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Abstract: Robotic imitation learning has advanced from solving static tasks to addressing dynamic
interaction scenarios, but testing and evaluation remain costly and challenging due to the need for
real-time interaction with dynamic environments. We propose ENERVERSE-AC (abbr. EVAC), an
action-conditional world model that generates future visual observations based on an agent’s pre-
dicted actions, enabling realistic and controllable robotic inference. Building on prior architectures,
EVAC introduces a multi-level action-conditioning mechanism and ray map encoding for dynamic
multi-view image generation while expanding training data with diverse failure trajectories to improve
generalization. As both a data engine and evaluator, EVAC augments human-collected trajectories
into diverse datasets and generates realistic, action-conditioned video observations for policy test-
ing, eliminating the need for physical robots or complex simulations. This approach significantly
reduces costs while maintaining high fidelity in robotic manipulation evaluation. Extensive exper-
iments validate the effectiveness of our method. Code, checkpoints, and datasets can be found at
https:/ /annaj2178.github.io/EnerverseAC.github.io.

Keywords: world model; video generation; data engine

1. Introduction

The development of robotic imitation learning has significantly advanced robotic manipulation,
transitioning the field from solving isolated tasks in static environments to addressing complex and
diverse interaction scenarios. Unlike traditional AI domains such as computer vision (CV) or natural
language processing (NLP), where model performance can be evaluated using non-interactive and
static datasets, robotic manipulation inherently requires real-time interaction between agents and
dynamic environments during testing and evaluation. As task diversity grows, assessing policy
performance often necessitates direct deployment on physical robots or the creation of large-scale 3D
simulation environments—both of which are costly, labor-intensive, and challenging to scale.

Building low-cost, scalable testing and inference environments for robotic manipulation has
thus become a critical challenge in robotic imitation learning. Recently, the concept of using video
generation models as world simulators has emerged as a promising direction. These models enable
agents to observe and interact with dynamic worlds through learned visual dynamics, circumventing
the need for explicit physical simulation. While this approach introduces a new avenue for constructing
robotic inference pipelines, existing world modeling techniques primarily focus on generating videos
from language instructions and predicting actions based on the generated videos. However, these
methods fall short of creating true world simulators, which should simulate environment dynamics in
response to the agent’s actions, enabling realistic and controllable testing.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Overview of the EVAC framework. Given initial observation images and an action sequence, EVAC
generates multi-view videos conditioned on the provided actions. By incorporating a memory mechanism, EVAC
supports the generation of long-term video sequences. The framework handles both static head camera views and
dynamic wrist camera views to provide a comprehensive representation of the robotic environment.

To bridge this gap, we propose EVAC, an action-conditional world model that generates fu-
ture visual observations directly conditioned on the agent’s predicted actions. Built upon prior
embodied world model architectures like EnerVerse [1], ENERVERSE-AC incorporates additional
Action-Conditioning information to enable more realistic and controllable robotic inference. To achieve
this, we designed a multi-level action condition injection mechanism, which uses end-effector projec-
tion action maps and delta action encodings. Furthermore, to support the generation of multi-view
images, crucial for embodied tasks, we introduce spatial cross-attention modules and ray direction
map encoding to process multi-view features. To reflect the movement of camera, we encode the
camera’s motion using ray map embeddings.

Beyond architectural innovations, the EVAC world model is designed to handle both successful
and failure scenarios. In addition to leveraging the Agibot-World dataset [2], we curated a diverse
dataset of failure trajectories, significantly expanding the training data’s coverage. This enhancement
improves the model’s ability to generalize across diverse scenarios, ensuring its applicability to
real-world robotics tasks.

The proposed EVAC world model serves as both a data engine for policy learning and an
evaluator for trained policy models, addressing key challenges in robotic manipulation. As a data
engine, EVAC augments limited human-collected trajectories into diverse datasets by segmenting
actions (e.g., fetch, grasp, home), applying spatial augmentations, and generating new video sequences,
thereby enhancing policy robustness and generalization. As an evaluator, it eliminates the need for
complex simulation assets by generating realistic, action-conditioned video observations for iterative
policy testing, which can be reviewed by human evaluators or automated systems like Video-MLLMs.
This approach significantly reduces reliance on real robot hardware during development, saving costs
and time, while maintaining high evaluation fidelity correlated with real-world performance.

2. Related Work

Video Generation Model as World Model. While prior research on generative models has shown
promise, [3,4] highlights video generation as an innovative approach to constructing world models.
Similarly, [5] aims to develop a universal world model built upon the generative model but focuses
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on generating only the next-step frames rather than continuous video sequences. Video generation
remains a challenging task with applications across diverse domains. Recent advancements in diffusion
models [6] and latent diffusion models [7] have demonstrated progress in generating high-quality
images with reduced computational complexity. Furthermore, text-guided and pose-guided video
generation methods [8,9] have expanded the applicability of video synthesis technologies.

In robotics, works like [1,10] focus on generating future frames from textual and visual inputs.
However, limited attention has been given to video generation conditioned on robotic actions. Gesture-
conditioned approaches [11] provide valuable insights but have yet to be tested in robotics, where envi-
ronments and object interactions are significantly more complex. Advancements in action-conditioned
video generation are essential to address these challenges.

Physical Simulators for Robotics. Physical simulators are widely applied in robotics learning
tasks. MuJoCo [12] has been used for locomotion and manipulation studies, while PyBullet [13] sup-
ports real-time control and sim-to-real experiments. Similarly, Isaac Gym [14] facilitates reinforcement
learning in continuous control tasks with large-scale parallel environments. Several studies [15] utilize
physical simulators to train policies for solving dexterous manipulation tasks. Despite their utility,
physical simulators face notable limitations. The sim-to-real gap often results in overfitting to synthetic
environments, reducing real-world performance. Moreover, creating digital assets—including robot
embodiments, target objects, and task scenes—remains labor-intensive and requires expert-level effort,
further hindering scalability.

Robotics Imitation Learning. Recent advancements in robotics imitation learning focus on de-
veloping generalist models capable of efficiently handling diverse tasks across multiple embodiments
using extensive multimodal datasets. Models such as RT-1 [16], Gato [17], Octo [18], and OpenVLA [19]
integrate pretrained visual and language models with specialized policy heads, enabling remarkable
task generalization. Building on this, [20] introduces a dual-brain system, while [21] employs layer-
wise information with flow matching techniques for action prediction. Additionally, [2] transitions
from direct action prediction to latent action representations, ensuring more effective generalization.
However, these approaches rely heavily on large-scale action datasets for training. While some works,
such as [22], attempt to reduce data requirements by increasing information density, they still depend
significantly on human data collection, underscoring the need for further innovations in data-efficient
learning techniques.

3. Method

In EVAC, we adopt a UNet-based video generation model as our baseline, following [1,23].
Beyond this, we propose an action-conditioned framework, as illustrated in Figure 2. Given a RGB
video set O € RV*(H+K)x3xhxw yhere V denotes the number of views, H represents the number
of observed history frames, K is the number of intended predicted frames, and , w are the frame
height and width, our method is designed to predict future frames based on observed past frames and
robotic actions. First, we pass the video set through an encoder ¢ to obtain the latent representation
z € RVXHXCxhxw ywhere C is the latent dimensionality. Using a latent diffusion model, we aim to
predict z; = py(z—1,¢,t), where c is the condition signal and f is the denoising timestep. In this
work, the condition signal originates from the robotic action trajectory A € R(H+K)xd where d = 7
represents the end-effector pose with [x, y, z, roll, pitch, yaw, openness| and d = 14 in bi-arm case.

To inject the action condition, we use both spatial-aware pose information injection and delta
action attention module. Furthermore, we extend traditional 2D video generation to 3D video gen-
eration, represented by multi-view frames, to better meet the requirements of robotic manipulation
tasks.
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Figure 2. Overview of the EVAC Framework. The framework begins with a reference image, whose feature vector
serves as the reference style guidance. The original robotic actions are processed to compute the delta action vector
and this temporal information is concatenated with the reference style guidance and injected into the diffusion
model via a cross-attention mechanism. Additionally, the action information is projected into action maps, whose
feature maps are concatenated with feature maps from both memory and visual observations before being fed
into the diffusion network. The diffusion model generates video frames with denoising process, followed by a
video decoder to produce the final output. For simplicity, we only demonstrate the single-view case here.

3.1. Mutli-Level Action Condition Injection

Spatial-Aware Pose Injection. [9,24-26] have proposed different ways on controlling video
generation by injecting pose information. One common way to align the image with the fine-grained
pose trajectory is to use a pixel-alignment method to inject the pose signal. In the field of robotics,
end-effector 6D position has been tested as an effective representation of action space. Therefore, to
ensure precise visual alignment with the conditioned image, we have developed methodologies to
effectively depict the 6D end effector pose of the end effector. Firstly, we convert the end-effector
position at timestamp i in world coordinates to the corresponding pixel coordinates using the calibrated
camera parameters. Furthermore, to visually represent the roll, pitch, and yaw angles in 2D image
space, we employ visual prompting techniques inspired by [27,28]. This approach utilizes unit vectors
along each directional axis, providing an intuitive representation of the end-effector’s orientation in
3D space.

To illustrate the gripper action at each state, we use a unit circle to encode the action magnitude,
where lighter shades correspond to open gripper and darker shades indicate closed gripper. To
differentiate between the left and right hand, we employ distinct color schemes for visualizing 6D
poses and gripper actions. The 6D pose visualization is rendered on a black background to enhance
clarity, as shown in Figure 3. After constructing the action map using the aforementioned visual
prompting techniques, we process it with the CLIP [29] vision encoder. The resulting feature maps are
concatenated with the feature maps from RGB images along the channel dimension.

Delta Action Attention Module. Furthermore, we designed a Delta Action Attention module
which calculates the delta motion between consecutive frames to approximate changes in the end-
effector’s position and orientation. These delta motions are encoded into a fixed number of latent
representations by a linear projector and then via cross-attention [30,31]. The fixed-length latent repre-
sentation token is then fused with the Reference Image map and injected into the Unet stage through a
cross-attention mechanism. By incorporating temporal changes, such as speed and acceleration, the
module enhances the model’s physical understanding of motion dynamics, enabling it to produce
more realistic and diverse video outputs.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Visualizing EEF Projections and the Ray Maps. The bottom row illustrates wrist camera views, where
projections appear nearly identical. Then, ray maps provide additional spatial context to represent movements.
The value of the ray maps is visualized with the RGB value.

3.2. Multi-View Condition Injection

In embodied robotics, cross-view information, particularly visual inputs from wrist cameras, is
essential for accurate trajectory prediction. To address this, we extend EVAC world model to support
multi-view video generation. Following EnerVerse [1], multi-view features are fed where spatial
cross-attention modules enable interaction between views. A ray direction map encoding camera
parameters is also concatenated into the input features to provide spatial context. Unlike EnerVerse,
which only processed static views, EVAC incorporates dynamic wrist camera views that move with
the robotic arms. This creates a challenge: when projecting end-effector (EEF) poses onto wrist camera
images using Section 3.1 methods, the projection circle remains static, failing to convey the hand’s
movement, as shown in Figure 3.

Inspired by techniques in [1,32], we encode camera motion using the origins o, and directions
dr of ray maps r = (or,d,). Specifically, for each camera, we compute the ray maps relative to its
poses at all times. Since the wrist cameras move with the arms, the ray maps of the wrist cameras can
implicitly encode the motion information of EEF poses. Therefore, the ray maps are concatenated with
the trajectory maps to provide enriched trajectory information, improving cross-view consistency.

3.3. Applications

Data Engine for Policy Learning. The EVAC world model can serve as a data engine for robotic
policy learning. Specifically, for a new manipulation task (for simplicity, we use the primitive single-
object pick-and-place task as an example), a human data collector first captures M trajectories. For
each collected trajectory, the beginning (t;) and ending (t.) timestamps of the gripper-object contact
phase are identified by analyzing changes in gripper openness. These timestamps are then used to
segment the trajectory into three distinct phases: fetching, grasping, and homing.

Focusing on the fetching phase as an example, we extract the visual observation Oy, and the
corresponding action sequence [“tb_w e ,atb]. While the action a;, is kept fixed, the earlier action
ar,  is spatially augmented to generate a new action a;b_N. After augmentation, interpolation is
applied to create new action trajectories for the sequence. Then, Oy, and the reversed action sequence
lay,, ..., a;,_ | are fed into the EVAC world model to generate the corresponding video frames. Once
the frames are generated, they are re-ordered to create a correctly sequenced dataset. By following
this process, the original M trajectories can be augmented into a significantly more diverse set of
trajectories, enhancing the robustness and generalization of the policy learning process.

Evaluator for Policy Model. Another application of EVAC is serving as a physical simulator to
evaluate trained policy models. Given an initial visual observation O; and corresponding instructions,
the policy model generates action chunks. These action chunks, along with O, are then fed into the
EVAC world model to generate new observations. This process is iteratively repeated until the actions
generated by the policy model fall below a predefined threshold. Subsequently, multiple human
evaluators watch the EVAC-generated videos to assess task success.

This evaluation approach offers two key advantages. First, it eliminates the need to create
complex simulation assets, as EVAC can better represent certain physical aspects, such as fluid
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dynamics, compared to conventional simulators. Second, the video replay can be sped up to save
time, or it can potentially be integrated with video-based Video-MLLMs, reducing the need for human
evaluation efforts. By leveraging this process, the EVAC world model can largely replace the use of
real robot hardware during the initial development stage, significantly reducing deployment efforts.
Our experiments reveal a high correlation between evaluation results obtained through EVAC and
those observed in real-world scenarios.

Evaluator Data Engine
Gen. Images
~]
Aug Traj.
!(@:
emory = Aug. Traj] m

= Init Traj.

gien. Images
| A |

Pred. Actions

® : Success

Init Obs. Image
Figure 4. EVAC’s as Data Engine and Policy Evaluator.

4. Experiments
4.1. Experiment Details

Dataset The training data for EVAC is primarily sourced from the AgiBot World dataset [2],
which contains over 210 tasks and 1 million trajectories. To ensure comprehensive coverage of action
trajectories, including both successful and failed cases—critical for enabling EVAC to function as
a generalized simulator—we collaborated with the AgiBot-Data team to gain full access to the raw
data. From this dataset, we mined a substantial amount of failure cases. Additionally, we developed
an automated data collection pipeline to capture real-world failure cases during teleoperation and
real-robot inference, further enriching the dataset with diverse scenarios.

Implementation Details Our model is built on UNet-based Video Diffusion Models (VDM) [23].
During training, the CLIP visual encoder and VAE encoder are frozen, while other components,
including the UNet, resampler, and linear layers, are fine-tuned. The model is trained with a batch size
of 16. For the single-view version, training requires approximately 32 A100 GPUs for 2 days, whereas
the multi-view version takes about 32 A100 GPUs for 8 days. We experimentally determined that
setting the memory size to 4 and the chunk size to 16 achieves a balance between generation quality
and resource cost. The memory consists of 4 historical frames, each derived from the results of the
previous chunk generation. For the robotic policy model, we utilize the official single-view version of
GO-1 [2].

4.2. Controllable Manipulation Video Generation

As shown in Figure 5, EVAC excels at synthesizing realistic videos of complex robot-object
interactions, even in challenging scenarios. A key strength of EVAC lies in its ability to maintain high
visual fidelity while accurately following input action trajectories, ensuring reliability for building
credible evaluation systems.

The model’s chunk-wise autoregressive diffusion architecture and sparse memory mechanism,
inspired by [1], enable it to sustain visual stability and scene consistency during continuous chunk-
wise inference. Experimental results show that the generated videos remain sharp and reliable for up
to 30 consecutive chunks in single-view scenarios and 10 chunks in multi-view settings. However,
artifacts and blurring begin to emerge in longer sequences, highlighting a tradeoff between sequence
length and visual quality. Figure 6 further illustrates EVAC’s ability to preserve scene integrity across
multiple chunks during a manipulation task. The snapshots showcase environment consistency over
time, demonstrating EVAC’s robust performance in maintaining visual coherence during chunk-wise
autoregressive inference.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Chunk 1 Chunk 3 Chunk Chunk 7 Chunk 9
Figure 6. Environment consistency during chunk-wise inference. Snapshots from EVAC at various inference
stages (Chunks 1, 3,5, 7, and 9) demonstrate robust performance in maintaining visual fidelity and scene coherence
over time.

4.3. EVAC as Policy Evaluator

This section evaluates the consistency between the EVAC-based generative simulator and real-
world environments. Four manipulation tasks were selected for evaluation; details for these tasks can
be found in the Appendix A. For each task, real-world evaluations were conducted first, and the initial
frame recordings from these tests were used as the image condition for EVAC evaluations. Success or
failure was determined by three independent evaluators who observed either real-world executions
or EVAC-generated sequences. As shown in Figure 7 (left), while there were minor differences in
absolute success rates between EVAC and real-world evaluations, the relative performance trends
across tasks were consistent. These findings demonstrate EVAC’s reliability for cross-task policy
performance analysis and its ability to closely replicate real-world dynamics. We also provide the
qualitative evaluation results in LIBERO [33] simulator in the Appendix.

Another challenge in robot policy learning is the instability during training, e.g. performance
fluctuates across training steps. To assess EVAC’s ability to reflect these fluctuations, we evaluated
the same policy at different training steps using the "Take a Bottle" task as an example. As shown in
Figure 7 (right), both EVAC and real-world evaluations captured the same performance trend, with
success rates improving as the number of training steps increased. This result confirms that EVAC
accurately mirrors real-world performance variations during policy training.

Success Rate per Task Success Rate per Learning Step
100% 90% 8% 100%
9% 70
80% 80% N
61% 63%
60% 50% 60%
40% 40%
40% o 40%
- l - I I
0% 0%
Takea Bottle  Takea Toast — Takea Bacon  Takea Leaf 4K 8K 13K
Real Robot Eval  ® Ours Eval mReal Robot Eval  mOuss Eval

Figure 7. Comparison of Success Rates Across Tasks and Training Steps. (Left) Despite tasks vary a lot, the EVAC
simulator consistently aligned its evaluation results with real-world ones. (Right) Success rates of a single policy
model evaluated at three training steps. Both EVAC and real-world testing demonstrated a similar performance
gradient.
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4.4. EVAC as Data Engine

In this part, we aim to demonstrate the potential of EVAC to generate novel action trajectories
that augment policy training data, leading to improved task performance. The evaluation task involves
picking a bottle of water from a paper box and placing it on a table. This task is challenging due to the
precise force and manipulation required to extract a tightly packed bottle.

We compare two training setups: (1)Baseline: The policy is trained with only 20 expert demon-
stration episodes. (2)Augmented Dataset: The policy is trained with the same 20 expert episodes,
augmented with 30% additional trajectories generated using the EVAC world model. As shown in
Table 1, the success rate (SR) improves significantly from 0.28 to 0.36 when the augmented trajectories
are included in the training data. This result highlights the capability of the EVAC world model to
enhance policy learning by providing diverse and effective training samples, even when the number
of expert demonstrations is limited.

Table 1. Impact of Data Augmentation on Policy Training Success Rate.

Training Data Success Rate (SR)
Baseline 0.28
Augmented Dataset(Adding 30% synthetic data) 0.36

4.5. Further Analysis

Failure Data Matters. As discussed in Section 4.1, we deliberately collected failure trajectories
to expand the action coverage in the training data. To evaluate the effectiveness of this failure data,
we trained two models: one with failure trajectories included and the other without. As illustrated in
Figure 8, we tested the models using a scenario where the robotic arm was pretending to grasp a bottle
of water that was not actually present.

Without failure data, the model tended to overfit to successful examples, leading it to "hallucinate"
that the bottle had been successfully grasped despite the absence of physical interaction. In contrast,
with the inclusion of failure data, EVAC was able to accurately recognize and distinguish the failed
grasp attempt, demonstrating its robustness against overfitting and its ability to handle edge cases
effectively.

(a) W/o Failure

(b) With Failure

Figure 8. Impact of Failure Data and Data Augmentation on Trajectory Generation. Without failure data: The
model overfits to success-only trajectories, incorrectly "hallucinating" that the bottle has been grasped by the

robotic arm.

5. Conclusion

In this paper, we introduced EVAC, an embodied world model with action-conditioned capa-
bilities. We proposed multi-level action condition injection strategies and utilized camera ray maps
to model dynamic camera’s motion. Through extensive experiments, we demonstrated the dual
functionality of EVAC: serving as both a data engine for policy learning and an evaluator for trained
policy models.
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6. Limitations and Discussions

We proposed ENERVERSE-AC, an action-conditional embodied world model generator by imple-
menting a video generation framework. However, several limitations remain in the current work.

First, our approach for interpreting gripper openness using a unit circle representation with vary-
ing color intensities may not generalize effectively to more complex end-effectors, such as dexterous
hands. Adapting the framework to different robotic hardware configurations will require additional
preprocessing steps and refinements.

Second, the wrist camera often captures irrelevant background noise, such as people moving
around the robot workspace, which increases the complexity of video generation. As shown in our
experiments, this limitation restricts multi-view inference to 10 chunks, compared to the 30 chunks
achievable in single-view generation, thereby reducing the overall efficiency of multi-view scenarios.

Additionally, several potential applications of our action-conditioned world model remain unex-
plored, such as its integration with actor-critic methods for reinforcement learning. Future research
could extend our framework by exploring these applications and drawing inspiration from prior
work [34-36]. We hope that this work serves as a foundation for advancing embodied world models
and inspires further developments in the field.

Appendix A

In this appendix, we first provide additional training details and model parameters in Section A.1.
Next, we present an ablation study to evaluate the effectiveness of the proposed delta action attention
module in Section A.2. We also include more quantitative results from both real-world and simulator
experiments. Finally, we demonstrate the application setup of EVAC as a policy evaluator and a data
engine in Section A.4. For further details and to access videos with clearer indications, we strongly
recommend visiting the https:/ /annaj2178.github.io/EnerverseAC.github.io/.

Appendix A.1. Training Details

As mentioned in Section 3, we adopt a UNet-based denoising model in EVAC, which takes both
latent images and concatenated conditions as inputs. The concatenated conditions include repeated
latent features of the condition frame, action maps, ray maps, and a dropout mask indicating whether
the condition is dropped. This dropout strategy is designed to improve the model’s robustness. The
hyperparameters of the model architecture and training setup are provided in Table A1.

Table A1l. Model Parameters and Training Configuration. F indicates the fisheye camera.

Category Configuration
Diffusion Parameters
- Diffusion steps 1000
- Noise schedule Linear
-Bo 0.00085
-Br 0.0120
UNet
- Input channels 19
- Latent image channels 4
- Condition latent image channels | 4
- Action map channels 4
- Ray map channels 6
- Dropout mask channel 1
- z-shape 40 x 64 x 4
- Base channels 320
- Attention resolutions 1,2,4
- Channel multipliers 1,2,4,4
- Blocks per resolution 2
- Context dimension 1024

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table A1. Cont.
Category Configuration
Data
- Video resolution 320 x 512
- Chunk size 16
- Views head, head_left(F), head_right(F), left_hand, right_hand
Training
- Learning Rate 5x107°
- Optimizer Adam(B0=0.9, f1=0.999)
- Batch size per GPU (single-view) | 8
- Batch size per GPU (multi-view) | 1
- Parameterization v-prediction
- Max steps 100,000
- Gradient clipping 0.5 (norm)

Appendix A.2. More Ablations

The effectiveness of Delta Action Attention Module To ensure the generated videos from EVAC
accurately follow action trajectories, we employ a Multi-Level Action Condition Injection strategy.
To assess the impact of the Delta Action Attention Module, we conducted ablation studies, with
results shown in Figure A1l. The task involved intricate pan manipulation dynamics, including rapidly
shaking the pan, slowly shaking the pan, upward tossing, and upward shaking.

w

® 6 6. 6 6

7

TRl e AN ZLn A
" ® 06 6. 6 06

Figure A1l. Results of generated videos under identical conditions with and without the Delta Action Module.

The top row shows results with the module (w/ Delta Attention), while the bottom row shows results without it
(w/o Delta Attention). The dashed red boxes highlight regions with inconsistent or hallucinated results.

The primary challenge lies in distinguishing between upward tossing and upward shaking, as
they exhibit fundamentally different acceleration profiles. Upward tossing involves a sharp, high-
acceleration movement, whereas upward shaking follows a smoother, low-acceleration trajectory.
Without the Delta Action Module, spatial-aware action recognition models often fail to differentiate
between these motions, resulting in incorrect predictions. This leads to temporal inconsistency, such as
flickering or the sudden disappearance of objects (e.g., the ham) due to erratic motion transitions, as
highlighted by the dashed red boxes in Figure A1.

The Delta Action Module addresses these limitations by introducing acceleration-aware action
decomposition. By explicitly modeling the time-derivative of actions, the module captures second-
order dynamics (velocity changes), enabling it to differentiate between high-acceleration motions
like tossing and low-acceleration motions like shaking. As a result, the Delta Action Module ensures
significantly stronger motion consistency and reduces temporal errors compared to configurations
without it.
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Appendix A.3. Additional Results
Appendix A.3.1. More Real-World Generated Multi-View Results

In this section, we present an example of multi-view video generation, as shown in Figure A2.

head

head left

head right

left hand

right hand

Figure A2. Multi-view generated videos. This task involves placing items from a desk into a bag, specifically
packaging a Coke can. Each row displays each synchronized views generated by EVAC, showcasing consistent
multi-perspective results at each timestep. We have shown 4 timesteps horizontally, illustrating the dynamic
action sequence.
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Appendix A.3.2. Libero Results

To demonstrate the consistency and generality of EVAC, we fine-tuned the model using 417
trajectories and visualized generated action trajectories alongside Libero results. Qualitative results
are shown in Figure A3.

Action°

Figure A3. Comparison of results generated by Libero and EVAC with different action trajectories. Two successful
cases of picking an item are shown, along with one failure case of an empty catch.

Appendix A.3.3. Same Initial Conditions but Different Trajectories

To showcase the ability of precise trajectory-following, we present results generated under the
same initial conditions but with different trajectories in Figure A4.
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Figure A4. Results with the same initial conditions but different trajectories. The top row shows results for
trajectory 1, while the bottom row shows results for trajectory 2.

Appendix A.4. Experiment Setup of EVAC’s Application
Appendix A.4.1. EVAC as a Policy Evaluator

We train the official single-view Go-1 [2] without the latent planner module and evaluate its per-
formance in both real-world and simulated (EVAC) environments for comparison. During evaluation,
the tester slightly randomizes the initial conditions of each task to obtain more generalized results. An
example of the initial conditions for the 4 tasks is provided in Figure A5. Each task is evaluated 40
times, with success defined as the robot successfully retrieving the target item.

Task 1: Take a Bottle of watter Task 2: Take a Toast

Task 3: Take a Bacon Task 4: Take a Lettuce

Figure A5. Example of the initial conditions for the 4 tasks used in evaluation.
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Figure A6. Task 1: Example of retrieving a bottle of water (failure case). The upper row shows the generated
video from EVAC, and the lower row shows the rollout in real settings. Both are consistent in their results.

Figure A7. Task 2: Example of retrieving a piece of toast (success case). The upper row shows the generated video
from EVAC, and the lower row shows the rollout in real settings. Both are consistent in their results.

Figure A8. Task 3: Example of retrieving a ham slice (success case). The upper row shows the generated video
from EVAC, and the lower row shows the rollout in real settings. Both are consistent in their results.
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Figure A9. Task 4: Example of retrieving a lettuce leaf (failure case). The upper row shows the generated video
from EVAC, and the lower row shows the rollout in real settings. Both are consistent in their results.

Appendix A.4.2. EVAC as a Data Engine

In this section, we visually present examples of synthetic data used for data augmentation in
training, as shown in Figure A10. First, we randomly generate some actions agb_N within a fixed range
from ay, . Then, using linear interpolation between a;  and ay, to generate the action between these
two. To generate the images, we first reverse the entire action sequence and use the real image as
a condition for EVAC. This allows us to progressively generate images in reverse order. We then
reverse the entire image sequence again for use by GO-1. Finally, we can get the image sequence from
(Figure A10a) to (Figure A10b) to train a single-view Go-1 model.

Figure A10. Example of the generated data for augmentation in Table 1. Left: (a) Spatially augmented a;’b—N with
four frame examples. The red arrows indicate different directions from the synthetic image toward the target
frame. Right: (b) Fixed a;, frame. Frames between (a) and (b) are generated using linear interpolation.
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