 are the pre-launch calibration constants. For 
Landsat 7 ETM+, k1 = 666.09 W /(m2srμm) and k2 = 1282.71 K. For TIRS Band 10, k1= 774.89 
W/(m2srμm), k2= 1321.08 K. 

The resolution of the visible/near-infrared bands of Landsat 7 ETM+ image and Landsat 8 OLI 
image is 30 m while band 6 of Landsat 7 ETM+ image and Band 10 of Landsat 8 TIRS image) are 
collected at a resolution of 60 m and 100 m respectively, the thermal infrared data were resampled to 
30 m in this study. Figure 3a and Figure 3b are LST retrieved from the ETM+ image acquired on 
September 12, 2004 and LST retrieved from the TIRS image acquired on September 27, 2021 
respectively. 

  

  

(a) (b)   

  
 

  
(c) (d)   

Figure 3. Spatial distribution patterns of LST and LST classification: (a) Spatial distribution patterns 
of LST in 2004. (b) Spatial distribution patterns of LST in 2021. (c) Four LST classes in 2004. (d) Four 
LST classes in 2021. 

The LST of a same area may show some differences between different dates even in same season 
because the multi-temporal images were acquired in different atmospheric conditions. In order to 
reduce the influence of such LST fluctuations, the four level LST classes were created by adding or 
subtracting standard deviation (SD) from mean LST of the whole study area: 

LST
1 
LST
2 
LST
3 
LST
4 
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LST1: LST ⩽ (LSTmean − 2 SD) 
LST2: (LSTmean − 2 SD) < LST ⩽ LSTmean 
LST3: LSTmean < LST ⩽ (LSTmean + 2 SD) 
LST4: LST > (LSTmean + 2 SD) (3) 
The LST increase from LST1 to LST4 and the LST4 area is defined as a high temperature area. The 

classification of four levels LST can be used to analyze the evolution of the thermal environment. 
Four LST classes are calculated as in Eq. (3) and shown in Figure 3c and 3d. 

2.2.2. Percent ISA and FVC Derived by Spectral Unmixing of Fully Constrained Least Squares and 
Accuracy Assessment 

Continuous percent ISA information can reveal areas of urban development with varying 
densities and patterns. As one of the soft classification methods, linear spectral unmixing by fully 
constrained least squares (FCLS) is frequently adopted to extract sub-pixel land cover types for 
remote sensing imagery, especially for Landsat imagery. In this study, FCLS was used to extract sub-
pixel ISA and vegetation of Landsat imagery. The FCLS method assumes that the reflectance of each 
pixel at each band is a linear combination of the reflectance of all endmembers within the pixel [38]. 
The spectral reflectance in band i can be described as follows:  

Ri = ∑ fkrikn
k=1 + εi (4) 

∑ fk = 1 fk ≥ 0 for k = 1, 2, 3, … , n n
k=1 (5) 

where n is the number of endmembers, fk the fraction of endmember k within the pixel, rik the 
reflectance of endmember k in band i, and εi is the residual error for band i. Eq. 5 is the constraint 
conditions for spectral unmixing, the fractions of one pixel must sum to 1 and all fractions must be ≥ 
0. 

Firstly, the water body was masked out from the images of the study area, and two-dimensional 
spectral mixing spaces were used to extract endmembers of vegetation, impervious surface (high- 
and low-albedo impervious surfaces), and soil. Then, applying the FCLS technique, the fractional 
cover of each component was estimated by Eqs. 4 and 5. Finally, the high- and low-albedo ISA classes 
were aggregated to total percent ISA. 

Figure 4 displays the fractional covers of ISA and vegetation derived by FCLS from the Landsat 
data for 2004 and 2021. Because soil areas are limited and primarily distributed alongside the river, 
and soil does not have a significant effect on the analysis of the thermal environment impact of 
percent ISA and FVC, fractional soil is not shown here. With the lowest values (0) in black and the 
highest values (100%) in white, the fractional images of Figure 4 illustrate urban land cover 
composition and their changing patterns. The areas with a higher percent ISA value are those with 
more developed land and high-density residential areas. ISA and vegetation cover vary noticeably 
from zone 1 to zone 3. Generally, ISA increased at the periphery of the city due to urban expansion 
(Figure 4a and Figure 4c) with FVC decreasing (Figure 4b and Figure 4d) from 2004 to 2021. However, 
Figure 4b and Figure 4d show that the percentage of fractional vegetation for some pixels in zone 1 
was higher in 2021 than those in 2004. One reason for this phenomenon is the greater attention to 
ecological landscape design in some developed areas, which resulted in more vegetation cover 
interspersed in the urban core area after 2004. 
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(a) (b) 

  
(c) (d) 

Figure 4. Fractional ISA and FVC derived from ETM+/OLI images using FCLS: (a) 2004 fractional ISA, 
(b) 2004 FVC, (c) 2021 fractional ISA, and (d) 2021 FVC. 

As per our previous studies [2,18], the accuracy of fractional covers derived from ETM+/OLI 
imagery by FCLS was assessed by comparing the cumulative area of fractional cover for ISA and 
vegetation in each of the selected test areas with the reference data extracted from the high-resolution 
Google Earth images. Area accumulation was carried out by multiplying the percent ISA with a pixel 
area of 900 m² (30 m * 30 m). Accuracy was assessed using five sampled plots shown in Figure 1 to 
represent the overall accuracy of the entire study area. Table 1 displays the results of the comparison 
between the reference areas obtained from high-resolution images and the corresponding areas 
derived from the Landsat ETM+/OLI imagery by FCLS. The visual interpretation method was 
employed to extract land cover types from the high-resolution data. This approach was feasible 
because the acquisition dates of high-resolution images were close to the dates of the corresponding 
ETM+/OLI imagery, and land cover changes were minimal between the reference data and 
corresponding Landsat imagery. 

Table 1 indicates good agreement for ISA and vegetation cover between five sampled sites 
derived from Landsat and high-resolution images. Comparing with the reference data obtained from 
high-resolution images, the area of ISA and vegetation derived by FCLS from Landsat images in five 
test sites shows only small differences. In Table 1, the difference of ISA derived from ETM+/OLI 
imagery and corresponding high-resolution images was ⩽8.2% for five sites in 2004 and ⩽7.16% for 
five sites in 2021, and the difference of vegetation was ⩽3.99% and ⩽1.64% in 2004 and 2021 
respectively. 

In general, the accuracy of the vegetation fractions in the two test sites was higher than for ISA 
in both dates because the vegetation spectra can be more easily distinguished from other land cover 
types than those of ISA. Table 1 showed that the accuracy of five test sites in both dates was all less 
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than 8.5% different between fractional covers of ISA and vegetation derived from ETM+/OLI imagery 
and those from high-resolution images. It showed that fractional covers derived by FCLS were 
reliable. Considering the heterogeneity of the urban landscape pattern and spatial resolution 
differences between Landsat imagery and high spatial resolution reference images, Table 1 showed 
that fractional covers of ISA and vegetation derived by FCLS are a good representation of reality in 
the study area. 

In some areas, land cover change is taking place and detectable at the sub-pixel scale but cannot 
be detected at the pixel scale by a crisp classification. Fractional cover derived by soft classification 
can be used to measure the magnitude of change and further to quantify the urban landscape and 
thermal environment patterns. 

2.2.3. Calculation of Thermal Environment Contribution Based on Different Urban Zones 

Urban development areas exhibit varying landscape patterns and LST, thus contributing 
different heat effects to the urban thermal environment [19]. It is necessary to further identify the 
influence of distinct urban zones on the urban thermal environment and analyze their variations 
across different dates. This analysis is invaluable for urban planners in determining how to mitigate 
the UHI effect through judicious landscape design and urban management. 

In this study area, the entire region was divided into three concentric zones (Zone 1, Zone 2, and 
Zone 3) based on differing urban development densities, as shown in Figure 1. Differing from the 
thermal environment contribution index (CIi) calculated by [39] for various land cover types, in this 
study, the CIi, the weighted LST unit index (WLUI), and the regional weighted LST unit index 
(RWLUI) were employed to evaluate the heat contribution effects across different zones of the study 
area. The urban CIi was calculated as follows. 

 CIi = CIi
∗

∑ CIi
∗n

i=1
× 100% (6) 

 CIi∗ =
∑ �LSTij − LSTmean� × n0
n0
j=1

LSTmean × N
× 100% (7) 

where CIi∗ is the initial thermal environment contribution for the ith zone, LSTij is the LST of the jth 
pixel in the ith zone with values that are larger than the mean LST of the whole study area (LSTmean), 
n0 is the number of pixels with LST values larger than the value of LSTmean in the ith zone, and N is 
the number of pixels of the whole study area. 

The WLUI describes the percentage of pixels with LST values larger than the LSTmean for the ith 
zone, whereas the RWLUI describes the percentage of the LST of the ith zone with values larger than 
the LSTmean of the whole study area. The two indices were calculated using 

WLUI = ni
nzone i

× 100% (8) 

RWLUI = ni
N

× 100% (9) 
where nzone i is the number of pixels for the ith zone, and i is 1, 2 or 3 in this study. N is also the number 
of pixels of the whole study area as in Eq. 7. 

In order to accurately describe the impacts of different landscape patterns on urban thermal 
environment, it is necessary to calculate CIi, WLUI and RWLUI as Eqs. 6, 8 and 9 to further analyze 
the thermal environment impact of urban different development zones. 

2.2.4. Spatial Statistical Analysis with Geographical Detector (Geodetector) 

Spatial heterogeneity can reflect the spatial distribution of geographical phenomena and explain 
its decisive factors and their links [40,41]. The analysis of spatial heterogeneity can reveal the 
evolution of geographical features. In this study, the analysis of spatial heterogeneity was used to 
reveal the LST heterogeneity of urban expansion and its driving mechanism. 

Geodetector is a statistical tool used to quantitatively interpret geospatial heterogeneity and the 
driving forces of spatial differentiation. Through the constructed Geodetector model, the influence of 
different factors on geospatial phenomena and spatial differences can be calculated. This is measured 
by the q-statistic [40,42] as follows. 

q = 1 − ∑ Nhσh
2L

H=1
Nσ2

 = 1-SSW
SST
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SSW = ∑ Nhσh2L
H=1 , SST = Nσ2 (10) 

where Nh and N are the number of samples in sub-region h (hth stratum) and the entire region, 
respectively; h = 1, 2, …, L is the stratification of impact factor X; σ2 and σh2 are the total variance of Y 
across the entire study area and the sub-region h, respectively. SSW and SST are the sum of the 
variance in each layer and the total variance of the region, respectively. The value of q ranges from 0 
to 1, the larger the value, the higher explanatory power or influence of X for the spatial differentiation 
of Y [43]. 

There are four detectors included in Geodetector, namely the factor detector, interaction 
detector, risk detector, and ecological detector. The factor detector and interaction detector are 
applied in this study. The factor detector can explore and determine to what extent a factor X explains 
the spatial differentiation of Y. Factors that represent or control the spatial pattern of urban land use 
should play an important role in determining the spatial distribution of LST. In this study, we use 
the factor detector to detect the spatial heterogeneity of LST and identify the key driver factors behind 
the variation in LST. It is represented by q calculated as Eq. 10; the q value is used to measure the 
influence of each driving factor on LST. The greater the q value, the greater the influence of the factor 
on LST, and the more obvious is the influence on LST spatial differentiation. The interaction detector 
can distinguish and determine the interaction types between different factors Xi on Y, and evaluate 
whether the joint action of factors X1 and X2 (q(x1∩ x2)) will strengthen or weaken the explanatory 
power of dependent variable Y, or whether their influences on Y are independent from each other. 

Geodetector can be applied to identify the driving force behind elements by detecting their 
spatially layered heterogeneity [44]. In this study, three different factors Xi are percent ISA, FVC, and 
elevation; the dependent variable Y is LST. Geodetector requires explanatory variables to be 
discretized; hence each factor is pre-discretized into 5 intervals by the natural breakpoint method 
before analysis. 

3. Results and Discussion 

3.1. Analysis of Spatial Pattern of LST at Different Urban Zones 

In this study, the spatial pattern of LST and its variation were analyzed based on different zones 
between bi-temporal images. Figure 3c and Figure 3d show that high LST (LST4) and sub-high LST 
(LST3) areas (areas with > LSTmean) were mainly distributed in the central (zone 1) and some areas of 
zone 2 in 2004. Zone 1 and part of zone 2 were assembled with ISA of buildings and roads, resulting 
in high and sub-high LST areas on both dates. Meanwhile, the distribution of LST4 and LST3 areas in 
zone 2 and zone 3 in 2021 was notably larger than in 2004. In zone 2 and zone 3, the extent of spatial 
distribution of LST4 and LST3 areas significantly increased from 2004 to 2021, especially in zone 2 and 
the western part of zone 3. This indicates that urban expansion resulted in an increase in LST 
primarily in zone 2 and zone 3 between the two dates. 

The medium (LST2) and low (LST1) LST areas were mainly distributed in zone 2 and zone 3 of 
peri-urban areas in both images, especially zone 3. This was limited by terrain and topography 
because LST2 and LST1 areas were characterized by forested and water-covered regions in 
mountainous areas. Urban expansion led to a transformation in land cover from natural to ISA, 
mainly occurring in the south and west plain areas of zone 2 and zone 3 from 2004 to 2021. The land 
cover types in the northern areas of zone 2 and zone 3 changed little from 2004 to 2021 due to 
mountainous constraints; consequently, the medium and low LST areas experienced minimal change 
in these regions during the period. 

To further quantify the impact of high and sub-high LST areas on the thermal environment, we 
need to analyze the change in areal proportion of high and sub-high LST areas with urban expansion. 
Table 2 shows the areal proportions of the LST4 and LST3 categories in each zone and the total LST4 
and LST3 area of the study area. As shown in Figure 3, LST4 and LST3 areas dominated zone 1, 
accounting for 94.99% in 2004. However, the areal proportions of LST4 and LST3 areas in zone 1 
decreased slightly to 92.98% in 2021, likely due to increased attention to urban ecology, consequently, 
greater vegetation cover interspersed in some areas of zone 1 after 2004. For zone 2 and zone 3, the 
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areal proportions of LST4 and LST3 areas increased from 56.11% and 21.08% to 62.03% and 32.49%, 
respectively, from 2004 to 2021. This indicates that the high and sub-high LST areas exceeded LSTmean 
in this study area resulting from urban expansion primarily increased in zone 2 and zone 3 during 
the period. 

Table 2. Areal proportion of high and sub-high LST categories at each zone and whole high and sub-
high LST area of the study area. 

 
Areal proportion of LST3 and 

LST4 at each zone 
Areal proportion of LST3 and LST4 of each zone to whole 

LST3 and LST4 area of the study area 
 2004 2021 2004 2021 

Zone 1 94.99% 92.98% 26.58% 20.78% 
Zone 2 56.11% 62.03% 34.97% 31.04% 
Zone 3 21.08% 32.49% 38.45% 48.18% 

As for the areal proportions of high and sub-high LST areas in each zone relative to the total 
high and sub-high LST areas of the entire study area, the areal proportions of LST4 and LST3 areas in 
zone 1 decreased from 26.58% to 20.78% during the period. In zone 2, areal proportions also decreased 
from 34.97% to 31.04%. However, the areal proportions of LST4 and LST3 areas in zone 3 relative to 
those of the entire study area increased from 38.45% to 48.18% in the same period. This indicates that, 
with urban expansion, high and sub-high LST areas mainly increased in zone 3, followed by zone 2. 
Although the area of high and sub-high LST also increased in zone 2 as shown in Figure 3, the rate of 
increase was slower compared to that of zone 3 when considering the entire study area (Table 2). 

Obviously, zone 1 had the highest LST in general, followed by zone 2, and then zone 3. The high 
and sub-high level LST areas were heat sources contributing to the UHI effect. The lowest LST areas 
are primarily vegetation areas, which act as heat sinks. Although zone 2 has a cooling thermal 
environment due to its vegetation area, its cooling effect is limited due to the small area of vegetation. 
In zone 3, there are numerous vegetation areas that serve as major heat sinks, playing the most 
significant role in cooling the thermal environment in the study area. Additionally, the lowest LST 
areas also occur in the water bodies of all three zones. 

3.2. Analysis of Thermal Environment Contribution at Each Urban Zone 

The quantitative analysis of the thermal environmental impacts of different urban landscape 
patterns becomes important in urban ecology because of urban thermal environment problems. In 
this study, zone 1 obviously shows a higher LST, followed by zone 2 and zone 3. However, when 
considering the heat effect of each zone on the thermal environment and their changes between 
different dates, it needs to be further analyzed. In order to further quantify the heat contribution in 
detail, Eq. 6 was used to calculate the CIi and to further analyze the thermal environmental impact of 
different zones in this study (Figure 5). 

 

Figure 5. Thermal environment contribution index of each zone to the whole study area of Fuzhou. 
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Urban expansion with ISA clearly resulted in an increase in LST. As shown in Figure 5, the CIi 
of zone 1 and zone 2 were 24.84% and 33.44% in 2004 respectively. With the urban expansion resulting 
in LST variation, the CIi of zone 1 and zone 2 decreased to 10.61% and 25.91% in 2021 respectively. 
However, the CIi of zone 3 increased from 41.72% in 2004 to 63.49% in 2021. Though ISA increased in 
zone 2 and zone 3 in the study area, and the area of ISA with >LSTmean also increased in zone 2 from 
2004 to 2021 (Table 2), the increase rate of ISA with >LSTmean was higher in zone 3 than in zone 2 in 
the period. This resulted in the decrease of CIi in zone 2. Figure 5 indicates that urban expansion, 
coupled with areas exhibiting >LSTmean, has led to thermal environment issues, predominantly 
escalating in zones 2 and 3 during this period, particularly in zone 3. Zone 3 and zone 2 exhibited 
relatively high CIi values on the two dates compared to zone 1, with zone 3 being the primary source 
of the heat effect in the study area and zone 2 in second place. Although CIi values of zone 1 obviously 
decreased, the area with >LSTmean decreased only slightly between the two dates (Table 2). The 
increase of ISA with >LSTmean was more pronounced in zone 3 and zone 2 than in zone 1 from 2004 to 
2021. 

Compared with zone 1, the CIi values of zone 2 decreased relatively little between the two dates. 
From 2004 to 2021, the CIi of zone 3 increased significantly and contributed 63.49% of the heat effect 
in the entire study area in 2021, whereas the influence of zone 3 on the thermal environment was not 
significant in 2004. The thermal environment impact of zone 3 increased significantly in 2021 due to 
urban expansion. The CIi of zones 2 and 3 reached from 75.16% in 2004 to 89.40% in 2021, indicating 
that the heat effect contribution was determined and dominated by zones 2 and 3 in the study area. 

The different urban development zones exhibited distinct landscape patterns and LST features. 
To further quantify the impact and pattern of the thermal environment, WLUI and RWLUI were 
calculated based on Eqs. (8) and (9) to assess the thermal contribution effects of different zones in the 
study area (Figure 6). WLUI represents the percentage of pixels with values exceeding the LSTmean for 
each zone. Figure 6 showed that WLUI of zone 1 was high, accounting for approximately 93.07% and 
93.22% from 2004 to 2021, with little change between the two dates. WLUI of zone 1 indicated that 
areas with high and sub-high LST (>LSTmean area) dominated in zone 1, with the areal ratio reaching 
over 93% in the urban core zone with high development density. Meanwhile, the WLUI values for 
zone 2 and zone 3, respectively decreased in sequence from zone 1 to zone 3 on both dates. 
Comparing WLUI values on both dates, WLUI values in zone 2 and zone 3 increased from 60.91% 
and 26.41% in 2004 to 65.25% and 34.25% in 2021 respectively. This reflects a higher increased rate of 
increase in WLUI in zone 3 compared to zone 2, indicating an amplified thermal environment impact 
in both zones from 2004 to 2021. The WLUI values of zone 2 and zone 3 indicate that >LSTmean areas 
increased in areas of medium development density and low development density with expansion in 
the period. 

  
(a) 2004 (b) 2021 

Figure 6. Thermal environment effect of each zone (WLUI and RWLUI) in study area of Fuzhou in 
2004 and 2021. 

The RWLUI is the percentage of the high and sub-high LST area of each zone to the whole study 
area (Figure 6). The RWLUI values of zone 1 were 9.18% in 2004 and 9.21% in 2021. From the view of 
the whole study area, the thermal environment impact of zone 1 was nearly not strengthened from 
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2004 to 2021 because urban expansion mainly existed in zone 2 and zone 3 between the two dates. 
The RWLUI values for zone 2 and zone 3 continued to increase from 13.16% and 18.11% in 2004 to 
14.09% and 23.47% in 2021 respectively. 

The increase in thermal environment contribution indicates that high and sub-high LST areas 
increased with the rise in high percent ISA resulting from urban expansion. Figure 5 and Figure 6 
indicated that, though the areal proportion of high and sub-high LST areas was dominant in zone 1 
and the lowest in zone 3, the contribution of zone 3 to regional heat in the study area was higher than 
that of zone 2 and zone 1. This is because zone 3 contributes the most high and sub-high LST area 
among the three zones, followed by zone 2 and zone 1. Our analysis revealed the characteristics of 
the thermal environment effect and their variation in different development density areas at two 
different time points. Through analyzing CIi, WLUI, and RWLUI of each zone and their variations, 
we can quantify the thermal environmental contribution of different development density areas with 
urban expansion. Different from other analysis of thermal environmental contribution based on 
different land cover types, this analysis is significant for urban planning, UHI mitigation, and urban 
ecology. 

3.3. Driving Force Detection of Spatial Heterogeneity of LST by Geodetector 

The spatial distribution and aggregation of LST were different in different urban development 
areas. The spatial distribution pattern of LST is related to the degree of urban expansion and impacted 
by different land cover types, the combination and configuration of various land cover types, and 
other factors. Detection of driving forces behind urban LST heterogeneity is crucial for alleviating 
UHI and adapting to urban climatic change. The spatial heterogeneity of LST results from the spatial 
distribution of different land cover types and other factors [45]. In this study, percent ISA, fractional 
vegetation cover, and elevation were selected as independent variables (X) and were all categorized 
into five types based on the Jenks natural breaks classification method. LST was selected as the 
dependent variable (Y). The influences of X on the spatial differentiation of Y in different zones in 
2004 and 2021 were calculated using Geodetector and further comparatively analyzed. 

In this study, the factor differentiation detector was used to reveal the impact of each factor on 
the spatial distribution of LST. Table 3 shows the q-values of three single factors on the spatial 
distribution of LST, and all were significant (p < 0.01). In the study area, the degree of influence of the 
three driving factors on the spatial distribution of LST varied in different development densities of 
the urban area. The q-values of three influencing factors in zone 1 were relatively low (⩽0.309) on 
both dates, and variations were also small in zone 1 between the two dates (Table 3). This indicates 
that the urban landscape pattern changes and urban expansion nearly did not exist in the urban core 
zone 1 from 2004 to 2021. Among the influencing factors, the FVC had a greater impact on LST in 
zone 1 in 2004. From 2004 to 2021, the q-value of FVC decreased from 0.309 to 0.144 in zone 1. 
According to the principle of Geodetector, the larger the q-value, the greater the driving force of the 
factor on LST. Table 3 indicates that the three factors had a lesser degree of influence on the 
heterogeneity of LST, and the spatial distribution patterns of LST varied minimally in zone 1 between 
the two dates. 

Table 3. The q-values of the factors influencing on the LST heterogeneity at different zones of study 
area in 2004 and 2021. 

 
Single factor 

q at Zone1 q at Zone 2 q at Zone 3 
2004 2021 2004 2021 2004 2021 

Percent ISA 0.134 0.186 0.349 0.527 0.224 0.543 
FVC 0.309 0.144 0.581 0.572 0.494 0.602 

Elevation 0.203 0.115 0.558 0.653 0.432 0.681 
p<0.01, the significance of the q-value was determined using an F test with a significance level of 0.01. 

The three factors had a greater influence in zone 2 and zone 3 than in zone 1 on both dates. When 
comparing the q values of the three influencing factors between the two dates, the q values in zone 2 
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and zone 3 in 2021 were larger than those in 2004, except for the q value of FVC at zone 2 in 2004, 
which was slightly larger than that of zone 2 in 2021. The results from the factor detection analysis 
showed that the largest q values were 0.581 and 0.653 in zone 2 in 2014 and 2021 respectively, and 
0.494 and 0.681 in zone 3 in 2004 and 2021 respectively. This indicated that FVC had the most 
significant influence on LST heterogeneity in zone 2 and zone 3 in 2004, while elevation had the 
greatest influence on LST heterogeneity in zone 2 and zone 3 in 2021. This is because the landscape 
pattern changes due to urban expansion were influenced by topography (elevation) in zone 3 in 2021, 
which had a certain impact on the q value of zone 3. The elevation was ranked next, with values of 
0.558 and 0.432 in zone 2 and zone 3 in 2004 respectively, and FVC was ranked next to elevation, with 
values of 0.572 and 0.602 in zone 2 and zone 3 in 2021 respectively. 

When comparing q values between zone 2 and zone 3, the q values of the three influencing 
factors were smaller in zone 3 than in zone 2 in 2004. However, the q values of the three influencing 
factors were larger in zone 3 than in zone 2 in 2021. This is related to the change in urban landscape 
patterns in zone 2 and zone 3 resulting from urban expansion. FVC and elevation had a higher 
influence degree than percent ISA in zone 2 and zone 3 in 2004. The explanatory power (q value * 
100%) of FVC and elevation decreased from 58.1% and 55.8% in zone 2 to 49.4% and 43.2% in zone 3 
respectively, in 2004, and increased from zone 2 to zone 3 in 2021. This indicates that urban expansion 
also resulted in the change of landscape patterns in some higher elevation areas of zone 3. FVC and 
elevation had a higher influence degree on spatial heterogeneity of LST in zone 2 and zone 3 in both 
dates. However, the explanatory power of percent ISA significantly increased from 34.9% to 52.7% in 
zone 2 and from 22.4% to 54.3% in zone 3 from 2004 to 2021. Though the q values of FVC and elevation 
in zone 2 and zone 3 were larger than that of percent ISA in 2004, the q values of the influencing factor 
percent ISA significantly increased from 2004 to 2021 with urban expansion. 

According to the above analysis, the three factors have weak explanatory power for the spatial 
heterogeneity of LST in zone 1 compared to zone 2 and zone 3. This means that the change in 
landscape pattern resulting from urban expansion increased the influence degree of the three driving 
factors on LST significantly in zone 2 and zone 3 compared to zone 1. In different urban development 
areas, the land cover types and their spatial distribution are different, which influences the value and 
spatial distribution of LST. In zone 1 of the urban core area, a high percent ISA is distributed 
homogeneously, resulting in the homogeneity of spatial distribution of high LST. Therefore, the 
influence degree of the three factors on LST heterogeneity is low. However, in zone 3 and zone 2, the 
three factors have a higher influence degree on the spatial distribution of LST. This indicates that they 
are the main driving factors affecting the LST in zone 2 and zone 3, especially the elevation factor in 
zone 3 in 2021. However, no one single factor dominantly affects LST distribution in zone 2 and zone 
3 of the study area. Through analyzing and comparing q values of different zones, we can understand 
the driving force of LST distribution in different development areas, which will help in constructing 
a good urban ecological environment. 

The spatial distribution of urban landscape and thermal patterns is usually the result of 
multifactor interactions. The influence of the interaction between different factors may be stronger 
than that of a single factor when each factor interacts with other factors on LST. Therefore, it is 
necessary to analyze the influence of the interaction between any two factors on the spatial difference 
of LST. Through interactive calculation of different driving factors in Geodetector, we analyzed the 
interactive detection of various driving factors on LST distribution for both dates. The q-value is 
defined as q (X1∩X2) and the results are shown in Table 4. Comparing with the results of single factor 
detection in Table 3, Table 4 shows that the q value increases significantly when each driving factor 
interacts with other factors, and its influence on LST increases, indicating that LST is a geographical 
pattern driven by multi-factor interaction. 

Table 4. The q-values of interactive detection of driving factors on LST at different zones of study 
area in 2004 and 2021 (EL is elevation). 

 
Interactive factors 

q at Zone1 q at Zone 2 q at Zone 3 
2004 2021 2004 2021 2004 2021 
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percent ISA∩FVC 0.332 0.202 0.596 0.591 0.510 0.616 
percent ISA∩EL 0.279 0.261 0.637 0.749 0.489 0.757 

FVC∩EL 0.375 0.228 0.743 0.558 0.621 0.767 
All were nonlinear enhancement; p<0.01, the significance of the q-value was determined using an F test with a 
significance level of 0.01. 

The interaction detector creates a new stratum by overlaying factors X1 and X2to further 
compare q(X1∩X2) with q(X1) and q(X2) [46]. The results of interaction detection can show whether the 
combined effects of the evaluation indicators X1and X2 enhance, bi-enhance, nonlinearly enhance, 
weaken, bi-weaken, or nonlinearly weaken the explanatory power of LST heterogeneity, or whether 
the combined effects on LST are independent of each other. In this study, the explanatory power of 
the interactions of different factors in Table 4 was larger than that of the single factor in Table 3, and 
all the interactive factors showed nonlinear enhancement in 2004 and 2021. This indicates that the 
interaction between any two factors of percent ISA, FVC, and elevation amplifies their impact on LST 
distribution in three zones of two dates. The q values of interaction detection were significantly larger 
than those of single factor detection in Table 3 on both dates. This means that interactions of different 
factors have higher explanatory power on the LST heterogeneity at each zone than those of a single 
factor. The results from interaction detection analysis showed that the q values of interactions of three 
factors at zone 1 were lower than those of zone 2 and zone 3 (Table 4). This trend is the same as that 
in Table 3. This is because the landscape patterns of zone 1 are significant different from those in zone 
2 and zone 3. Though the q values of interactions of three factors increased at zone 1 in both dates, 
the q values of interactions of three factors also significantly increased at zone 2 and zone 3 in both 
dates when compared with those of the single factor in Table 3. 

As shown in Table 4, the results from interaction detection analysis showed that FVC ∩ EL and 
percent ISA ∩ EL at zone 2 were 0.743 and 0.749 (74.3% and 74.9% explanatory power on the LST 
heterogeneity) in 2004 and 2021, respectively, and were the most significant influences on LST 
heterogeneity at zone 2. The interactions of percent ISA ∩ EL and percent ISA ∩ FVC were ranked 
next at zone 2 in 2004 and 2021, with values of 0.637 and 0.591 in 2004 and 2021, respectively. As for 
zone 3, FVC ∩ EL was the most significant influence on LST heterogeneity in both dates; the q value 
was 0.621 and 0.767 in 2004 and 2021, respectively. Percent ISA ∩ FVC with a value of 0.510 and 
percent ISA ∩ EL with a value of 0.757 were ranked next at zone 3 in 2004 and 2021, respectively. 
Based on the analysis of the interaction between two factors, we can determine which kind of 
interaction has the strongest influence on the spatial heterogeneity of LST. This can help guide the 
composition and configuration of the driving factors in different development areas of urban for UHI. 

In the study area, it was found that the influencing factors were different in three zones. 
Synthetically evaluating the results of factor and interaction detection, it is worth noting that the 
landscape pattern of urban expansion in zone 3 was limited by geomorphologic characterization, and 
elevation leads to an imbalanced distribution of LST in zone 3. When urban expansion was intense 
in zone 3, it is clear that most of the new urban area was distributed around the mountain. This led 
to an imbalance in urban expansion and also had a certain impact on the q value of zone 3. In addition, 
as a single factor, FVC had a high influence on LST heterogeneity in zone 2 and zone 3 of the study 
area. 

Linear correlation cannot analyze the consistency of spatial distribution between two geographic 
variables. Compared with linear correlation analysis, geodetector can reveal the causal relationship 
between independent and dependent variables [46]. In this study, the Geodetector can show the 
driving force of different factors on the heterogeneity of LST resulting from urban landscape 
expansion through the q value. Spatial heterogeneity of LST may come from an imbalance in urban 
expansion. This analysis can reveal this imbalance and further help to understand the influencing 
factors of LST in different development areas of urban. It can provide significant information for 
urban planning and coping with urban climatic change. 

4. Conclusions 
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Urban expansion changes the urban landscape pattern and also the spatial distribution of LST, 
and may have an effect on human health. This study aimed at exploring the impact of urban 
expansion on thermal environment at different development density areas. Bi-temporal Landsat 
images were used to derive LST, percent ISA, and FVC, and CIi, WLUI, and RWLUI were further 
calculated to analyze the thermal environment contribution based on different urban zones. 
Geodetector was also used to explore the driving factors controlling the spatial heterogeneities of 
LST. This study compared the CIi, WLUI, RWLUI, and q between different urban zones and different 
dates, by revealing the thermal contribution of urban different landscape patterns and the factors 
controlling spatial heterogeneities of LST in urban different development areas. Though the research 
is focused only on one city, the analytical method can provide insights for quantifying urban 
landscape patterns and thermal environment in other cities. This could help alleviate negative effects 
of urbanization and also provide a reference for urban landscape design in other cities with different 
development areas. Results of the study can help mitigate the UHI effect and adapt to climatic change 
in cities. In this study, four conclusions were as follows: 

(1) ISA increase resulted from urban expansion mainly existed in the south and west areas of 
zone 2 and zone 3 from 2004 to 2021, and the high and sub-high LST areas also mainly increased in 
zone 2 and zone 3 in the period. 

(2) The thermal environment contribution of zone 3 significantly increased from 2004 to 2021. 
The CIi of zones 2 and 3 reached over 89% in 2021, and the thermal environment contribution was 
determined and dominated by zone 2 and zone 3 in the study area in 2021. 

(3) In the study area, driving factors affecting the spatial differentiation of LST are regionally 
different, and the influence degree of three factors on LST is weaker in zone 1 than those in zone 2 
and zone 3. Compared with a single factor, the interaction between different factors can increase the 
influence on LST. 

(4) The combined analysis of thermal environment contribution and Geodetector provides a 
suitable method to reveal the impact of the urban landscape pattern on urban thermal environment 
and driving mechanisms on LST heterogeneity. The analytic results can provide a profound 
understanding of the mechanisms of the UHI and provide recommendations for mitigating UHI. 

In this study, Landsat images in summer were used to reveal thermal contribution and 
heterogeneous analysis of LST; all four seasons should also be considered in analysis in the future. In 
addition, we believe that the spatial scale of environmental factors is important in affecting LST, and 
heat contribution and LST heterogeneity may be different at different spatial scales. Therefore, multi-
scale heat contributions, environmental factors, and LST should be taken into account in further 
comparative analysis in the future. 
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