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Article 
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Abstract: We introduce a synchronization procedure for clocks based on the Einstein–Landauer 
framework. Clocks are modeled as discrete, macroscopic devices operating at a thermal equilibrium 
temperature 𝑇𝑇. Synchronization is achieved by transmitting photons from one clock to another; the 
absorption of a photon by a clock reduces the uncertainty in its timekeeping. The minimum energy 
required for this reduction in uncertainty is determined by the Landauer bound. We distinguish 
between the time-bearing and non-time-bearing degrees of freedom of the clocks. A reduction in 
uncertainty under synchronization in the time-bearing degrees of freedom necessarily leads to heat 
dissipation in the non-time-bearing ones. The minimum energy dissipation in these non-time-bearing 
degrees of freedom is likewise given by the Landauer limit. The same is true for mechanical 
synchronization of clocks. We also consider lattices of clocks and analyze synchronization using a 
Ramsey graph approach. Notably, clocks operating at the same temperature may be synchronized 
using photons of different frequencies. Each clock is categorized as either synchronized or non-
synchronized, resulting in a bi-colored complete graph of clocks. By Ramsey’s theorem, such a graph 
inevitably contains a triad (or loop) of clocks that are either all synchronized or all non-synchronized. 
The extension of the Ramsey approach to infinite lattices of clocks is reported. Landauer 
synchronization also limits the accuracy of watches.   

Keywords: Landauer bound; synchronization of clocks; Einstein synchronization; Ramsey theory; 
lattice of clocks; complete graph; transitivity.           
 

1. Introduction 

The synchronization of clocks is considered one of the most fundamental problems in physics 
because it lies at the very foundation of how we understand time, simultaneity, and ultimately the 
structure of space-time itself [1,2]. Clock synchronization underpins our entire framework for 
defining when and where events occur in physics [1,2]. Various procedures enabling synchronization 
of clocks were suggested. Antiphase synchronization was the phenomenon observed by Huygens in 
XVII century [3,4]. Generally speaking, in Newtonian-Lagrangian mechanics, the synchronization of 
clocks is a trivial, straightforward procedure, because time is considered absolute, meaning it flows 
the same for all observers, regardless of their state of motion or location. In classical mechanics, time 
is considered absolute, homogeneous and universal [5–7]. Clocks at different locations are assumed 
to tick at the same rate and show the same time, provided they were set/synchronized identically [5–
7].  

The situation is quite different in the special and general relativity [8–12]. Synchronized clocks 
could not be moved from one point to another without intervention into their operation. Two 
solutions were suggested for synchronization of the clocks in the special relativity: i) Einstein lattice 
of synchronized clocks [1–4]; ii) Eddington slow clock transport [8,9]. We follow the more 
comprehensive Einstein synchronization procedure. Einstein synchronization implies the following 
steps: i) Assume there are two clocks, clock “A” and clock “B”, located at different positions in space 
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but at rest relative to each other in an inertial frame. At time 𝜏𝜏𝐴𝐴 on clock labeled “A”, a light signal 
is sent from clock “A” to the clock “B.” ii) At the next stage we receive the signal: the light signal 
reaches clock “B” at time 𝜏𝜏𝐵𝐵 (registered according to the clock “B” time). iii) At the next stage the 
signal is reflected back from clock “B” to clock “A”. iv) the reflected signal is received back at the 
clock A at time 𝜏𝜏𝐴𝐴′  (fixed according to clock “A”). 

Assuming the speed of light is constant and the same in both directions, the time it takes for light 

to travel from “A” to “B” is equal to the time it takes to return from B to A. So: 𝜏𝜏𝐵𝐵 = 𝜏𝜏𝐴𝐴+𝜏𝜏𝐴𝐴
′

2
. If this 

equation is true, this means that Clock “B” is synchronized with Clock “A”. Assumptions behind the 
procedure are summarized as follows: a) Light travels at constant speed c in vacuum in all directions, 
b) Clocks are stationary in the same inertial frame, c) The time taken for the light to go from clock 
“A” to “B” is the same as from clock “B” to “A”. However, it is latently made one more assumption, 
namely we adopted that any light signal sent from one clock to another is suitable for the 
synchronization, whatever its wavelength (frequency). We demonstrate that this assumption 
contradicts the Landauer principle.   

Landauer principle is one of the limiting physical principles, which constraint behavior of 
computing systems. The Landauer principle restricts the minimal energy necessary for erasure of one 
bit of information. Rolf Landauer adopted that computation is a physical process; thus, it must obey 
the laws of physics, and first and foremost the laws of thermodynamics [14–17]. This thinking led to 
the new limiting physical principle, establishing minimal energy cost for erasure of a single memory 
bit for the system operating at the equilibrium temperature T. The minimum amount of heat/energy 
W dissipated when erasing one bit of information is given by Equation 1:    

                   𝑊𝑊 = 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2                             (1) 
The Landauer principle also led to the fundamentally important distinction between the logic 

and thermodynamic irreversibility [13–31]. It should be emphasized, that the Landauer bound, given 
by Equation 1, is related only to a single information-bearing degree of freedom of the entire 
computing system. The Landauer principle was rigorously microscopically derived without direct 
reference to the second law of thermodynamics [18]. A quantum mechanics extension of the Landauer 
Principle was demonstrated [19]. Also a relativistic generalization of the Landauer Principle was 
introduced [22,24]. An extension of the Landauer Principle to the many-valued logic based 
computation was reported [23]. We introduce the analogy between the computers and physical 
clocks, and extend the Landauer Principle to the Einstein synchronization of clocks.   

We will also adress the lattices of clocks, seen within the perspective of the Ramsey theory [32–
39]. Ramsey theory is a branch of discrete mathematics within combinatorics that deals with the 
emergence of order within seemingly chaotic or random structures, provided those structures are 
sufficiently large. It addresses questions of the form: "How large must a structure be to guarantee 
that a specific property or pattern inevitably appears within it?" [32–39].      

2. Results  

2.1. Synchronization of Clocks Operating at the Same Temperature  

Consider a pair of clocks to be synchronized, the clocks are numbered “1” and “2” 
correspondingly. The clocks are seen as “synchronized” or, alternatively, “non-synchronized”. Now 
we make the main assumptions of the suggested approach: i) the clocks are in the thermal equilibrium 
with surrounding; the equilibrium temperature of both clocks is T. ii) the minimal energy necessary 
for the clocks synchronization is established with the Landauer bound, 

                        𝑬𝑬𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒌𝒌𝑩𝑩𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻                       (2) 
 We follow the general Landauer approach [13–20]. The clock is the physical device. It contains: 

1) the timekeeping element (oscillator), which provides a regular, consistent time interval (the 
“heartbeat” of the clock), such as a pendulum, balance wheel and spring,         quartz crystal (in 
quartz clocks and watches), atomic oscillator (in atomic clocks); 2) a power source, which drives the 
timekeeping element and other mechanisms; 3) an escapement mechanism, which controls and 
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regulates the release of power to the timekeeping element, converting continuous energy into discrete 
impulses, which translates the motion of the oscillator into usable time intervals (seconds, minutes, 
hours, etc.); 4) a display or indication mechanism.  

What is common between computer and clocks? Both of them are discrete physical devices. Both 
systems move through a sequence of states Measurement of time is established by comparing their 
timekeeping against a known standard or reference, which may be International Atomic Time (TAI), 
based on the vibrations of cesium atoms or Coordinated Universal Time (UTC). Whatever is the 
presumed time standard, the time measurement is necessarily a discrete procedure.   

A computer, in turn, moves through discrete computational states as it executes each instruction. 
Both of them have essential and supplementary degrees of freedom. In computers, we distinguish 
between the “information-bearing” and “non-information bearing” degrees of freedom. Information-
bearing degrees of freedom are specific physical states used to encode information in a computer, i.e. 
the charge of a capacitor (in DRAM, a memory chip that depends upon an applied voltage to keep 
the stored data), magnetization of a domain (in hard drives); high/low voltage (in logic gates). These 
degrees of freedom can carry logical bits: “0” or “1”. Non-information-bearing degrees of freedom 
(e.g., atomic positions subject to thermal vibrations) do not directly represent logical information, i.e. 
atomic motions, electron energy distributions unrelated to logic states. These degrees of freedom can 
still absorb or carry energy but not logical bits. When you erase a bit (e.g., reset a memory location to 
“0” regardless of previous value), you reduce the number of possible logical states from two (“0” or 
“1”) to one (just “0”). This reduction in logical entropy must be compensated by an increase in 
physical entropy elsewhere, typically in the non-information-bearing degrees of freedom (e.g., as 
heat). The erasure reduces uncertainty in the information-bearing degrees of freedom. To obey the 
Second Law of Thermodynamics, the system must increase entropy elsewhere. That entropy increase 
appears as heat dissipated into the environment — mostly affecting the non-information-bearing 
degrees of freedom (vibrations, kinetic energy, etc.). 

The same is true for clocks. We propose to distinguish between the time-bearing and non-time 
bearing degrees of freedom of the clock. The devices exploiting time-bearing degrees of freedom 
include timekeeping oscillators, such as pendulum or quartz crystal. The units exploiting non-time-
bearing degrees are the power supply, converting mechanism  and display. Minimal/elementary 
synchronization of the clock is equivalent to erasure of information, necessary for zeroing the clock 
reading. Synchronized clocks are equivalent to the certain logical state; unsynchronized clocks are 
equivalent to the uncertain logical state. When we synchronize clocks (e.g., reset a pendulum location 
to “1” regardless of previous state of the clocks), we reduce the number of possible logical/temporal 
states — from two (“0” or “1”) to one (just “1”). This is illustrated with the twin-well Landauer 
pendulum, shown in Figure 1. Synchronization reduces uncertainty in the time-bearing degrees of 
freedom of the clock. After synchronization, we exactly know in what state the pendulum is located; 
this evidences that the clocks are synchronized. The process results in the decrease in entropy (we 
see a clock as the macroscopic device, operating at certain equilibrium temperature T). According to 
the Second Law of Thermodynamics this reduction in entropy must necessarily should be 
compensated by an increase in entropy elsewhere, typically in the non-time-bearing degrees of the 
clock (i.e. heat). Thus, the Landauer principle expressed with Equation 2 becomes applicable. Let us 
illustrate this idea with the Einstein synchronization scheme depicted in Figure 1.  

 
 
 
 
 
 
 

1 1 0 0 
ℎ𝜈𝜈 

1 2 

U(x) U(x) 

T T 

ℎ𝜈𝜈 
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Figure 1. Synchronizations of clocks labeled “1” and “2” with the Einstein procedure performed with the photon 
𝒉𝒉𝒉𝒉. Both of clocks operate under the equilibrium temperature T. The clocks exploit the twin-well U(x) based 
pendula. . 

We start from a pair of clocks operating at the same temperature T. Consider clock “1”, 
exploiting the twin-well based pendulum. Pendulum may be located in the left half-well, 
corresponding to state “0”, or in the right half-well corresponding to the state “1” of the clock. We 
send the photon ℎ𝜈𝜈 towards the clock “2” exploiting the same twin-potential pendulum. The clocks 
may be synchronized if and only if photon ℎ𝜈𝜈 have a sufficient energy to place the pendulum in a 
certain (right or left half- well) regardless of previous state of the clock “2”. Thus, Equation 3 
necessarily holds: 

                      ℎ𝜈𝜈 ≥ 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2                                 (3) 
The mass of photon, necessary for synchronization the clocks in given by Equation 4: 
                             𝑚𝑚𝑝𝑝ℎ ≥

𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2
𝑐𝑐2

                                 (4) 
It is  emphasized, that the introduced synchronization procedure is reversible. It does not 

matter what clock (“1” or “2”) emits the photon, and what clock operates as an absorber of the photon. 
We assume that the emitting clock sends the photon 𝜈𝜈  when its state is fixed, and there is no 
uncertainty in its ticking. If the photon is sent when the state of the emitting clock is uncertain, the 
total energy necessary for synchronization of the pair is 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 2𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2. We call the entire protocol 
of synchronization the Einstein-Landauer procedure. This energy should be dissipated within the 
non-time-bearing degrees of freedom of the clock. 

2.2. Mechanical Synchronization of the Clocks Operating at the Same Temperature 

Let us illustrate the suggested approach with the mechanical synchronization scheme, depicted 
in Figure 2. Consider two pairs of clocks, exploiting folio-and verge (ratchet and pawl) escapement 
mechanism, depicted in Figure 2 [40].  

 

Figure 2. Two pairs of clocks, exploiting folio-and verge (ratchet and pawl) escapement mechanism, depicted 
operate at temperature T. The clocks are embedded into the ideal mono-atomic gas. Clocks are connected and 
synchronized with the solid rod. 

The clocks operate at temperature T. For a sake of simplicity assume that the folio-and verge 
escapement mechanisms are embedded into the ideal, mono-atomic gas at the temperature of T. 
Operation of the folio-and verge escapement mechanism working at temperature T is addressed in 
detail in the classical textbook by Richard Feynman [42]. The clocks are synchronized by the solid rod 
as depicted in Figure 2. The synchronization has an inherent energy cost; the minimum of this cost is 
defined by the thermal noise inevitable in the situation, depicted in Figure 2. The value of this cost is 
very roughly estimated as 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑟𝑟 ≅

3
2
𝑘𝑘𝐵𝐵𝑇𝑇, which is close to the Landauer limit supplied by Equation 

2. This energy will be necessarily dissipated via the rod, connecting folio-and verge escapement 
mechanisms (see Figure 2) within not-time-bearing degrees of freedom of the clocks.        
  

T T 
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2.3. Energy Dissipation within the Eddington Slow Transport of Clocks Mechanism of Synchronization 

Eddington suggested the clock synchronization protocol, which is an alternative to the Einstein 
one [43]. This is the procedure of the slow clocks transport synchronization, which implies moving 
one clock slowly from one location to another [43]. Within the Eddington synchronization we i) start 
with two identical clocks at the same location; ii) synchronize clocks side by side; iii) slowly transport 
one of the clocks to a distant location; iv) once moved, both clocks are assumed to be synchronized. 
The key assumption in the Eddington synchronization is that moving the clock very slowly 
minimizes time dilation effect emerging from special relativity. However, this procedure does not 
eliminate the stage of synchronization itself, whether optical or mechanical (such as depicted in 
Figure 1 or Figure 2). Thus, we return to the withstanding thermal noise and Landauer limit. 

2.4. Synchronization of Clocks Operating at the Different Temperatures 

Consider synchronization of clocks operating at the different temperatures, illustrated with 
Figure 3. For a sake of unambiguity assume 𝑇𝑇1 > 𝑇𝑇2. 

 

Figure 3. Synchronizations of clocks labeled “A” and “B” with the Einstein procedure operating at different 
temperatures is illustrated. The condition 𝑻𝑻𝟏𝟏 > 𝑻𝑻𝟐𝟐 is assumed. 

Now the synchronization procedure turns out to be more subtle, and it does matter which clock 
works as an emitter of the photon, and which clock absorbs the photon. When clock “1” is an emitter 
of the photon and there is no uncertainty in its ticking (clock “1” sends a photon when its state is 
fixed), Equation 5 guarantees the synchronization of the system: 

                            𝝊𝝊 ≥ 𝒌𝒌𝑩𝑩𝑻𝑻𝟐𝟐
𝒍𝒍𝒍𝒍𝒍𝒍

                                    (5)  
When clock “2” is an emitter of the photon (we assume that there is no uncertainty in its ticking), 

Equation 6 provides the synchronization of the pair of clocks: 
                             𝝊𝝊 ≥ 𝒌𝒌𝑩𝑩𝑻𝑻𝟏𝟏

𝒍𝒍𝒍𝒍𝒍𝒍
                                  (6)                             

  Equation 5 and Equation 6 establish an asymmetry in synchronization of clocks, operating at 
different temperatures. A very deep analogy between the transitivity of thermal equilibrium and the 
transitivity of clock rate synchronization was addressed in ref. [44]. We put this analogy into the 
context of the Landauer Principle. Einstein-Landauer synchronization of the clocks, becomes possible 
if Equation 7 holds, regardless which clock is emitter, and which is an absorber of the photon.   

                         𝝊𝝊 ≥ 𝒌𝒌𝑩𝑩
𝒍𝒍𝒍𝒍𝒍𝒍

𝒎𝒎𝒎𝒎𝒎𝒎{𝑻𝑻𝟏𝟏, 𝑻𝑻𝟐𝟐}                           (7)   

2.5. Lattice of Clocks and Its Converting Into Bi-Colored Graph  

Now we introduce the coloring procedure enabling converting the lattice of clocks into the bi-
colored, complete graph. Consider two pairs of clocks depicted in Figure 4. When the clocks are 
synchronized with the Einstein-Landauer procedure, they are connected with the gold link (as shown 
in inset A); when the clocks are not synchronized, they are connected with the blue link (as shown in 
inset B). This coloring procedure enables representation of any lattice of clocks with the complete, bi-
colored graph.   

 
                 A        B 

1 1 0 0 
ℎ𝜈𝜈 

1 2 

𝑇𝑇1 
𝑇𝑇2 

U(x) U(x) 
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Figure 4. A. A pair of synchronized clocks is depicted. The clocks are connected with the gold link. B. A pair of 
non-synchronized clocks is depicted. The clocks are connected with the blue link. 

Now we put the coloring into the context of the Landauer principle. The transitivity of 
synchronization becomes important, as it will be shown below. Consider two triads of clocks 
operating at the same temperature T, depicted in Figure 5. 

 
 
 
 
 
 
 
 
 
 

Figure 5. A. Synchronization of a triad of clocks is depicted. The clocks operate at the same temperature T. 
Equation 3 holds. Synchronization is transitive. The entire triad is synchronized. B. Synchronization of a triad of 
clocks is depicted. The clocks operate at the same temperature T. Equation 3 is not fulfilled. Non-synchronization 
is transitive. The entire triad is non-synchronized. 

The first triad is synchronized with the Einstein-Landauer procedure realized with photons 𝝂𝝂. 
Inset “A “depicts situation, when Equation 3 is fulfilled, and photons 𝝂𝝂 enable synchronization of 
the clocks. Inset “B”, in turn, illustrates the case, when ℎ𝜈𝜈 < 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2 takes place and synchronization 
is impossible. It should be emphasized, that in both of these situations (“A” and “B”) the relation “to 
be synchronized”/”to be not synchronized” is transitive. It means, that if clocks “1” and “2” and “2” 
and “3” are synchronized with the aforementioned procedure, the clocks “1” and “3” are also 
necessarily synchronized. Correspondingly, if clocks “1” and “2” and “2” and “3” are non-
synchronized with, the clocks “1” and “3” are necessarily non-synchronized. Thus, any lattice of 
clocks, operating at the same temperature and synchronized with the photons of the same frequency 
will be necessarily completely synchronized or, alternatively, non-synchronized. 

Now we address the more complicated situation. We adopt that the clocks operate at the same 
equilibrium temperature T. However, the clocks may exchange with the photons of different 
frequencies 𝜐𝜐𝑖𝑖𝑖𝑖, where i and k are the numbers of clocks to be synchronized. Clocks numbered i and 
k may be synchronized when Equation 8 is true:     

                            ℎ𝜐𝜐𝑖𝑖𝑖𝑖 ≥ 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2                              (8) 
Now the procedure of synchronization is not transitive. It means, that if clocks “𝑖𝑖” and “𝑘𝑘” and 

“𝑘𝑘” and “𝑙𝑙” are synchronized with the Einstein-Landauer procedure, the clocks “𝑖𝑖” and “𝑙𝑙” are not 
necessarily synchronized. Indeed, 𝜐𝜐𝑖𝑖𝑖𝑖 may not fulfil demands imposed by Equation 8 for the pair of 
clocks labeled “𝑖𝑖” and “𝑙𝑙” . Obviously, the relation “to be non-synchronized” is now also non-
transitive. Thus, any lattice of clocks may be described with the complete, bi-colored graph, such as 
that, presented in Figure 6. 

T T 

T T T T 

𝜐𝜐 𝜐𝜐 

𝜐𝜐 𝜐𝜐 

𝜐𝜐 𝜐𝜐 

1 1 

2 2 3 3 

A B 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: Posted: 13 June 2025 doi:10.20944/preprints202505.2306.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2306.v2
http://creativecommons.org/licenses/by/4.0/


 7 of 11 

 

 

Figure 6. Non-transitive synchronization of the clocks with the Einstein-Landauer procedure is illustrated. The 
vertices of the graph numbered {1, … ,6} represent clocks. Synchronized clocks/vertices are connected with the 
gold links; non-synchronized clocks are connected with the blue links. Triangle “456” is monochromatic gold; 
triangle “456” represents the triad of synchronized clocks. Triangle “135” is monochromatic blue. Triangle “135” 
represents the triad of non-synchronized clocks. . 

According to the Ramsey theorem this graph should inevitably contain at least one mono-
chromatic triangle. Indeed, the Ramsey number 𝑅𝑅(3,3) = 6. We recognize that the graph, shown in 
Figure 6 contains the triangle “456”, which is monochromatic gold. Hence, triangle “456” represents 
the triad of synchronized clocks. Triangle “135” is a monochromatic blue one. Triangle “135”, in turn 
represents the triad of non-synchronized clocks.  

Thus, we demonstrated the following theorem: 
Theorem. Consider the lattice built of six clocks, synchronized with the Einstein-Landauer 

procedure. The clocks numbered “ 𝑖𝑖 “ and “ 𝑘𝑘 ” exchange with photons 𝜐𝜐𝑖𝑖𝑖𝑖 . The clocks are 
synchronized when ℎ𝜐𝜐𝑖𝑖𝑖𝑖 ≥ 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2 holds. The clocks are non-synchronized when ℎ𝜐𝜐𝑖𝑖𝑖𝑖 < 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2 is 
true. The lattice inevitably contains a triad/loop of synchronized, or, alternatively, non-synchronized 
clocks. 

It should be emphasized that the Ramsey theory does not specify what sort of color will 
necessarily be present in the graph. The extension of the introduced approach to the clocks operating 
at different temperatures is trivial, and it should be based on Equation 7.   

The suggested approach is easily extended to the infinite lattice built of clocks. Consider an 
infinite but countable system of clocks, which form the vertices of an infinite bi-colored graph. The 
clocks are connected with a gold link when the clocks are synchronized, i.e. Equation 8 holds. The 
vertices/clocks are connected, in turn, with a blue link when the clocks are non-synchronized 
(demands imposed by Equation 8 are not fulfilled). According to the infinite Ramsey theorem, an 
infinite monochromatic (gold or blue) clique will necessarily appear in the graph [42]. 

2.6. The Landauer limit and accuracy of synchronization of the clocks    

    The Landauer limit restricts the accuracy of the clocks synchronization as well as the watch 
accuracy itself. We denote the watch accuracy of synchronized clock ∆𝑡𝑡. Combining the Landauer 
limit (see Eqs. 1-2) with the Heisenberg uncertainty yields Equation 9:  

                                                ∆𝑡𝑡𝑡𝑡𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2 ≅ ℎ                              
(9) 

                         Thus, the accuracy of the clock is given by:             
                                                     ∆𝑡𝑡 ≅ ℎ

𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇2
                               

(10)  
For the temperature of the cosmic microwave background 𝑇𝑇 = 2.725𝐾𝐾 we roughly estimate 

∆𝑡𝑡 ≅ 2 × 10−11𝑠𝑠  [45]. The time scale supplied by Equation 10 is close to the Planck–Boltzmann 
thermalization time  𝜏𝜏𝑃𝑃𝑃𝑃 = ℎ

𝑘𝑘𝐵𝐵𝑇𝑇
, which is conjectured to be the fastest relaxation timescale for 

1 2 

3 

4 5 

6 
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thermalization of the given system [46]. The time scale Δ𝑡𝑡 is much larger than the Planck time 𝜏𝜏𝑃𝑃 ≅

�ℏ𝐺𝐺
𝑐𝑐5
≅ 5.39 × 10−44𝑠𝑠, at which quantum gravitation effects become essential; i.e. ∆𝑡𝑡 ≫ 𝜏𝜏𝑃𝑃 takes place 

and quantum gravitation effects may be neglected under synchronization of clocks.   

3. Discussion 

Physical clocks and computers may seem very different at first glance, but they share some deep 
similarities, especially in how they measure, process, and regulate information over time. Here are a 
few key similarities: 

i). Both are time-based systems. Computers rely on internal clocks (oscillators) to regulate 
operations [47,48]. Every instruction a computer executes is timed by this clock, measured in cycles 
per second (hertz) [47,48].  

ii) Both use regular oscillations. Quartz clock uses regular electrical oscillations to keep accurate 
time. A computer’s CPU has a clock signal generated by a crystal oscillator that ensures each 
operation is synchronized -kind of like a metronome for processing. 

iii). Deterministic behavior. Clocks and computers both operate in predictable, rule-based ways. 
A computer executes instructions in a fixed, logical order dictated by the program and the clock signal 
[43,44]. 

iv) Information processing. Clocks and computers both are information processing devices.  
v) Both systems move through a discrete sequence of states.         
vi)  Multiple clocks (e.g., connected in a network) need synchronization for accurate 

timekeeping. This problem was solved by Einstein, with the procedure of synchronization exploiting 
the constancy of the light in vacuum. Computers also need synchronized clocks across components 
(CPU, RAM, buses) to ensure proper data flow and processing. 

This analogy enabled putting of the both computers and clocks into the paradigm of the 
Landauer limiting principle, which establishes the minimal cost of energy necessary for erasure of a 
single bit information for the computer device operating at temperature T. We introduce the limiting 
principle, which establishes the minimal energy for synchronization of clocks operating at 
temperature T. We label this principle as the Einstein-Landauer synchronization. The 
synchronization of the clocks becomes possible, when Equation 8 holds. The introduced Einstein-
Landauer synchronization of clocks supports the idea that the entire universe is informational in 
nature and its functioning resembles a computational process. This idea was suggested in 1989 by 
John Archibald Wheeler, and it was aphoristically marked as “it from bit” [49]. This very general 
approach to physics is intensively developed now [50–52].  

One more important point should be addressed. It seems from the first glance, that that 
Landauer limit may be easily broken, when a signal comes from clocks A to clock B, which is not 
activated yet. Thus, it is unnecessary to zero clock B under the synchronization; clock B are started 
by the signal coming from signal A, which energy is not restricted by the Landauer bound. The close 
inspection of the problem demonstrates, that this is a wrong conclusion. Indeed, synchronization of 
the clocks is a loop process. The signal should be returned to clock A, which is necessarily ticking. 
Thus, the problem of zeroing ticking clocks remains unsolved, and the Landauer limit is unavoidable.             

4. Conclusions 

Computation, as well as measurement of time, is performed by physical devices. Rolf Landauer 
introduced the principle, which aphoristically is formulated as follows: “information is physical”. We 
suggest the principle: “time is physical”. Time is physical, because it is measured by macroscopic 
physical devices/clocks. These devices are necessarily discrete, and thus, resemble the computers. 
The clocks necessarily contain “time-bearing” and “non-time-bearing” degrees of freedom. The time 
bearing degrees of freedom are pendula or electronic oscillators. The non-time-bearing degrees of 
freedom include energy supply, display, etc. Synchronization of clocks implies decrease in the 
uncertainty in the time-bearing-degrees of freedom of the clock. According to the Second Law of 
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Thermodynamics this decrease should be compensated by the dissipation of energy in the non-time-
bearing degrees of freedom of the clock. We adopt, that the minimal dissipation of energy necessary 
for synchronization is given by the Landauer bound. It was suggested that actually the Landauer 
Principle represents re-formulation of the Second Law of Thermodynamics. Consider 
synchronization of the locks labeled by numbers “𝒊𝒊“ and “𝒌𝒌”. The energy of photon necessary for 
synchronization is given by: 𝒉𝒉𝝊𝝊𝒊𝒊𝒊𝒊 ≥ 𝒌𝒌𝑩𝑩𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻., where h is the Planck constant. Thus, the deep relation 
between the Second Law of Thermodynamics and the problem of synchronization of clock is 
established. Synchronization of clocks needs energy, thus, the “arrow of time” emerges from the 
inevitable energy loss spent for synchronization of clocks. This loss will be dissipated in the non-
time-bearing degrees of freedom of the clocks. This conclusion remains untouched for mechanical 
synchronization of the clocks. We call the introduced procedure “the Einstein-Landauer 
synchronization” of clocks. The same results are valid for the Eddington, low velocity transport-
based synchronization of the clocks. The Einstein-Landauer synchronization restricts the accuracy of 
the clocks.  

Lattices of clocks are addressed within the Ramsey approach. Lattice built of six clocks, 
synchronized with the Einstein-Landauer protocol inevitably contains a triad/loop of synchronized, 
or, alternatively, non-synchronized clocks, when photons of various wavelengths are used for the 
synchronization. The infinite lattice built of clocks will necessarily contain an infinite clique of 
synchronized, or alternatively, non-synchronized clocks.                   

Author Contributions: Conceptualization, E.B., and M.N.; methodology, E.B. and M.N; formal analysis, E.B. 
and M. N.; investigation, E.B. and M. N. writing—original draft preparation, E.B. and M.N. 

Funding: This research received no external funding. 

Acknowledgments: The authors are thankful to Nir Shvalb for extremely useful discussions. 

Data Availability Statement: The data are contained within the article. 

Conflicts of Interest: The author declares no conflicts of interest. 

References 

1. Martínez, A. A. Material History and Imaginary Clocks: Poincaré, Einstein, and Galison on 
Simultaneity, Physics in Perspective 2004, 6 (2), 224-240. 

2. Galison, Peter, Einstein’s Clocks and Poincaré’s Maps: Empires of Time, Critical Inquiry, 2000, 26, 
355-389. 

3. Kapitaniak, M.; Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, Synchronization of 
clocks, Physics Reports, 2012, 517 (1–2), 1-69. 

4. Oliveira, H.; Melo, L. Huygens synchronization of two clocks. Sci. Rep. 2015, 5, 11548. 
5. DiSalle, R. Understanding Space-Time: The Philosophical Development of Physics from Newton to 

Einstein. Cambridge, Cambridge University Pres, UK, 2006. 
6. DiSalle, R. Absolute space and Newton’s theory of relativity. Studies in History & Philosophy 

Sci. 2020, 71, 232-244. 
7. Bussotti, P., Lotti, B. Newton and His System of the World. In: Cosmology in the Early Modern 

Age: A Web of Ideas. Logic, Epistemology, and the Unity of Science, 2022, vol 56. Springer, 
Cham, Switzerland. 

8. Landau, L.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, 
UK, 1975; Volume 2. 

9. Tolman, R.C. Relativity, Thermodynamics and Cosmology; Oxford University Press: Oxford, UK, 
1934. 

10. Resnick, R. Introduction to Special Relativity, John Wiley & Sons, 1991. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: Posted: 13 June 2025 doi:10.20944/preprints202505.2306.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2306.v2
http://creativecommons.org/licenses/by/4.0/


 10 of 11 

 

11. Bohm, D. The Special Theory of Relativity, Taylor & Francis, London, UK, 2025. 
12. Moller, C. The Theory of Relativity, 2nd edn. Oxford University Press, Oxford, UK, 1952. 
13. Landauer, R. Dissipation and heat generation in the computing process. IBM Journal of Research 

and Development, 1961, 5, 183. 
14. Landauer, R. Information is physical. Physics Today 1991, 44, 5, 23-29.  
15. Landauer, R., Minimal energy requirements in communication, 1996, Science 272, 1914-1918.  
16. Bennett, C.H.; Landauer, R. The fundamental physical limits of computation, Scientific American 

1985, 253, 48-57. 
17. Maroney, O. J. E. The (absence of a) relationship between thermodynamic and logical 

reversibility, Studies History & Philosophy Science B, 2005, 36 (2), 355-374. 
18. Piechocinska, B. Information erasure, Phys. Rev. A 2000, 61, 062314.  
19. Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nature Phys. 2015, 

11, 131–139. 
20. Sagawa, T. Thermodynamic and logical reversibilities revisited. J. Stat. Mech. 2014, 2014, P03025. 
21. Herrera. L. The mass of a bit of information and the Brillouin’s principle. Fluctuation & Noise 

Letters 2014, 13, 1450002-5. 
22. Herrera, L. Landauer Principle and General Relativity, Entropy 2020, 22(3), 340 
23. Bormashenko, Ed. Generalization of the Landauer Principle for Computing Devices Based on 

Many-Valued Logic, Entropy 2019, 21(12), 1150. 
24. Vopson, M. The mass-energy-information equivalence principle, AIP Advances 2019, 9, 095206. 
25. Müller, J. G. Events as Elements of Physical Observation: Experimental Evidence, Entropy 2024, 

26(3), 255. 
26. Bormashenko, Ed. The Landauer Principle: Re-Formulation of the Second Thermodynamics 

Law or a Step to Great Unification? Entropy 2019, 21(10), 918. 
27. Maroney, O. J. E. Generalizing Landauer’s principle. Phys. Rev. E 2009, 79, 031105. 
28. Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium, 

Europhys. Lett. 2011, 95(4), 40004. 
29. Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental 

verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 
187–189. 

30. Lairez, D. Thermodynamical versus Logical Irreversibility: A Concrete Objection to Landauer’s 
Principle, Entropy 2023, 25(8), 1155. 

31. Buffoni, L.; Campisi, M. Spontaneous Fluctuation-Symmetry Breaking and the Landauer 
Principle. J. Stat. Phys. 2022, 186, 31. 

32. Bondy, J. A.; Murty, U.S. R Graph Theory, Springer, New York, 2008. 
33. Chartrand, G.; Chatterjee, P. Zhang, P. Ramsey chains in graphs, Electronic J. Mathematics 2023, 

6, 1–14. 
34. Chartrand, G.; Zhang, P. New directions in Ramsey theory, Discrete Math. Lett. 2021, 6, 84–96. 
35. Graham, R. L.; Rothschild, B.L.; Spencer, J, H. Ramsey theory, 2nd ed., Wiley-Interscience Series in 

Discrete Mathematics and Optimization, John Wiley &  Sons, Inc., New York, A Wiley-Interscience 
Publication, 1990, pp. 10-110. 

36. Graham, R.; Butler, S. Rudiments of Ramsey Theory (2nd ed.). American Mathematical Society: 
Providence, Rhode Island, USA, 2015; pp. 7–46. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: Posted: 13 June 2025 doi:10.20944/preprints202505.2306.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2306.v2
http://creativecommons.org/licenses/by/4.0/


 11 of 11 

 

37. Di Nasso, M.; Goldbring, I.; Lupini M., Nonstandard Methods in Combinatorial Number Theory, 
Lecture Notes in Mathematics, vol. 2239, Springer-Verlag, Berlin, 2019. 

38. Katz, M.; Reimann, J. Introduction to Ramsey Theory: Fast Functions, Infinity, and Metamathematics, 
Student Mathematical Library Volume: 87; 2018; pp. 1-34. 

39. Bormashenko, Ed.; Shvalb, N. A Ramsey-Theory-Based Approach to the Dynamics of Systems 
of Material Points, Dynamics 2024, 4(4), 845-854.  

40. Blumenthal, A.S. Nosonovsky, M. Friction and Dynamics of Verge and Foliot: How the 
Invention of the Pendulum Made Clocks Much More Accurate, Appl. Mech. 2020, 1, 111–122. 

41. Feynman, R. The Feynman Lectures on Physics, Volume 1, Chapter 6, Addison Wesley 
Publishing Co. Reading, Massachusetts, Palo Alto. 

42. Zheng, Z.; Chen, P. Zeroth law of thermodynamics and transitivity of simultaneity. Int. J. Theor. 
Phys. 1997, 36, 2153–2159. 

43. Bormashenko. Ed. Physical and Logical Synchronization of Clocks: The Ramsey Approach, 
Foundations 2025, 5(2), 15. 

44. Li, Y.; Lin, Q. Elementary Methods of the Graph Theory; Applied Mathematical Sciences; Springer: 
Cham, Switzerland, 2020; pp. 3–44. 

45. Fixsen, D.J. The Temperature of the cosmic microwave background. Astrophys. J. 2009, 707, 916–
920. 

46. Hartnoll, S.A.; Mackenzie, A.P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 
2022, 94, 041002. 

47. Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 
1978, 21, 558–565.  

48. Kulkarni, S.S.; Demirbas, M.; Madappa, D.; Avva, B.; Leone, M. Logical Physical Clocks. In 
Principles of Distributed Systems, Proceedings of the 18th International Conference, OPODIS 
2014, Cortina d’Ampezzo, Italy, 16–19 December 2014; Aguilera, M.K., Querzoni, L., Shapiro, 
M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8878. 

49. Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd 
International Symposium on Foundations of Quantum Mechanics in the Light of New 
Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368. 

50. Vopson, M. Is gravity evidence of a computational universe? AIP Advances 2025, 15, 045035. 
51. Vopson, M. The information catastrophe, AIP Advances 2020, 10, 085014. 
52. Bormashenko, Ed. Informational Reinterpretation of the Mechanics Notions and Laws, Entropy 

2020, 22(6), 631. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are 
solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI 
and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any 
ideas, methods, instructions or products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: Posted: 13 June 2025 doi:10.20944/preprints202505.2306.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2306.v2
http://creativecommons.org/licenses/by/4.0/

